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Q-Naturals: A Counter-Example to Tennenbaum’s Theorem 

By Wes Hansen  © All Rights Reserved 

 

Abstract. In what follows we develop foundations for a set of non-standard natural numbers we call          q-

naturals, where q stands for quanta, by the recursive generation of reflexive sets. From the practical 

perspective, these q-naturals correspond to ordered pairs of natural numbers with the lexicographic 

ordering, hence, they are isomorphic to ω2. In addition, we demonstrate a novel definition of the 

arithmetical operation, multiplication, which turns out to be recursive. This, in turn, enables our 

demonstration of a counter-example to Tennenbaum’s Theorem. 

 

 1. Introduction. Motivated primarily by the demands of Computer Science, Peter Aczel 

extended Zermelo-Fraenkel set theory with Choice (ZFC) to include non-well-founded sets by replacing 

the Axiom of Foundation with the Anti-Foundation Axiom (AFA).[PA] Shortly thereafter, Aczel’s ZFC/AFA 

was greatly popularized by Jon Barwise and John Etchemendy in their modern classic, “The Liar: An 

Essay in Truth and Circularity.”[BE] Barwise and Etchemendy use ZFC/AFA to analyze the Liar paradox 

from the perspective of Russellian semantics and Austinian semantics. They dedicate all of Chapter 3 to 

the introduction of ZFC/AFA and their very first exercise in that chapter, Exercise 7, asks one to draw 

two graphs representing the von Neumann ordinal four. Just below that exercise is the key passage 

informing the present work. 

“The liberating element is that we allow arbitrary graphs, including graphs which contain proper cycles. 

Of course graphs with cycles cannot depict sets in the well-founded universe. Thus, for example, in 

Aczel’s universe there is a set Ω = {Ω}, simply because we can picture the membership relation on Ω by 

means of the graph GΩ shown in Figure 4. Furthermore, on Aczel’s conception this graph unambiguously 

(emphasis theirs) depicts a set; that is, there is only one set with GΩ as its graph. Consequently, there is 

only one set in Aczel’s universe equal to its own singleton.” (pg. 37)  

 In our development of foundations, we leverage this uniqueness to formally extend the set of standard 

natural numbers to a set of q-natural numbers, where q stands for quanta, by introducing a one-place 

operation we call the hyperloop, which, when applied to any set, generates that set’s unique reflexive 

set; we apply this operator recursively in such a manner that it generates countably many 

representations for the one same set where these representations exist in a state of perfect symmetry. 

We then break this symmetry by imposing an order, the lexicographic ordering, generating a countable 

and meaningful hierarchy of distinct elements. These elements, of course, are existent in between any 

two standard von Neumann ordinals. This provides our foundation. 

For practical reasons, the set of q-naturals, NQ, is then interpreted as ordered pairs of standard natural 

numbers and the properties of these numbers follow, in a natural and straight-forward way, from the 

properties of standard natural numbers. The recursive arithmetical operations, + and *, are defined in a 

consistent manner and this consistency leads to what is, perhaps, a less than obvious “multiplication;” 

however, the existence of these operations and their recursive nature is unassailable.  

This existence of NQ and unique recursive functions, + and *, defined on it, has profound theoretical and 

philosophical implications for both model theory and mathematics in general. “On Non-Standard 
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Models of Peano Arithmetic and Tennenbaum’s Theorem,”[SR] by Samuel Reid, provides a lucid and 

economical review of the pertinent issues. Specifically, we demonstrate that (N, <) is isomorphic to an 

initial segment of (NQ, <) excluding the existence of an isomorphism between the standard model of 

Peano Arithmetic (PA) and the model which assumes NQ as universe. In spite of this, the arithmetical 

operations, + and *, defined on (NQ, <) are recursive, demonstrating a counter-example to 

Tennenbaum’s Theorem.  

And of course, the q-naturals can be extended to the q-integers, the q-integers to the q-rationals, the q-

rationals, using Cauchy Sequences, to the q-reals, and the q-reals to the q-complex, which induces the 

philosophical question: What makes a model standard? Historical considerations aside, it would seem 

that, with the introduction of the q-naturals, the determination of which model is “standard” becomes a 

contextual consideration – something, I’m sure, Barwise, Etchemendy, and John Austin would well 

appreciate. 

 Notation. We use the standard notation together with: 

  @ | a one-place non-logical symbol called the hyperloop 

  IH | a hyper-inductive set 

  IQ | a q-inductive set 

  NQ | the set of all q-naturals 
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 2. Definitions. We define our mathematical entities using standard terminology: 

Definition 2.01. A set is reflexive if X = {X}; a reflexive set is called a hyperset.[BE] 

Definition 2.02. A one-place operation, @, when applied to any set X, generates a reflexive set; 

this operation, called a hyperloop, can be applied recursively. 

Definition 2.03. Let X be an arbitrary von Neumann ordinal, then @nX designates the recursive 

application of @ to X “n” times, where n ϵ N; specifically, @0X, the zeroth-order application, is 

identical to no application, i.e. @0X = X. 
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Definition 2.04. Hypersets have two distinct successor functions; let @nX be an arbitrary 

hyperset, then S(@nX) = @(@nX) = @(n + 1)X, while @nS(X) = @n(X U {X}) = @n(X + 1) (reference 

[HJ], Chapter 3, pages 40 and 41).  

Definition2.05. ɸ = 0.0, @ɸ = 0.1, @2ɸ = 0.2, … , @(ω – 2)ɸ = 0.(ω – 2), @(ω – 1)ɸ = 0.(ω – 1), @ωɸ = 

0.ω, {@ωɸ} = 1.0, @{@ωɸ} = 1.1, @2{@ωɸ} = 1.2, … , @(ω – 2){@ωɸ} = 1.(ω – 2), @(ω – 1){@ωɸ} = 

1.(ω – 1), @ω{@ωɸ} = 1.ω, … , {@ωɸ, {@ωɸ}} = 2, @{@ωɸ, {@ωɸ}} = 2.1, @2{@ωɸ, {@ωɸ}} = 2.2, 

… 

Definition2.06. ɸ and any number @ωX are examples of base elements; any number @nX, where 

n < ω, is an example of a hyper-element; for example, ɸ is the only base element of @ωɸ and for 

any m ϵ NQ, m > @ωɸ, m = @k{0.ω, 1.ω, … , n.ω}, where n is some von Neumann ordinal, and 

every x.ω is a base element of m, while every @p{0.ω, 1.ω, … , n.ω}, p ϵ [0, k], is a hyper-element 

of m. 

Definition 2.07. A set, IH, is hyper-inductive if: 

1. ɸ ϵ IH; 

2. if X ϵ IH, then S(X) ϵ IH; 

3. if X ϵ IH, then @X ϵ IH; 

4. if @X ϵ IH, then S(@X) ϵ IH. 

Definition 2.08. Consistent with Definition 2.05, a q-natural number is an ordered pair of natural 

numbers, (a, b), such that (a, b) = a.b. 

Definition 2.09. Consistent with Definition 2.04, any q-natural number, a.b, has two distinct 

successor functions which can be applied independently or in conjunction; specifically, S(a).b = 

(a U {a}).b = (a + 1).b and a.S(b) = a.(b U {b}) = a.(b + 1) (reference [HJ], Chapter 3, page 52).  

Definition 2.10. A set, IQ, is q-inductive if: 

1. 0.0 ϵ IQ; 

2. if a.b ϵ IQ, then, S(a).b ϵ IQ; 

3. if a.b ϵ IQ, then, a.S(b) ϵ IQ.  

Definition 2.11. The set of all q-natural numbers is the set 

NQ = { x | x ϵ IQ for every q-inductive set IQ} 

 Definition 2.12. The relation “<” on NQ is defined by: 

For all a.b, c.d ϵ NQ, a.b < c.d  iff a < c ˅ (a = c ˄ b < d), where <(a, b) is the 

natural order (reference [HJ], Chapter 3 , page 42 ) and <(a.b, c.d) is the q-

natural or lexicographic order (reference [HJ], Chapter 4, page 81).  

 Definition 2.13. The operation “+” (addition) on NQ is defined by: 

For all a.b, c.d ϵ NQ, a.b + c.d = (a + c).(b + d), where +(a, c) is as defined on the 

set of natural numbers (reference [HJ], Chapter 3, page 52). 

 Definition 2.14. The operation “*” (multiplication) on NQ is defined by: 
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   For all a.b, c.d ϵ NQ, a.b * c.d = (a.b * c).(a.b * d) 

              = (a * c).(b * c).(a * d).(b * d) 

              = (a * c).(b * c) + (a * d) + (b * d), 

where *(a,c) and +(b, d) are both as defined on the set of natural numbers 

(reference [HJ], Chapter 3, page 54) and +(b, d).   

3.Arguments. We demonstrate our arguments using the standard methods and terminology of 

mathematical logic and ZFC/AFA or generalizations thereof. Specific to the current work, we 

generalize the Principle of Induction to the Principle of q-Induction and we reproduce certain 

arguments, verbatim, from reference [HJ]. 

 Theorem 3.01. The Axiom of Anti-Foundation implies that there exists a unique reflexive set. 

Proof. This theorem is reproduced verbatim from, “Introduction to Set Theory,”[HJ] by Karel 

Hrbacek and Thomas Jech (Chapter 14, page 263) and the proof can be found therein, as 

desired. □ 

 Theorem 3.02. A hyper-inductive set, IH, defined by Definition 2.07, exists. 

Proof. Let I be an arbitrary set satisfying properties “1” and “2” of Definition 2.07, then I is an 

inductive set (reference [HJ], Chapter3, page 40) and, by the Axiom of Infinity, I exists. Let K be a 

family of intervals, [n, n + 1), such that n ϵ I and [n, n + 1) satisfies properties “3” and “4” of 

Definition 2.07. Let [n, n + 1) be an arbitrary element of K, then, by the Axiom of Infinity and 

Theorem 3.01, [n, n + 1) exists. Since [n, n + 1) was arbitrary, every [n, n + 1) ϵ K exists, hence, K 

exists. Finally, by the Axiom of Union, UK = IH exists, as desired. □  

Theorem 3.03. For any hyper-inductive set, IH, and any X ϵ IH, X can be represented as an ordered 

pair of natural numbers, (a, b), such that (a, b) = a.b. 

Proof. This follows immediately for Definition 2.03, 2.04, 2.05, and the properties of natural 

numbers, (reference [HJ], Chapter3), as desired. □ 

Theorem 3.04. A q-inductive set, IQ, defined by Definition 2.10, exists. 

 Proof. This is a direct consequence of a number of facts about the set of natural numbers,N: 

1. N exists and is inductive (reference [HJ], Chapter 3, page 41); 

2. By the Axiom of Power Set, the power set of N exists (reference [HJ], Chapter 1, page 

10); 

3. By the definition of ordered pair (reference [HJ], Chapter 2, page 17) and the 

definition of cartesian product (reference [HJ], Chapter 2, page 21), N x N exists; 

together with Definition 2.08, 2.09, and 2.10, as desired. □  

Theorem 3.05.  The set, NQ, defined by Definition 2.11 exists and is q-inductive. 
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Proof. Let X be the family of all q-inductive sets IQ, then, by the Axiom of Union, the set UX exists 

and, by Definition 2.10, UX is q-inductive. By Definition 2.11, UX contains NQ, hence, NQ exists 

and is q-inductive, as desired. □ 

 Theorem 3.06. (The Principle of Q-Induction) Let P(x) be a property and assume that: 

1. P(0.0) is true; 

2. for all n.k ϵ NQ, P(n.k) → P[(n + 1).k ] ˄ P[n.(k + 1)]. 

Then P holds for all q-natural numbers n.k. 

Proof. By Definition 2.10, “1” and “2” above define a q-inductive set IQ. By Definition 2.11, that 

set, IQ, contains NQ, as desired. □ 

 Lemma 3.07. For all a.b ϵ NQ, a, b ϵ N. 

Proof. This follows immediately from Definition 2.10, Theorem 3.05, and the fact that N is 

inductive (reference [HJ], Chapter 3, page 41), as desired. □ 

 Theorem 3.08. (N, <) is a linearly ordered set. 

Proof. This theorem is reproduced verbatim from reference [HJ] (Chapter 3, page 43) and the 

proof can be found therein, as desired. □ 

Lemma 3.09. For all a.b, c.d ϵ NQ: 

1. 0.0 ≤ c.d; 

2. a.b < c.(d + 1) iff a.b ≤ c.d. 

Proof. The proof is in two parts: 

1) We proceed by q-induction. Let P(x.y) be the property, “0.0 ≤ x.y,” then: 

 

P(0.0). 0.0 = 0.0, hence, 0.0 ≤ 0.0. 

 

Suppose P(n.k) is true, then 0.0 < n.k or 0.0 = n.k and: 

 

P[(n + 1).k] ˄ P[n.(k + 1)]. In both cases, by Lemma 3.07 and Theorem 3.08, 0.0 < (n + 1).k ˄ 0.0 < 

n.(k + 1). 

 

Therefore, P(n.k) → P[(n + 1).k] ˄ P[n.(k + 1)] and, by the Principle of Q-Induction, for all n.k ϵ NQ,   

0.0 ≤ n.k, as desired. □ 

 

2) Suppose a.b < c.(d  + 1), then, by Definition 2.12, a < c ˅ [a = c ˄ b < (d +1)]. If a < c, then, by 

Definition 2.12, a.b < c.d; otherwise, if a = c ˄ b < (d +1), then, by Lemma 3.07 and Theorem 

3.08, a.b ≤ c.d.  

 In both cases a.b ≤ c.d, hence, a.b < c.(d + 1) → a.b ≤ c.d. 

Suppose a.b ≤ c.d, then, by Definition 2.12, [a < c ˅ (a = c ˄ b < d)] ˅(a = c ˄ b = d) and three 

cases arise: 
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Case 1. Suppose a < c, then, by Definition 2.12, a.b < c.( d + 1). 

Case 2. Suppose (a = c ˄ b < d), then, by Lemma 3.07 and Theorem 3.08, a.b < c.( d + 1). 

Case 3. Suppose (a = c ˄ b = d), then , by Lemma 3.07 and Theorem 3.08, a.b < c.( d + 1).   

 In all three cases a.b < c.( d + 1), hence, a.b ≤ c.d → a.b < c.(d + 1).  

Therefore, a.b < c.(d + 1) iff a.b ≤ c.d, as desired.□ 

 Theorem 3.10. (NQ, <) is a linearly ordered set. 

 Proof. The proof is in three parts: 

1) Transitivity. Let k.p, m.q, n.r ϵ NQ be arbitrary but such that k.p < m.q ˄ m.q < n.r. Then, by 

Definition 2.12, k < m ˅ (k = m ˄ p < q) and m < n ˅ (m = n ˄ q < r) and four cases arise: 

 

Case 1. Suppose (k < m) ˄ (m < n), then, by Lemma 3.07 and Theorem 3.08, k < n, and, 

by Definition 2.12, k.p < n.r. 

 

Case 2. Suppose (k < m) ˄ (m = n ˄ q < r), then, by Lemma 3.07 and Theorem 3.08, k < n, 

and, by Definition 2.12, k.p < n.r. 

 

Case 3. Suppose (k = m ˄ p < q) ˄ (m < n), then, by Lemma 3.07 and Theorem 3.08, k < n,  

and, by Definition 2.12, k.p < n.r. 

 

Case 4. Suppose (k = m ˄ p < q) ˄ (m = n ˄ q < r), then, by Lemma 3.07 and Theorem 

3.08, k = n ˄ p < r, and, by Definition 2.12, k.p < n.r. 

 

In all four cases, k.p < n.r, hence, (k.p < m.q ˄ m.q < n.r) → k.p < n.r. 

2) Asymmetry. Let k.p, m.q ϵ NQ be arbitrary and suppose, for contradiction, that                             

k.p < m.q ˄ m.q < k.p, then, by transitivity, k.p < k.p, contradicting Definition 2.12. 

3) Linearity. We proceed by q-induction. Let P(x.y) be the property, “for all m.p ϵ NQ,  m.p < x.y  ˅ 

m.p = x.y  ˅ x.y < m.p,” then: 

P(0.0). This is an immediate consequence of Lemma 3.09. 

Suppose P(n.k) is true, then for all m.p ϵ NQ, m.p < n.k ˅ m.p = n.k ˅ n.k < m.p and: 

P[(n + 1).k] ˄ P[n.(k + 1)]. There are three cases to consider: 

Case 1. Suppose m.p < n.k, then, by Lemma 3.07, Theorem 3.08, and Definition 2.12, n.k 

< (n + 1).k ˄ n.k < n.(k + 1), hence, by transitivity, m.p < (n + 1).k ˄ m.p < n.(k + 1). 

Case 2. Suppose m.p = n.k, then, by Lemma 3.07, Theorem 3.08, and Definition 2.12,                             

m.p < (n + 1).k ˄ m.p < n.(k + 1). 

Case 3. Suppose n.k < m.p, then, by Definition 2.12, n < m ˅ (n = m ˄ k < p) and two 

cases arise: 
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Case 3a. Suppose n < m, then, by Lemma 3.07 and Theorem 3.08, [(n + 1) < m ˅ 

(n + 1) = m] ˄ [(k + 1) < p ˅ (k + 1) = p ˅ p < (k + 1)] and four cases arise: 

Case 3a.1. Suppose (n + 1) < m, then, by Lemma 3.07, Theorem 3.08, 

and Definition 2.12, (n + 1).k < m.p ˄ n.(k + 1) < m.p.  

Case 3a.2. Suppose (n + 1) = m ˄ (k + 1) < p, then, by Lemma 3.07, 

Theorem 3.08, and Definition 2.12, (n + 1).k < m.p ˄ n.(k + 1) < m.p.  

Case 3a.3. Suppose (n + 1) = m ˄ (k + 1) = p, then, by Lemma 3.07, 

Theorem 3.08, and Definition 2.12, (n + 1).k < m.p ˄ n.(k + 1) < m.p.   

Case 3a.4. Suppose (n + 1) = m ˄ p < (k + 1), then, by Lemma 3.07, 

Theorem 3.08, and Definition 2.12, m.p ≤ (n + 1).k ˄ n.(k + 1) < m.p. 

In all four cases, (n + 1).k < m.p ˄ n.(k + 1) < m.p ˅ m.p ≤ (n + 1).k ˄ n.(k + 

1) < m.p , hence, (n < m) → {[(n + 1).k < m.p ˅ (n + 1).k = m.p ˅ m.p < (n 

+ 1).k] ˄ [n.(k + 1) < m.p ˅ n.(k + 1) = m.p ˅ m.p < n.(k + 1)]}. 

Case 3b. Suppose (n = m ˄ k < p), then, by Lemma 3.07 and Theorem 3.08, m < 

(n + 1) and (k + 1) ≤ p, and, by Definition 2.12, m.p < (n + 1).k ˄ [n.(k + 1) < m.p ˅ 

n.(k + 1) = m.p].  

In both cases, [(n + 1).k < m.p ˅ (n + 1).k = m.p ˅ m.p < (n + 1).k] ˄ [n.(k + 1) < 

m.p ˅ n.(k + 1) = m.p ˅ m.p < n.(k + 1)], hence, (n.k < m.p) → {[(n + 1).k < m.p ˅   

(n + 1).k = m.p ˅ m.p < (n + 1).k)] ˄ [n.(k + 1) < m.p ˅ n.(k + 1) = m.p ˅ m.p < n.(k 

+ 1)]}. 

 Therefore, P(n.k) → P[(n + 1).k] ˄ P[n.(k + 1)] and, by the Principle of Q-Induction, linearity. 

 Therefore, (NQ, <) is a linearly ordered set, as desired. □  

Theorem 3.11. (NQ, <) is a well-ordered set. 

Proof. This is an immediate consequence of Lemma 3.07, Theorem 3.08, and Lemma 3.09, as 

desired. □  

Theorem 3.12. (NQ, <) is isomorphic to ω2. 

Proof. Let Y = {Si │ i ϵ N} = ran S for some index function S, where each Si is the set of natural 

numbers. Then ω2 = { ai │ ai ϵ Si ϵ Y ˄ for all i,j,a,b ϵ N, ai < bj iff i < j ˅ (i = j ˄ a < b)} and there is an 

obvious isomorphism, f:ω2 → (NQ, <), defined by f(ai) = i.a, as desired. □ 

 Theorem 3.13. There is a unique function, +:NQ x NQ → NQ, such that: 

1. +(m.p, 0.0) = m.p, for all m.p ϵ NQ; 

2. +(m.p, n.q + 1.0) = +(m.p, n.q) +1.0, for all m.p, n.q ϵ NQ. 

Proof. In the parametric version of the Recursion Theorem (reference [HJ], Chapter 3, page 51),                          

let a:NQ → NQ be the identity function, and let g:NQ x NQ x NQ → NQ be defined by g(k.p, m.q, n.r)   
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= m.q + 1, for all k.p, m.q, n.r  ϵ NQ. Then, by the Recursion Theorem, there exists a unique 

function, f:NQ x NQ → NQ, such that: 

1. f(k.p, 0.0) = a(k.p) = k.p, for all k.p ϵ NQ; 

2. f(k.p, m.q + 1.0) = g(k.p, f(k.p, m.q), m.q) = f(k.p, m.q) + 1, for all k.p, m.q ϵ NQ. 

Let + = f, as desired. □ 

Theorem 3.14. There is a unique function, *:NQ x NQ → NQ, such that: 

1. *(m.p, 0.0) = 0.0, for all m.p ϵ NQ; 

2. *(m.p, n.q + 1.0) = *(m.p, n.q) + m.p, for all m.p, n.q ϵ NQ.   

Proof. In the parametric version of the Recursion Theorem (reference [HJ], Chapter 3, page 51), 

let a:NQ → NQ be the constant function defined by a(m.p) = 0.0, for all m.p ϵ NQ, and let              

g:NQ x NQ x NQ → NQ be defined by g(k.p, m.q, n.r) = m.q + n.r, for all k.p, m.q, n.r ϵ NQ. Then, by 

the Recursion Theorem, there exists a unique function, f: NQ x NQ → NQ, such that: 

1. f(k.p, 0.0) = a(k.p) = 0.0, , for all k.p ϵ NQ; 

2. f(k.p, m.q + 1.0) = g(k.p, f(k.p, m.q), m.q) = f(k.p, m.q) + m.q, for all k.p, m.q ϵ NQ. 

Let * = f, as desired. □ 

Theorem 3.15. If (W1, <1) and (W2, <2) are well-ordered sets, then exactly one of the following 

holds: 

1. either W1 and W2 are isomorphic; or 

2. W1 is isomorphic to an initial segment of W2; or  

3. W2 is isomorphic to an initial segment of W1. 

In each case, the isomorphism is unique. 

Proof. This theorem is reproduced verbatim from reference [HJ] (Chapter 6, pages 105 and 106) 

and the proof can be found therein, as desired. □ 

 

4. Demonstration of counter-example. Let Y be the closed/open interval of NQ, [0.0, 1.0), then Y 

is an initial segment of (NQ, <) (reference [HJ], Chapter 6, page 104), and there is an obvious 

isomorphism, f:Y → (N, <), defined by, f(m.p) = p, for all m.p ϵ Y. Then, by Theorem 3.15, (N,<) 

and (NQ, <) are not isomorphic yet, by Theorem 3.13 and Theorem 3.14, (NQ, <) has recursive 

arithmetical functions, + and *, defined on it. Therefore, a model of PA with NQ as universe, 

represents a counter-example to Tennenbaum’s Theorem (reference [SR], page 11), as desired. 

□ 

   

5. Closing remarks. What we find most intriguing about this whole development, and something 

we’re certain Kevin Knuth[KK] will appreciate, is the fact that we created a theoretically 

meaningful mathematical structure from, what amounts to, pure symmetry, simply by imposing 

an order. Isomorphisms are generally defined between ordered sets; the fact that they preserve 
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order is their defining characteristic and the order they preserve is often referred to as 

structure. And this leads us to view the current work as a rather poignant example of what 

Knuth has been about with his foundational work in Information Physics: conscious entities 

impose an order and that imposition of order induces the emergence of structure – information; 

this information is not necessarily inherent in the systems we study, rather, it is inherent in the 

way we interact with those systems and it is this interaction which leads to the constraint 

equations we refer to as laws. It all begins with an object language and every object language 

begins with a few simple axioms. 

In one of his books, we highly recommend them all, dynamical chaos theorist and AGI 

researcher, Ben Goertzel, expresses the idea that all of the mathematical structures we work 

with exist, in some undefined sense, within the foundational axioms prior to any human 

endeavor. He would say that these q-naturals have been there all along, hiding in plain sight 

within the axioms of ZFC/AFA. If you were privy to the experience which motivated the current 

work, and knowledgeable of Goertzel’s Complex Systems model of mind, you could hardly 

disagree. According to [SR], there exists a continuum of non-standard models of PA – a 

continuum! One can’t help but wonder what else there is, hiding in plain sight.[WV]   
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