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Abstract

A preon model for the substructure of the the standard model quarks and lep-
tons is discussed. Global group representations for preons, quarks and leptons
are addressed using two preons and their antiparticles. The preon construction
endorses the standard model gauge group structure. Preons are subject to elec-
tromagnetic and gravitational interactions only. Gravity with torsion, expressed
as an axial-vector �eld, is applied to preons in the energy range between GUT
and Planck scale. The mass of the axial-vector particle is estimated to be near
the GUT scale. A tentative model for quantum gravity, excluding black holes,
is considered.
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1 Introduction

The purpose of this brief note is to develop further a spin 1/2 preon model in
order to give group theoretic structure to it. The model should ful�ll three re-
quirements: (i) provide a global group structure for preons, quarks and leptons,
(ii) introduce preon properties so that they endorse the standard model (SM)
local gauge group structure SU(3)× SU2)× U(1), and (iii) provide a basis for
introducing an applicable formulation of gravity into the model in the environ-
ment where gravity is important. It is not obvious that all the above goals can
be achieved, in particular, gravity has received very little attention in particle
physics.

It will be �rst shown below that the preon model [1, 2, 3] is supported
by the work of Finkelstein [4] using the global knot algebra SLq(2) structure
for preons, quarks and leptons. Secondly, the construction of the preon model
directly suggests the gauge group structures SU(2) and SU(3) for the weak
and strong interactions, respectively. Thirdly, fermion �elds in Einstein-Cartan
[5], or Einstein-Kibble-Sciama (EKS) [6, 7] gravity have been shown by Fabbri
to yield interesting results for torsion coupling to the spin of Dirac �elds [8].
This interaction expresses a massive axial-vector �eld coupling to preons. It
originates from translation symmetry of the full Poincaré gauge group in the
action. Spin being quantized, a �rst step model of quantum gravity is therefore
considered for preon energy scales, say approximately 1016 Gev ≤ E ≤ 1019

GeV. In short, this note is a proposal for beyond standard model physics. Black
holes are beyond the scope of this article.

The organization of this note is the following. The preon model is described
in section 2. The group SLq(2) is discussed in section 3. Sections 2 and 3 are
presented in the historical order, not in the logical order as given in the �rst
paragraph. Gravity with torsion is described in section 4. In section 5 some
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interesting thoughts on the nature of spinor �elds are brie�y quoted. Finally,
conclusion are made in section 6. The presentation is self-contained.

2 Preon Model

The constituents of quarks and leptons must include an odd number of spin 1/2
particles. I consider the case of three constituents, preons. Requiring charge
quantization {0, 1/3, 2/3, 1} and fermionic permutation antisymmetry for same
charge preons, I have de�ned four bound states of three light preons which form
the �rst generation quarks and leptons [1, 2]

uk = εijkm
+
i m

+
j m

0

d̄k = εijkm
+m0

im
0
j

e = εijkm
−
i m
−
j m
−
k

ν̄ = εijkm̄
0
i m̄

0
jm̄

0
k

(2.1)

A feature in (2.1) with two same charge preons is that the construction pro-
vides a three-valued index for quark SU(3) color, as it was originally discovered
[9]. The corresponding gauge bosons are in the adjoint representation. The
weak SU(2) left handed doublets can be read from the �rst two and last two
lines in (2.1). The standard model gauge structure SU(N), N = 1, 2 is emer-
gent in this sense from the present preon model. In the same way quark-lepton
transitions between lines 1↔3 and 2↔4 in (2.1) are possible.

The preon and SM fermion group structure is better illuminated using the
representations of the SLq(2) group in the next section 3.

The above gauge picture is supposed to hold in the present scheme up to the
energy of about 1016 GeV. The electroweak interaction is in the spontaneously
broken symmetry phase below energies of the order of 100 GeV and in the
symmetric phase above it. The electromagnetic and weak forces take separate
ways at higher energies (100 GeV� E � 1016 GeV). The weak interaction
restores its symmetry but melts away due to ionization of quarks and leptons
into preons. The electromagnetic interaction, in turn, stays strong towards
Planck scale, MPl ∼ 1.22× 1019 GeV. Likewise, the quark color and leptoquark
interactions su�er the same destiny as the weak force. One is left with the
electromagnetic and gravitational forces only at Planck scale.

The proton, neutron, electron and ν can be constructed of 12 preons and 12
anti-preons. The construction (2.1) is matter-antimatter symmetric on preon
level, which is desirable for early cosmology. The model makes it possible to
create from vacuum a universe with only matter: combine e.g. six m+, six
m0 and their antiparticles to make the basic β-decay particles. Corresponding
antiparticles may occur equally well.

The baryon number (B) is not conserved in this model: a proton may decay
at Planck scale temperature by a preon rearrangement process into a positron
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and a pion. This is expected to be independent of the details of the preon
interaction. Baryon number minus lepton number (B-L) is conserved.

Preon interactions among themselves are discussed in section 4. Unknotting
a little, the gauge boson is a massive axial-vector �eld.

One may now propose that, as far as there is an ultimate uni�ed �eld theory,
it is a preon theory with only gravitational and electromagnetic interactions.

In the early universe, the strong and weak forces are generated only after
massless preons combine into quarks and leptons at lower temperature. These
two forces function only with short range within nuclei making atoms, molecules
and chemistry possible. In a contracting phase of the universe the same pro-
cesses take place in the reverse order.

3 Knot Theory: Preons, Quarks and Leptons

Early work on knots in physics goes back in time to 19th and 20th century
[10, 11]. On the 21st century Finkelstein has proposed a model based on the
group SLq(2) [4]. This group actualizes the needs of the model of the previous
section 2.

Let us consider the simple case of two dimensional representation of the
group SLq(2) which is de�ned by the matrix

T = D
1/2
mm′ =

(
a b
c d

)
(3.1)

where (a, b, c, d) satisfy the knot algebra

ab = qba bd = qdb ad− qbc = 1 bc = cb

ac = qca cd = qdc da− q1cb = 1 q1 ≡ q−1 (3.2)

where q is de�ned as follows from the matrix ε

ε =

(
0 α2

−α1 0

)
(3.3)

The matrix ε is invariant under the transformation

TεT t = T tεT = ε (3.4)

where T t is T transposed and q = α1/α2.
Higher representations of SLq(2) are obtained by transforming the (2j + 1)

monomials
Ψj
m = N j

mx
n+

1 x
n−
2 ,−j ≤ m ≤ j (3.5)

by

x
′
1 = ax1 + bx2 (3.6)

x
′
2 = cx1 + dx2 (3.7)
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where (a, b, c, d) satisfy the knot algebra (3.2) but x1 and x2 commute and
n± = j ±m, and

N j
m =

[
〈n+〉q1 !〈n−〉q1 !

]−1/2
(3.8)

and 〈n〉q = qn−1

q−1 . It is found that(
Ψj
m

)′
=
∑

Dj
mm′Ψ

j
m′ (3.9)

where

Dj
mm′(q|a, b, c, d) =

∑
δ(na+nb,n+)
δ(nc+nd,n−)

Ajmm′(q, na, nc)δ(na + nb, n
′
+)anabnbcncdnd

(3.10)
where n

′
± = j ±m′ , Dj

mm′ is a 2j+1 dimensional representation of the SLq(2)

algebra and the Ajmm′ is

Ajmm′(q, na, nc) =

[
〈n′+〉1〈n

′
−〉1

〈n+〉1〈n−〉1

]1/2 〈n+〉1!
〈na〉1!〈nb〉1!

〈n−〉1!
〈nc〉1!〈nd〉1!

(3.11)

The oriented 2-dimensional projection of a 3-dimensional knot can be as-
signed three coordinates (N,w, r) where N is the number of crossings, w is the
writhe and r the rotation. One can transform to new coordinates (j,m,m′).
These indices label the irreducible representations of Dj

mm′ of the symmetry
algebra of the knot, SLq(2) by setting

j = N/2, m = w/2, m′ = (r + o)/2 (3.12)

This linear transformations makes half-integer representations possible. The
knot constraints require w and r to be of opposite parity, therefore o is an odd

integer. The knot (N,w, r) may be labeled by D
N/2
w/2,(r+o)/2(a, b, c, d).

One assigns physical meaning to the Dj
mm′ in (3.10) by interpreting the a, b,

c, and d as creation operators for spin 1/2 preons. These are the four elements

of the fundamental j = 1/2 representation D
1/2
mm′ as indicated in Table 1.

m m' preon

1/2 1/2 a

1/2 -1/2 b

-1/2 1/2 c

-1/2 -1/2 d

Table 1.
The D1/2 representation of the four preons.

For notational clarity, I use in Tables 1. and 2. the preon names of [4]. The
preon dictionary from the notation of [1] is the following:

m+ 7→ a, m0 7→ c

m− 7→ d, m̄0 7→ b
(3.13)
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The standard model particles are the following elements of the D
3/2
mm′ repre-

sentation as indicated in Table 2.

m m' particle preons

3/2 3/2 electron aaa

3/2 3/2 neutrino ccc

3/2 -1/2 d-quark abb

-3/2 -1/2 u-quark cdd

Table 2.
The D3/2 representation of the standard model particles and their preon

content.

All details of the SLq(2) extended standard model are discussed in the re-
view article [4], including the gauge and Higgs bosons and a candidate for dark
matter. I do not, however, see much advantage for introducing composite gauge
bosons in the model. Introduction of color from preons is done slightly di�er-
ently in [4]. In the early universe developments there is similarity between the
knot model and the present preon model. Therefore, apart from the di�erences
in color interpretation, the model of [1] and the knot algebra of [4] are equivalent
in the fermion sector.

In summary, knots having odd number of crossings are fermions and knots
with even number of crossings are correspondingly bosons. The leptons and
quarks are the simplest quantum knots, the quantum trefoils with three cross-
ings and j = 3/2. At each crossing there is a preon. The free preons are twisted
loops with one crossing and j = 1/2. The j = 0 states are simple loops with
zero crossings.

4 Gravity with Torsion

4.1 Introduction

To build a full Poincaré group gauge theory for gravity one has boosts, rotations
and translations to consider: the rotations lead to curvature and the translations
to torsion in spacetime. From a di�erent point of view, curvature arises in the
form of metric from energy and torsion in the form of a connection from spin.
Torsion is therefore de�ned on microscopic scales. Torsion requires extension of
the Riemann geometry to Riemann-Cartan (RC) geometry [5]. RC gravity, or
Einstein�Sciama-Kibble (ESK) [6, 7] gravity can be reduced to Einstein gravity
plus torsional contributions. A theory has been developed by Fabbri [8] for
gravity with torsion and spinor matter �elds, which yields a massive axial-
vector coupled to spinors. His goal is to explain most of the open problems
in the standard model of particles (and cosmology) as well as to analyze the
nature of spinor �elds. Here I apply the axial-vector coupling of [8] to preon
interactions.
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In general relativity metric is used to measure distances and angles. Con-
nections are used to de�ne covariant derivatives. In general form, a covariant
derivative of a vector is de�ned by

DαV
µ = ∂αV

µ + V ρΓµρα (4.1)

The connection Γµρα has three indices: µ and ρ shu�e, or transform, the compo-
nents of the vector V ρ and α indicates the coordinate in the partial derivative.

Metric and connection should be unrelated. This is implemented by de-
manding that the covariant derivative of the metric vanishes. In this case the
connection is metric-compatible. Metric-compatible connections can be divided
into antisymmetric part, given by the torsion tensor, and symmetric part which
includes a combination of torsion tensors plus a symmetric, metric dependent
connection called the Levi-Civita connection.

In a general Riemannian spacetime R, at each point p with coordinates xµ,
there is a Minkowski tangent space M = TpR, the �ber, on which the local
gauge transformation of the TxµR coordinates xa takes place

x′a = xa + εa(xµ) (4.2)

where εa are the transformation parameters, µ is a spacetime index and a a
�ber frame index.

The dynamics of the theory is based on vierbeins (tetrads) eaµ, not on the
metric tensor gµν . The Cartan connection has a primary role and it is

Γµλν = eaµ∂λeaν (4.3)

The tensor associated with this connection is torsion tensor

Tµλν = e µ
a (∂λe

a
ν − ∂νeaλ) (4.4)

Unfortunate for the development of gravitation theory, spin was not discov-
ered in the laboratory before 1916. Spinors were introduced in mathematics by
Cartan in the 1920's and spinor wave equation was found by Dirac in 1928.

4.2 Torsion as Axial-Vector Massive Field

Torsion has the property that it can be separated from gauge and metric factors.
Let us start from the metric connection

Λραβ = 1
2g
ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ) (4.5)

The torsion tensor is completely antisymmetric only if some restrictions are
imposed, called the metric-hypercompatibility conditions [12, 13, 14, 15, 16].
Then it can be written in the form

Qασν = 1
6W

µεµασν (4.6)
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where Wµ is torsion pseudo-vector, obtained from the torsion tensor after a
Hodge dual. With the metric connection and the torsion pseudo-vector the
most general connection can be written as a sum of Λραβ and Qασν as follows

Γραβ= 1
2g
ρµ
[
(∂βgαµ+∂αgµβ−∂µgαβ)+ 1

6W
νενµαβ

]
(4.7)

Functions Ωa
bµ that transform under a general coordinate transformation like

a lower Greek index vector and under a Lorentz transformation as

Ω′a
′

b′ν = Λa
′
a

[
Ωa
bν − (Λ−1)ak(∂νΛ)kb

]
(Λ−1)bb′ (4.8)

are called a spin connection. The torsion in coordinate formalism is de�ned as
follows

Qaµν =−(∂µe
a
ν−∂νeaµ+ebνΩa

bµ−ebµΩa
bν) (4.9)

and the spin connection is given by

Ωa
bµ = eνb e

a
ρ

(
Γρνµ − eρk∂µe

k
ν

)
(4.10)

which is antisymmetric in the two Lorentz indices after both of them are brought
in the same upper or lower position. The most general spinorial connection is

Ωµ = 1
2Ωabµσ

ab+iqAµI (4.11)

where Aµ is the gauge potential. The spinorial curvature is using the spinorial
connection

F αβ = ∂αΩβ − ∂βΩα + [Ωα,Ωβ] (4.12)

Let us de�ne the decomposition of the spinor �eld in its left and right parts

πLψ=ψL ψπR=ψL (4.13)

πRψ=ψR ψπL=ψR (4.14)

so that

ψL+ψR=ψ ψL+ψR=ψ (4.15)

Now one has 16 linearly-independent bi-linear spinorial quantities

2ψσabπψ=Σab (4.16)

2iψσabψ=Sab (4.17)

ψγaπψ=V a (4.18)

ψγaψ=Ua (4.19)

iψπψ=Θ (4.20)

ψψ=Φ (4.21)
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To have the most general connection decomposed into the simplest symmet-
ric connection plus torsion terms we substitute (4.7) in (4.10) and this in (4.11).
The �eld equations reduce to the following

∇ρ(∂W )ρµ+M2Wµ=Xψγµπψ (4.22)

for torsion axial-vector and

Rρσ− 1
2Rg

ρσ−Λgρσ=

= k
2 [14F

2gρσ−F ραF σα + (4.23)

+1
4(∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ) +

+ i
4(ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−

−1
2X(W σψγρπψ+W ρψγσπψ)] (4.24)

for the torsion-spin and curvature-energy coupling, and

∇σF σµ=qψγµψ (4.25)

for the gauge-current coupling; and �nally

iγµ∇µψ−XWσγ
σπψ−mψ=0 (4.26)

for the spinor �eld equations which again can be split as

i
2(ψγµ∇µψ−∇µψγ

µψ)−XWσV
σ−mΦ=0 (4.27)

∇µUµ=0 (4.28)

i
2(ψγµπ∇µψ−∇µψγ

µπψ)−XWσU
σ=0 (4.29)

∇µV µ−2mΘ=0 (4.30)

i(ψ∇αψ−∇αψψ)−∇µSµα +

+2XWσΣσα−2mUα=0 (4.31)

∇αΦ−2(ψσµα∇µψ−∇µψσµαψ)+2XΘWα=0 (4.32)

∇νΘ−2i(ψσµνπ∇µψ−∇µψσµνπψ)−
−2XΦWν+2mVν =0 (4.33)

(∇αψπψ−ψπ∇αψ)+∇µΣµα+2XWµSµα=0 (4.34)
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∇µV ρεµραν+i(ψγ[α∇ν]ψ−∇[νψγα]ψ) +

+2XW[αVν]=0 (4.35)

∇[αUν]+iεανµρ(ψγρπ∇µψ−∇µψγρπψ)−
−2XWσUρε

ανσρ−2mSαν =0 (4.36)

together equivalent to the spinor �eld equations above. From (4.22) one sees
that torsion behaves like a massive axial-vector �eld satisfying Proca �eld equa-
tions. It is noted that torsion does not couple to gauge �elds. Torsion and grav-
itation seem to have the same coupling constant. However, in [8] it is shown
that using the Einstein-Sciama-Kibble �eld equations these two independent
�elds with independent sources can have independent coupling constants.

The preon-preon interaction is attractive and of short range due to the mass
of the axial-vector �eld. The interaction includes two free parameters, the
coupling constant X and the mass M of the axial-vector. Therefore, bound
states of preons may be formed by the axial-vector interaction. Three preon
states should be favored as in 2.

The axial-vector �eld is expected to appear as a physical particle whenever
its production is energetically possible. Heuristically, one expects that the range
of the axial-vector force is related inversely to the energy scale of the interaction,
M ∼ 1016 GeV. The coupling must be larger than the electromagnetic coupling
α to keep the charged preons bound. Couplings in GUT theory are of the
order 0.02 at the GUT scale. With a Yukawa potential in the Schrödinger
equation V (r) = −V0 exp(−ar)/r [17], or in our notation −Xexp(r/M)/r with
the physicality condition n + l + 1 ≤

√
XmM , one may estimate that large

M correlates with small preon mass m � Mproton. These matters deserve
quantitative attention.

5 Considerations of Spinors Fields

The incompatibility of gravity and second quantization, as well as the problem
of radiative corrections, are discussed from a novel point of view in [8]. A major
point is that, with gravity included in the theory, plane wave solutions do not
exist. Instead, localized �elds can be derived by analyzing the self-interactions
of the chiral components of the spinor �elds. Secondly, I quote Fabbri [8]:

�In the theory of quantum �elds, electrons are point-like with quantum ef-

fects giving an electronic self-interaction in terms of radiative processes involv-

ing loops, while here the self-interaction of the spinor should be regarded as a

mutual interaction of its two chiral parts giving internal dynamics for extended

�elds, and consequently allowing the Zitterbewegung to actually in�uence the

particles. The Zitterbewegung of classical �elds and quantum e�ects for struc-

tureless particles might coincide.�

From this point of view, we may be closer to quantum gravity than commonly
believed.
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6 Conclusions

The preon model with spin 1/2 and charge 0 and 1/3 constituents discussed
above has a sound group theoretical basis. Both the preons and the quarks and
leptons belong to two lowest representations of the global SLq(2) group, shown
in Tables 1. and 2. With four preons the standard model local gauge groups
SU(3)× SU2)× U(1) become visible.

It is hoped that the preon scheme [1] would provide a way towards a bet-
ter understanding of the roles of all interactions. For that goal the weak and
strong interactions are treated in this scenario in a speci�c way. They are emer-
gent from the very basic fermion structure of the model (2.1). Gravity and
electromagnetism are the `original' long range interactions in the big bang of
cyclic cosmology. The translation symmetry of the full Poicaré group implies
axial-vector interactions which introduce a new Gedanken phenomenology for
preons between the GUT scale and Planck scale. The axial-vector particle is
predicted to have large mass, M ∼ 1016 GeV. It couples in principle to all par-
ticles. Within accelerator energies axial-vector particle couplings to standard
model particles are very small.

Of matters not discussed in this note I refer to [8] where substantial amount
of phenomenological success is obtained beyond the standard model of cosmol-
ogy, like dark matter, cosmological constant and in�ation.

More work is needed to clarify the issues and gain consensus in the ques-
tions of �eld quantization, gravity and its full quantum version, and possible
uni�cation with electromagnetism.
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