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Abstract

A general recursive and limit formula for higher order derivatives of the inverse function is presented. The
formula is next used in couple of mathematical applications: expansion of the inverse function into Taylor series,
solving equations, constructing random numbers with a given distribution from uniformly distributed random
numbers and expanding a function in the neighborhood of a given point in an alternative way to the Taylor
expansion.

Introductory note: This text was previously published on Scribd1.

1 Introduction
The first derivative of the inverse function is given by the well-known formula

d

dy
g(y)|y=f(x0) =

1
d
dxf(x)|x=x0

, g = f−1

and higher order derivatives are usually derived by a repetitive differentiation of the identity f(g(x)) = x. In this
text I would like to present an alternative expression that has recursive and limit form and write down the explicit
forms of the first ten derivatives of the inverse function. Even though these expressions are simple to derive, they
are not commonly available in the literature and it may be useful to summarize them in one text. In addition I will
show a couple of related examples and schemes that, I believe, have an application potential.

2 Higher order derivatives of the inverse function

2.1 Notations
For the purpose of this article it is convenient to introduce new notations. This is mostly motivated by the fact
that higher order derivatives and higher powers will occur often in the text and thus would make formulas difficult
to read. Let us consider a real function of a real variable f(x) on the interval I. Let us suppose that f is bijective
on I. Let x0 be an internal point of I and g(y) be the inverse function of f , g(f(x1)) = g(y1) = x1 for any x1

belonging to I. Let us define y0 = f(x0). In this article I will use the following notations:

fn =
dn

dxn
f(x)|x=x0 , gn =

dn

dyn
g(y)|y=y0

Described objects are depicted on the Figure 1.
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Figure 1: f(x) and g(y).

2.2 Formulas
The formula for higher order derivatives of the inverse function can be written in a recursive and limit form as
follows

g1 =
1

f1
, gn = lim

∆x→0
n!
∆x− Σn−1

i=1
1
i! (gi)

[
Σn

j=1
1
j! (fj)(∆x)j

]i
[
Σn

i=1
1
i! (fi)(∆x)i

]n ≡ F [f1, . . . , fn], (1)

where the notation F [f1, . . . , fn] is introduced to refer in a simplified form to this recursive limit expression later
in the text. This gives us for the first five derivatives

g1 =
1

f1
, g2 = − f2

(f1)3
, g3 =

3(f2)2 − (f1)(f3)

(f1)5
, g4 = −15(f2)3 − 10(f1)(f2)(f3) + (f1)2(f4)

(f1)7
,

g5 =
105(f2)4 − 105(f1)(f2)2(f3) + 10(f1)2(f3)2 + 15(f1)2(f2)(f4)− (f1)3(f5)

(f1)9
. (2)

The expressions for further derivatives are summarized in the appendix A.

2.3 Illustrative example
Let us define

f(x) = ln(x), x0 = 1.

First three derivatives are

f1 =
d

dx
f(x)|x=1 = 1, f2 =

d2

dx2
f(x)|x=1 = −1, f3 =

d3

dx3
f(x)|x=1 = 2.

The formulas 2 yield

g1 =
1

f1
= 1, g2 = − f2

(f1)3
= 1, g3 =

3(f2)2 − (f1)(f3)

(f1)5
= 1.

One recognizes the derivatives of the exponential function g(y) = f−1 = ey in the point y0 = ln(1) = 0.

2.4 Comments
• The formulas 2 contain only basic arithmetical operations and from this point of view they are suitable for

computer calculations. The disadvantage is the rapid growth in the number of terms with increasing order of
the derivative (g10 has already 30 additive terms).
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• Since inverting a function twice leads to the initial function, one expects this property to be propagated into
the formula 1 (“duality”). This needs to be true (if the formula is true), however it is still interesting to check
it explicitly. Let h be the inverse function of g and, although identical, let us think of h and f separately.
Then, for example, for the second derivative one has

h2 = − g2

(g1)3
= −

− f2
(f1)3

( 1
f1 )

3
= −−(f2)(f1)3

(f1)3
= f2.

This property was checked on computer to by explicitly valid up to the order eight.

2.5 Derivation of the higher order derivatives formula for the inverse function
In this section the same notations are used as in the previous one. In the neighborhood of x0 one can expand the
functions f and g

f(x0 +∆x) ≈ f(x0) + a1∆x+ a2∆x2 + . . .+ an∆xn = f(x0) +

n∑
j=1

aj∆xj ,

g(y0 +∆y) ≈ g(y0) + b1∆y + b2∆y2 + . . .+ bn∆yn = g(y0) +

n∑
i=1

bi∆yi.

Then using the inverse-function property in the point x0 +∆x one has for small ∆x

x0 +∆x = g[f(x0 +∆x)]
≈ g[f(x0) +

∑n
j=1 aj∆xj ] with

∑n
j=1 aj∆xj = ∆y

≈ x0 +
∑n

i=1 bi[
∑n

j=1 aj∆xj ]i

≈ x0 +
∑n−1

i=1 bi[
∑n

j=1 aj∆xj ]i + bn[
∑n

j=1 aj∆xj ]n.

Taking into account that our calculations are valid only for small ∆x by applying the limit ∆x → 0 and using the
relation between the polynomial coefficients and its derivatives aj =

fj
j! , bi =

gi
i! one arrives to the expression

gn = lim
∆x→0

n!
∆x−

∑n−1
i=1

gi
i!

[∑n
j=1

fj
j! ∆xj

]i
[
∑n

j=1
fj
j! ∆xj ]n

which is identical to the formula 1. A rigorous mathematical proof would require careful treatment of approximations
and limits, which I am not doing here.

3 Applications

3.1 Inverse function Taylor series
The knowledge of the derivatives of the inverse function enables us to expand the inverse function into Taylor series.
Knowing the initial function f , let in addition suppose that we know also the value of its inverse function g at some
point y0, g(y0) = x0. Calculating the numbers g1, g2, g3 . . . from the formula 1, one can express the value of g at
some different point y1

g(y1) = g(y0) + (g1)(y1 − y0) +
1

2!
(g2)(y1 − y0)

2 + . . . (3)

= x0 +
∞∑
i=1

1

i!
(gi)(y1 − y0)

i.

This of course holds only on condition that Taylor series for g converge to g at y1.
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Figure 2: Solving equations

3.2 Solving equations
The knowledge of the inverse function (supposing it can be approximated by its Taylor series) allows for solving
real equations of the real variable. Equation f(xs) = 0 can be solved immediately doing xs = g[f(xs)] = g(0). A
complication comes from the fact that we a priori do not know the value of g at some given point. Consider the
situation depicted in the Figure 2. The value of g(0) can be expressed through g(y0)

xs = g(0) = g(y0) +
∞∑
i=1

1

i!
(gi)(−y0)

i.

However, one is not free to choose y0 arbitrarily (otherwise one would directly choose y0 = 0). A possible solution
is to choose an arbitrary x0 in some interval around xs, where f is bijective. Then using y0 = f(x0) one rewrites
the previous equation in the form

xs = g(0) = x0 +
∞∑
i=1

1

i!
(gi)[−f(x0)]

i, (4)

or once more in the form

xs = g(0) = x0 +
∞∑
i=1

1

i!
F [f1, . . . , fi][−f(x0)]

i,

where it can explicitly be seen, that all information needed to solve the equation f(xs) = 0 is contained in the
(known) function f itself. This approach can be demonstrated on couple of simple examples that follow.

Solving transcendent equation

Consider the equation xx = 7. We need to transform it into the form f(x) = xx−7 = 0. Next we need to have some
reasonable guess for the solution. Let the guess be x0 = 2 [f(x0) = −3]. Having x0, we calculate the derivatives
fn = dn

dxn (x
x − 7)|x=x0=2 up to the desired order and then using the expression 1 calculate g1, g2, g2, . . . - the

derivatives of the inverse function g(y) at the corresponding point y0 = −3. I have considered first 8 derivatives and
calculations based on the formula 4 lead to xs ≈ 2.309117 . . . giving 2.309117 . . .2.309117... = 6.90620 . . .. The method
thus gives nice results that can be improved if the whole procedure is used iteratively. If in the same situation one
considers four derivatives only but repeats the whole procedure twice (taking the approximate solution from the
first iteration as the starting point for the second iteration) one obtains numerically precise result xs ≈ 2.31645 . . .
giving 2.31645 . . .2.31645... = 6.999999205 . . ..

Calculation of mathematical constants π and e

The previous approach can be used to calculate approximate values of important mathematical constants like π or
e. For that purpose one needs to formulate equations that have these constants for solutions. In the following I will

4



also consider two scenarios: a single iteration with 8 terms taken into account and two iterations with 4 derivatives
considered.

For π a suitable equation might be cos
(
x
4

)
=

√
2
2 . One then defines f(x) = cos

(
x
4

)
−

√
2
2 and applies the method

of the inverse function to solve f(x) = 0. If we choose x0 = 3, we get in the first scenario

π ≈ 3.14159265357636280318084094735 . . . ,

where 10 decimal places are correct. In the second case one obtains

π ≈ 3.14159265358979323846269213732 . . . ,

where 22 decimal digits are correct.
For e the equation ln(x) = 1 might be consider, from which one defines f(x) = ln(x) − 1 and solves f(x) = 0.

Taking x0 = 2 gives in the first scenario

e ≈ 2.71828182832191473183292924148 . . . ,

where 9 decimal places are correct and in the second scenario

e ≈ 2.71828182845904444095135772192 . . . ,

where 14 decimal digits are correct.

3.3 Generating random numbers
The aim of this section is to obtain random numbers which are distributed respecting a probability density function
ρ(x), given a random number generator which provides uniformly distributed random numbers from the interval
⟨0, 1). I think this kind of problem might appear often in practice, since computers usually offer only uniformly
distributed numbers from the interval ⟨0, 1) and few other common distributions. The algorithm to solve the task
is:

• construct the distribution function f(x) =
´ x
−∞ ρ(y) dy.

• construct the function g inverse to f : g[f(x)] = f [g(x)] = x.

• if the numbers x1, x2, . . . , xn from the interval ⟨0, 1) respect the uniform distribution then the numbers y1 =
g(x1), y2 = g(x2), . . . , yn = g(xn) respect the distribution ρ(x).

To arrive to this solution one can apply the methods presented in this article, however only on the condition that
the value of the distribution function f is known at least in one point x0 (this is often the case - for example for
symmetric distributions f(x0 = 0) = 1

2 ). If so, one constructs the Taylor series for g using the formula 3.
The example I am going to present is ρ(x) = 1√

2π
exp(−x2

2 ). The corresponding distribution function f(x) =

1√
2π

´ x
−∞ exp(−y2

2 ) dy is not an elementary function, but its value and the value of all its derivatives fn at the point
x0 = 0 are known. Using the formula 1 the derivatives gn of the inverse function g at the point y0 = f(x0 = 0) = 1

2
are calculated. Taking into account first 9 derivatives and using the expression 3 we get (x is used for the variable
name rather than y)

g(x) ≈ 0 + (2.506628)(x− 0.5) + 0 +
1

3!
(15.749609)(x− 0.5)3 + . . .

. . .+
1

9!
(17068346.560783)(x− 0.5)9.

The graph of this polynomial is plotted in the Figure 3. The result is not fully satisfactory because the generated
numbers are always between approximately −2 and 2. The distribution coming out of our procedure is in the
Figure 4 compared with the “true” normal distribution. One sees that a polynomial with higher number of terms
would be needed to approximate the normal distribution with better accuracy, the presented example however well
demonstrates one possible application of the formula 1 and the related procedure.
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Figure 3: The approximation of the function g, g = f−1, f(x) = 1√
2π

´ x
−∞ exp(−y2

2 ) dy.

Figure 4: Plots produced with a high statistics of random numbers. Dashed line - normal distribution; Solid line -
our approximation of the normal distribution

3.4 An alternative function expansion
The ideas presented in this section suppose that a numerical procedure for inverting a function (flip function
graph around the axis y = x) is available. If so, one has an alternative method of approximating a function in
a neighborhood of a point x0: one expands the inverse function into Taylor series and then inverts numerically
the result. In this way one gets a non-polynomial approximation (inverse of a polynomial is not, in general, a
polynomial) of the initial function. In some cases this approximation has bigger interval of convergence than the
Taylor series of the initial function and thus I consider it as a possible interesting application of the higher order
derivatives of the inverse function.

I will demonstrate it on a simple example that was already presented in the section 2.3: f(x) = ln(x), x0 = 1.
The Taylor series for ln(x) at x0 = 1 has the radius of convergence R = 1 and so one cannot use it to calculate
function values beyond x = 2. If, however, one expands into Taylor series the inverse function, i.e. the function
exp(y) at y0 = f(x0 = 1) = 0 one gets a series that converges for every yϵR. And so, numerically inverting the
result, one ends up with a prediction for the value of ln(x) for every xϵR.

4 Conclusion
I presented the general formula that has a recursive and limit form for calculating higher order derivatives of the
inverse function together with couple of examples and possible applications. More details on the calculations shown
in this text can be found on the web page http://www.scribd.com/doc/13699758/Higher-order-derivatives-of-the-
inverse-function.
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A List of expressions
The list of the formulas for higher order derivatives of the inverse function up to the order ten.

g1 = 1
f1

g2 = − f2
(f1)3

g3 = 1
(f1)5 [ 3(f2)

2 − (f1)(f3) ]

g4 = 1
(f1)7 [ − 15(f2)3 + 10(f1)(f2)(f3)− (f1)2(f4) ]

g5 = 1
(f1)9 [ 105(f2)

4 − 105(f1)(f2)2(f3) + 10(f1)2(f3)2 + 15(f1)2(f2)(f4)− (f1)3(f5) ]

g6 = 1
(f1)11 [ − 945(f2)5 + 1260(f1)(f2)3(f3)− 280(f1)2(f2)(f3)2 − 210(f1)2(f2)2(f4)

+ 35(f1)3(f3)(f4) + 21(f1)3(f2)(f5)− (f1)4(f6) ]

g7 = 1
(f1)13 [ 10395(f2)

6 − 17325(f1)(f2)4(f3) + 6300(f1)2(f2)2(f3)2 − 280(f1)3(f3)3

+ 3150(f1)2(f2)3(f4)− 1260(f1)3(f2)(f3)(f4) + 35(f1)4(f4)2 − 378(f1)3(f2)2(f5)
+ 56(f1)4(f3)(f5) + 28(f1)4(f2)(f6)− (f1)5(f7) ]

g8 = 1
(f1)15 [ − 135135(f2)7 + 270270(f1)(f2)5(f3)− 138600(f1)2(f2)3(f3)2 + 15400(f1)3(f2)(f3)3

− 51975(f1)2(f2)4(f4) + 34650(f1)3(f2)2(f3)(f4)− 2100(f1)4(f3)2(f4)− 1575(f1)4(f2)(f4)2

+ 6930(f1)3(f2)3(f5)− 2520(f1)4(f2)(f3)(f5) + 126(f1)5(f4)(f5)− 630(f1)4(f2)2(f6)
+ 84(f1)5(f3)(f6) + 36(f1)5(f2)(f7)− (f1)6(f8) ]

g9 = 1
(f1)17 [ 2027025(f2)

8 − 4729725(f1)(f2)6(f3) + 3153150(f1)2(f2)4(f3)2 − 600600(f1)3(f2)2(f3)3

+ 15400(f1)4(f3)4 + 945945(f1)2(f2)5(f4)− 900900(f1)3(f2)3(f3)(f4) + 138600(f1)4(f2)(f3)2(f4)
+ 51975(f1)4(f2)2(f4)2 − 5775(f1)5(f3)(f4)2 − 135135(f1)3(f2)4(f5) + 83160(f1)4(f2)2(f3)(f5)
− 4620(f1)5(f3)2(f5)− 6930(f1)5(f2)(f4)(f5) + 126(f1)6(f5)2 + 13860(f1)4(f2)3(f6)
− 4620(f1)5(f2)(f3)(f6) + 210(f1)6(f4)(f6)− 990(f1)5(f2)2(f7) + 120(f1)6(f3)(f7)
+ 45(f1)6(f2)(f8)− (f1)7(f9) ]

g10 = 1
(f1)19 [ − 34459425(f2)9 + 91891800(f1)(f2)7(f3)− 75675600(f1)2(f2)5(f3)2

+ 21021000(f1)3(f2)3(f3)3 − 1401400(f1)4(f2)(f3)4 − 18918900(f1)2(f2)6(f4)
+ 23648625(f1)3(f2)4(f3)(f4)− 6306300(f1)4(f2)2(f3)2(f4) + 200200(f1)5(f3)3(f4)
− 1576575(f1)4(f2)3(f4)2 + 450450(f1)5(f2)(f3)(f4)2 − 5775(f1)6(f4)3 + 2837835(f1)3(f2)5(f5)
− 2522520(f1)4(f2)3(f3)(f5) + 360360(f1)5(f2)(f3)2(f5) + 270270(f1)5(f2)2(f4)(f5)
− 27720(f1)6(f3)(f4)(f5)− 8316(f1)6(f2)(f5)2 − 315315(f1)4(f2)4(f6) + 180180(f1)5(f2)2(f3)(f6)
− 9240(f1)6(f3)2(f6)− 13860(f1)6(f2)(f4)(f6) + 462(f1)7(f5)(f6) + 25740(f1)5(f2)3(f7)
− 7920(f1)6(f2)(f3)(f7) + 330(f1)7(f4)(f7)− 1485(f1)6(f2)2(f8) + 165(f1)7(f3)(f8)
+ 55(f1)7(f2)(f9)− (f1)8(f10) ]
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