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I. INTRODUCTION

The quantum theory (cf. [1—6]) gives approximate
and at times remarkably accurate numerical predictions.
Much experimental data approximately fits to the quan-
tum predictions for the past some 100 years. We do
not doubt the correctness of the quantum theory. The
quantum theory also says modern science with respect
to information theory. The science is called the quantum
information theory [6]. Therefore, the quantum theory
gives us another very useful theory in order to create
new information science and to explain the handling of
raw experimental data in our physical world.

As for foundations of the quantum theory, Leggett-
type non-local variables theory [7] is experimentally in-
vestigated [8—10]. The experiments report that the quan-
tum theory does not accept Leggett-type non-local vari-
ables interpretation. However there are debates for the
conclusions of the experiments. See Refs. [11—13].

As for the applications of the quantum theory, im-
plementation of a quantum algorithm to solve Deutsch’s
problem [14—16] on a nuclear magnetic resonance quan-
tum computer is reported firstly [17]. Implementation
of the Deutsch-Jozsa algorithm on an ion-trap quantum
computer is also reported [18]. There are several at-
tempts to use single-photon two-qubit states for quan-
tum computing. Oliveira et al. implement Deutsch’s al-
gorithm with polarization and transverse spatial modes
of the electromagnetic field as qubits [19]. Single-photon
Bell states are prepared and measured [20]. Also the
decoherence-free implementation of Deutsch’s algorithm
is reported by using such single-photon and by using two
logical qubits [21]. More recently, a one-way based ex-
perimental implementation of Deutsch’s algorithm is re-
ported [22]. In 1993, the Bernstein-Vazirani algorithm
was reported [23, 24]. It can be considered as an ex-
tended Deutsch-Jozsa algorithm. In 1994, Simon’s algo-

rithm was reported [25]. Implementation of a quantum
algorithm to solve the Bernstein-Vazirani parity prob-
lem without entanglement on an ensemble quantum com-
puter is reported [26]. Fiber-optics implementation of
the Deutsch-Jozsa and Bernstein-Vazirani quantum al-
gorithms with three qubits is discussed [27]. Quantum
learning robust against noise is studied [28]. A quantum
algorithm for approximating the influences of Boolean
functions and its applications is recently reported [29].
Quantum computation with coherent spin states and the
close Hadamard problem is also discussed [30]. Trans-
port implementation of the Bernstein-Vazirani algorithm
with ion qubits is more recently reported [31]. Quantum
Gauss-Jordan elimination and simulation of accounting
principles on quantum computers are discussed [32]. Fi-
nally, we mention that dynamical analysis of Grover’s
search algorithm in arbitrarily high-dimensional search
spaces is studied [33].

On the other hand, the earliest quantum algorithm,
the Deutsch-Jozsa algorithm, is representative to show
that quantum computation is faster than classical coun-
terpart with a magnitude that grows exponentially with
the number of qubits. In 2015, it is discussed that the
Deutsch-Jozsa algorithm can be used for quantum key
distribution [34]. In 2017, it is discussed that secure
quantum key distribution based on Deutsch’s algorithm
using an entangled state [35].

In this paper, we discuss a character of quantum al-
gorithms. In fact, all of them determine the property of
a certain function. The function under study must have
the property f(x) = f(−x) when f(x) �= 0.
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II. QUANTUM ALGORITHMS ARE

DETERMINING THE PROPERTY OF A

CERTAIN FUNCTION

Suppose

f : {−(2N − 1),−(2N − 2), .., 2N − 2, 2N − 1}

→ {−(2N − 1),−(2N − 2), .., 2N − 2, 2N − 1}. (1)

is a function. We introduce a function with g(x) the
transformation from binary to natural representation.
We define g−1(f(g(x))) = F (x). We assume

F (x) = F (−x),

x ∈ {0, 1}N . (2)

In (1) we define a function f from a set of discrete val-
ues to the same set. The argument of (1) appears to be
from a number to a number. In (2) we assume that x
is a binary representation of such a number. The write-
up suggests that x is a binary, i.e. 0,1 vector, a Carte-

sian product

N� �� �
{0, 1} × {0, 1} × . . .× {0, 1}, instance, x =

(0, 1, 1, 0, 0, 1...). And we define −x = −(0, 1, 1, 0, 0, 1...).
Our discussion combines quantum parallelism with a

property of quantum mechanics known as interference.
Let us follow the quantum states through some algo-

rithm. Throughout the paper, we omit the normalization
factor. We define | − x	 = −|x	. The input state is

|ψ1	 = |

N
� �� �
0, 0, ..., 1	|

N
� �� �
1, 1, ..., 1	

=

−2�

y=−(2N−1)

|x	|

N� �� �
1, 1, ..., 1	+

2N−1�

y=+1

|x	|

N� �� �
1, 1, ..., 1	.

(3)

Now y = g−1(x) is a natural representation of binary x.
For example, y = 3 implies x = 11.

Next, the function F is evaluated using

UF : |x, z	 → |x, z + F (x)	, (4)

and

UF : |x, z	 → |x, z + F (x)	

⇔ −|x, z	 → −|x, z + F (x)	

⇔ | − x, z	 → | − x, z + F (x)	

⇔ | − x, z	 → | − x, z + F (−x)	, (5)

by using F (x) = F (−x). We employ z. It is a binary.
Here, z+F (x) = (z1⊕F1(x), z2⊕F2(x), . . . , zN⊕FN (x)).
The symbol ⊕ indicates addition modulo 2.

We have the fact;

UF |

N� �� �
0, 0, ..., 1	|

N� �� �
1, 1, ..., 1	 = |

N� �� �
0, 0, ..., 1	|F (0, 0, ..., 1)	.

(6)

Here, for example, if F (0, 0, ..., 1) = (0, 1, 1, 0, 0, 1, . . . , 1)

then F (0, 0, ..., 1) = (1, 0, 0, 1, 1, 0, . . . , 0). Surprisingly,
the condition F (x) = F (−x) is necessary for the condi-
tion (6) when F (x) �= 0.

Let us start the following:

UF |ψ1	 = |ψ2	

=

−2�

y=−(2N−1)

|x	|F (x)	+

2N−1�

y=+1

|x	|F (x)	.

(7)

Hence we have

|ψ2	 =
−2�

y=−(2N−1)

|x	|F (x)	+
2N−1�

y=+1

|x	|F (x)	

=
2N−1�

y=+2

| − x	|F (−x)	+
2N−1�

y=+1

|x	|F (x)	

=

2N−1�

y=+2

| − x	|F (x)	+

2N−1�

y=+1

|x	|F (x)	

= |0, 0, ..., 1	|F (0, 0, ..., 1)	, (8)

by using F (x) = F (−x).
We cannot avoid the following property of the function

in order to maintain the consistency between (6) and (8)
when F (x) �= 0;

F (x) = F (−x). (9)

That is,

F (x) = F (−x). (10)

III. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have discussed a character of quan-
tum algorithms. In fact, all of them have determined
the property of a certain function. The function under
study must have had the property f(x) = f(−x) when
f(x) �= 0.

1. Quantum computer determines a function. The
property of a function, is that it transforms an
element from the domain into an element of the
codomain.

2. The property of the “quantum determined func-
tion”, call it g, is as close as possible to the function
itself.

3. So x in the domain, y = f(x), in the codomain.

4. So if |g(x) − f(x)| is less than epsilon, a small
real number, then quantum computing determines
a function close to f(x).
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We may say: Quantum algorithms are determining the
property of a certain function when the property is close,

as much as possible, to the one for the evaluation of the
function.
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Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and
R. Blatt, Nature (London) 421, 48 (2003).

[19] A. N. de Oliveira, S. P. Walborn, and C. H. Monken, J.
Opt. B: Quantum Semiclass. Opt. 7, 288-292 (2005).

[20] Y.-H. Kim, Phys. Rev. A 67, 040301(R) (2003).

[21] M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Stein-
berg, Phys. Rev. Lett. 91, 187903 (2003).

[22] M. S. Tame, R. Prevedel, M. Paternostro, P. Böhi, M.
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