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INTRODUCTION

Historical absence of two essential tools from the dialog
of the physics community is most remarkable[1, 2].

First and foremost is the background independent[3]
algebra of spacetime[4–7], the geometric interpretation
of Clifford algebra. The algebra of Euclid’s point, line,
plane, and volume elements. The interaction algebra of
geometric primitives of physical space[8, 9]. Geometric
algebra is essential in exploration beyond leptons and
quarks to the geometric wavefunction model that must
be present in a theory of quantum gravity[10, 11].

More obscure but no less essential is that which gov-
erns amplitude and phase of these geometric wavefunc-
tion interactions - the background independent[3] exact
quantization of impedances beyond photon and quantum
Hall[12] to those associated with all potentials[13–16].

Geometric algebra and the topological symmetry
breaking inherent in geometric products permits one to
define a geometric vacuum wavefunction comprised of
fundamental geometric objects of the three-dimensional
Pauli algebra of space.

Wavefunction interactions generate the 4D Dirac al-
gebra of flat Minkowski spacetime, gaining the attribute
of quantized impedances when endowed with quantized
electromagnetic fields. The resulting model is naturally
gauge invariant, finite, and confined, and reveals the piv-
otal role of impedance matching in energy flow to and
from the elementary particle spectrum[17].

Extending the model to Planck scale and examining
the mismatch to the massive particle spectrum exposes
an exact identity between gravity and impedance mis-
matched electromagnetism[18, 19]. From this emerges a
quantized gauge theory gravity[10, 11] equivalent of gen-
eral relativity[20–24]. In what follows we present details,
and examine string and loop geometries in the context of
our results.

GEOMETRIC ALGEBRA

Figure 1 illustrates an important point - geometric al-
gebra (and its extension into geometric calculus) claims
to encompass the better part of the particle physicist’s
mathematical toolkit[25, 26].

FIG. 1. Evolution of Geometric Algebra [27]

It would seem that there is a certain profundity to this,
that the physicist’s essential set of mathematical tools are
a subset of the interaction algebra of the fundamental
geometric objects, of the point, line, plane, and volume
elements of our physical space[28].
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FIG. 2. The S-matrix: Pauli algebra of three-dimensional space is comprised of one scalar, three each vectors and bivectors,
and one trivector. All are orientable, with sign of the scalar giving time direction, the opposing phase evolutions of particle and
anti-particle. Attributing quantized electric and magnetic fields to these fundamental geometric objects yields the wavefunction
model. Taking those at top as the electron wavefunction suggests those at left correspond to the positron. Their geometric
product generates the background independent four-dimensional Dirac algebra of flat Minkowski spacetime, arranged in odd
transition (yellow) and even eigenmodes (blue) by grade (dimension). Time emerges from the interactions. Modes of the stable
proton are highlighted in green[29, 30]. Modes indicated by symbols (circle, square,...) are plotted in figure 3.

Topological symmetry breaking is implicit in geometric
algebra. Given two vectors a and b, the geometric prod-
uct ab mixes products of different dimension, or grade.
In the product ab = a · b + a ∧ b, two 1D vectors are
transformed into point scalar and 2D bivector.

“The problem is that even though we can transform
the line continuously into a point, we cannot undo this
transformation and have a function from the point back
onto the line...” [31].

Geometric wavefunction interactions are represented
by geometric products, break topological symmetry in
grade increasing operations (origin of parity violation?).
Topological duality[32–35] is evident in the differing ge-
ometric grades of electric and magnetic charges of figure
2. Electric charge is a scalar, magnetic its topological
dual, the Pauli algebra pseudoscalar. Their ratio is the
electromagnetic fine structure constant, α = e/g.

FIG. 3. Inversion of fundamental lengths by magnetic charge.
The product eg = ~ is the dyon[36, 37], a pseudovector in the
Dirac algebra. Compton wavelength depends only on mass.
Importance of Grassman’s contribution[38], the unique invert-
ibility of geometric algebra, is evident here.
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FIG. 4. Correlation between lifetimes/coherence lengths (light cone boundary) of the unstable particle spectrum and nodes
of the energy/scale dependent impedance network of a subset of the modes of figure 2 [17], showing the match of a .511MeV
photon to the node at the fundamental length of the model, the electron Compton wavelength.

IMPEDANCE QUANTIZATION

Knowing geometries and fields of modes shown in fig-
ure 2, one can calculate mode impedances, an equiva-
lent representation[39] of the scattering matrix[40–46].
Absent electric and magnetic fields, the geometric wave-
function model represents the virtual vacuum impedance
structure. Excitation of the lowest order mode, the elec-
tric Coulomb mode (blue square at upper left of figure
2), yields the 377 ohm vacuum impedance seen by the
photon[47], as shown in figure 4.

Strong correlation of network nodes with unstable par-
ticle coherence lengths[48–54] follows from the require-
ment that impedances be matched for energy flow be-
tween modes during decoherence. More generally, corre-
lation supports the premise of S-matrix theory, that the
matrix of figure 2 governs the flow of energy to and from
observables of the unstable particle spectrum. For exam-
ple, precise calculation of π0, η, and η′ branching ratios

shown at upper left of the figure and chiral anomaly res-
olution follow from impedance matching[55].

Figure 5 shows far-to-near field transition of a 13.6eV
photon, permitting impedance matching to the hydrogen
atom quantum Hall impedance at the Bohr radius.

FIG. 5. Photon match to a free electron [52, 56].
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FIG. 6. A subset of impedance networks of the electron and Planck particle, showing both a .511 Mev photon entering from
the right and the ‘primordial photon’ from the left. The end of inflation in the impedance approach (as in the cosmological
Standard Model) comes at ∼ 10−32 seconds, at the intersection of the two networks, the ‘Mach scale’.

QUANTIZING GAUGE THEORY GRAVITY

The network of figure 6 results from choosing the quan-
tization scale to be not the electron Compton wave-
length but rather the Planck length. The gravita-
tional force between electron and Planck particle ex-
actly equals the product of Coulomb force and impedance
mismatch[18, 19, 57], suggesting gravity is mismatched
electromagnetism. However, two essential properties of
gravity seem to rule out electromagnetic origin [58].

First, unlike electromagnetic forces, it appears that
gravity cannot be shielded. However, scale invariant
impedances cannot be shielded[54, 59]. Consider for in-
stance centrifugal force, or the Aharonov-Bohm effect.

Second, unlike the bipolarity of electromagnetism,
gravity appears to have only one sign. We observe only
attractive gravitational forces. Here the distinction be-
tween near and far fields plays a pivotal role. Gravity is
forty-two orders of magnitude weaker than the Coulomb
force, a consequence of the impedance mismatch. Given
the ∼10-12 meters wavelength of a .511MeV photon, the
mismatched ‘gravity photon’ wavelength will be about
forty-two orders of magnitude greater, or ∼1030 meters.
The observable universe is about 1026 meters.

Our material existence appears to be in the extreme
near field of the ‘gravity photons’ of almost all of the mass
in the universe, where the scale dependent impedances
appear scale invariant due to flatness of the phase. One
might conjecture that this is what permits scale depen-
dent impedances to have the ‘cannot be shielded’ prop-
erty of scale invariant impedances. Hopefully topological
character of the algebra will provide a proper formalism.

STRINGS AND LOOPS

The geometric wavefunction model is naturally gauge
invariant, finite, and confined. For input it requires five
fundamental constants - speed of light, Planck’s constant,
magnetic permeability of free space, electric charge quan-
tum, and electron Compton wavelength. There are no
adjustable parameters. Given the diversity and simplic-
ity of the model, it would be most helpful to establish
connections with the mainstream in particle and gravity
theory, with strings and loops.

For string theory the problem is not insignificant.
The partners of the one-dimensional open strings would
seem to be grade-1 vectors of the wavefunction model.
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However strings vibrate transversely in ten-dimensional
spacetime, whereas vectors are truly one-dimensional and
have only orientational and longitudinal degrees of free-
dom in four-dimensional spacetime. The possibility ex-
ists that the open string might be represented by the
D-branes at the ends taken to be bivectors. This does
not make things more simple, and offers no obvious ad-
vantage.

The partners of two-dimensional closed strings would
presumably be bivectors of the wavefunction model, like
the D-branes. This would seem to exhaust the possible
geometric correspondences with strings. Many questions
remain, among them - what fields (electric or magnetic)
would one assign to the vectors and bivectors, and how
would one accomplish the dimensional reduction to four-
dimensional spacetime?

For loop theory the problem seems much simpler,
particularly as it proposes to explain only gravity. The
loops are taken to be the bivectors of the wavefunction
model, exist in our physical three-dimensional space, and
their interactions are modeled by the geometric product.
Question remains what fields (electric or magnetic) to
assign to the bivectors.

SUMMARY AND CONCLUSION

Keeping in mind that the photon near field has longi-
tudinal electric field, and that we are in the near field of
the mismatched ‘gravity photons’ of almost all the mass
in the universe, one might conclude that the phase shifts
will be longitudinal. This has implications for attempting
to triangulate the origins of gravity waves when a third
detector comes on line, and opens the possibility of ex-
perimental confirmation of the geometric wavefunction
approach, as general relativity requires that the phase
shifts be transverse.
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