A new quantum algorithm in case of a special function

Koji Nagata,¹ Tadao Nakamura,² and Ahmed Farouk^{3,4,5}

¹Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea

E-mail: ko_mi_na@yahoo.co.jp

²Department of Information and Computer Science,

Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan

³Computer Sciences Department, Faculty of Computers and Information, Mansoura University

⁴University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt

 5Scientific Research Group, Egypt

(Dated: March 22, 2017)

We present a new quantum algorithm. It determines a property of a function. It is f(x) = f(-x) or it is not so. Our quantum algorithm overcomes a classical counterpart by a factor of $O(2^N)$.

PACS numbers: 03.67.Lx(Quantum computation architectures and implementations), 03.67.Ac(Quantum algorithms, protocols, and simulations)

I. INTRODUCTION

The quantum theory (cf. [1–6]) gives approximate and at times remarkably accurate numerical predictions. Much experimental data approximately fits to the quantum predictions for the past some 100 years. We do not doubt the correctness of the quantum theory. The quantum theory also says new science with respect to information theory. The science is called the quantum information theory [6]. Therefore, the quantum theory gives us very useful another theory in order to create new information science and to explain the handling of raw experimental data in our physical world.

As for the foundations of the quantum theory, Leggetttype non-local variables theory [7] is experimentally investigated [8–10]. The experiments report that the quantum theory does not accept Leggett-type non-local variables interpretation. However there are debates for the conclusions of the experiments. See Refs. [11–13].

As for the applications of the quantum theory, implementation of a quantum algorithm to solve Deutsch's problem [14] on a nuclear magnetic resonance quantum computer is reported firstly [15]. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is also reported [16]. There are several attempts to use single-photon two-qubit states for quantum computing. Oliveira et al. implement Deutsch's algorithm with polarization and transverse spatial modes of the electromagnetic field as qubits [17]. Single-photon Bell states are prepared and measured [18]. Also the decoherencefree implementation of Deutsch's algorithm is reported by using such single-photon and by using two logical qubits [19]. More recently, a one-way based experimental implementation of Deutsch's algorithm is reported [20]. In 1993, the Bernstein-Vazirani algorithm was reported [21, 22]. It can be considered as an extended Deutsch-Jozsa algorithm. In 1994, Simon's algorithm was reported [23]. Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem without entanglement on an ensemble quantum computer is reported [24]. Fiber-optics implementation of the DeutschJozsa and Bernstein-Vazirani quantum algorithms with three qubits is discussed [25]. A quantum algorithm for approximating the influences of Boolean functions and its applications is recently reported [26]. Quantum computation with coherent spin states and the close Hadamard problem is also discussed [27].

On the other hand, the earliest quantum algorithm, the Deutsch-Jozsa algorithm, is representative to show that quantum computation is faster than classical counterpart with a magnitude that grows exponentially with the number of qubits. In 2015, it is discussed that the Deutsch-Jozsa algorithm can be used for quantum key distribution [28]. In 2017, it is discussed that secure quantum key distribution based on Deutsch's algorithm using an entangled state [29].

In this paper, we present a new quantum algorithm. It determines a property of a function. It is f(x) = f(-x) or it is not so. Our quantum algorithm overcomes a classical counterpart by a factor of $O(2^N)$.

II. QUANTUM COMPUTING DETERMINING A PROPERTY OF A FUNCTION

Suppose

$$f: \{0,1\}^N \to \{0,1\}^N \tag{1}$$

is a function with a N-bit domain and a N-bit range. We assume f(-x) = f(x) and the following case

$$f(x) = f(-x).$$

$$x = (x_1, x_2, ..., x_N).$$
(2)

Our algorithm combines quantum parallelism with a property of quantum mechanics known as interference.

Let us follow the quantum states through the algorithm. The input state is

$$|\psi_0\rangle = |0\rangle^{\otimes N}|0\rangle. \tag{3}$$

After the Hadamard transformation on the first $N\mbox{-bit}$ state we have

$$|\psi_1\rangle = \sum_{x \in \{0,1\}^N} \frac{|x\rangle}{\sqrt{2^N}} |0\rangle. \tag{4}$$

Next, the function f is evaluated using

$$U_f: |x,y\rangle \to |x,y \oplus f(x)\rangle,$$
 (5)

giving

$$\begin{aligned} |\psi_2\rangle &= \sum_x \frac{|x\rangle}{\sqrt{2^N}} |f(x)\rangle \\ &= (\frac{1}{\sqrt{2^N}}) |0, 0, ..., 0\rangle f(0, 0, ..., 0) + \sum_{x \neq 0} \frac{|x\rangle}{\sqrt{2^N}} |f(x)\rangle. \ (6) \end{aligned}$$

We introduce the following (N + 1)-bit state:

$$|\psi_3\rangle = \sum_{x \in \{0,1\}^N} \frac{|-x\rangle}{\sqrt{2^N}} |0\rangle.$$
 (7)

The function f is also evaluated using

$$U_f: |-x, y\rangle \to |-x, y \oplus f(-x)\rangle.$$
 (8)

We have

$$\begin{split} |\psi_{4}\rangle &= \sum_{x} \frac{|-x\rangle}{\sqrt{2^{N}}} |f(-x)\rangle \\ &= (\frac{1}{\sqrt{2^{N}}}) |0, 0, ..., 0\rangle f(0, 0, ..., 0) + \sum_{x \neq 0} \frac{|-x\rangle}{\sqrt{2^{N}}} |f(-x)\rangle \\ &= (\frac{1}{\sqrt{2^{N}}}) |0, 0, ..., 0\rangle f(0, 0, ..., 0) + \sum_{x \neq 0} \frac{|-x\rangle}{\sqrt{2^{N}}} |f(x)\rangle \\ &= (\frac{1}{\sqrt{2^{N}}}) |0, 0, ..., 0\rangle f(0, 0, ..., 0) - \sum_{x \neq 0} \frac{|x\rangle}{\sqrt{2^{N}}} |f(x)\rangle \quad (9) \end{split}$$

- J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955).
- [2] R. P. Feynman, R. B. Leighton, and M. Sands, *Lectures on Physics, Volume III, Quantum mechanics* (Addison-Wesley Publishing Company, 1965).
- [3] M. Redhead, Incompleteness, Nonlocality, and Realism (Clarendon Press, Oxford, 1989), 2nd ed.
- [4] A. Peres, *Quantum Theory: Concepts and Methods* (Kluwer Academic, Dordrecht, The Netherlands, 1993).
- [5] J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company, 1995), Revised ed.
- [6] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information* (Cambridge University Press, 2000).
- [7] A. J. Leggett, Found. Phys. 33, 1469 (2003).
- [8] S. Gröblacher, T. Paterek, R. Kaltenbaek, Č. Brukner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, Nature (London) 446, 871 (2007).

by using f(x) = f(-x). Thus we have

$$\begin{split} \psi_5 \rangle &= \frac{1}{2} (|\psi_2\rangle + |\psi_4\rangle) \\ &= (\frac{1}{\sqrt{2^N}}) |0, 0, ..., 0\rangle f(0, 0, ..., 0). \end{split}$$
(10)

Therefore, if Alice measures $|0, 0, ..., 0\rangle$ then

$$f(x) = f(-x).$$
 (11)

Otherwise, the function is $f(x) \neq f(-x)$. Our quantum algorithm overcomes a classical counterpart by a factor of $O(2^N)$.

III. CONCLUSIONS

In conclusion, we have presented a new quantum algorithm. It has determined a property of a function. It has been f(x) = f(-x) or it has not been so. Our quantum algorithm has overcome a classical counterpart by a factor of $O(2^N)$.

- [9] T. Paterek, A. Fedrizzi, S. Gröblacher, T. Jennewein, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, Phys. Rev. Lett. 99, 210406 (2007).
- [10] C. Branciard, A. Ling, N. Gisin, C. Kurtsiefer, A. Lamas-Linares, and V. Scarani, Phys. Rev. Lett. 99, 210407 (2007).
- [11] A. Suarez, Found. Phys. **38**, 583 (2008).
- [12] M. Żukowski, Found. Phys. 38, 1070 (2008).
- [13] A. Suarez, Found. Phys. **39**, 156 (2009).
- [14] D. Deutsch, Proc. Roy. Soc. London Ser. A 400, 97 (1985).
- [15] J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648 (1998).
- [16] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, Nature (London) 421, 48 (2003).
- [17] A. N. de Oliveira, S. P. Walborn, and C. H. Monken, J. Opt. B: Quantum Semiclass. Opt. 7, 288-292 (2005).
- [18] Y.-H. Kim, Phys. Rev. A 67, 040301(R) (2003).

- [19] M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, Phys. Rev. Lett. 91, 187903 (2003).
- [20] M. S. Tame, R. Prevedel, M. Paternostro, P. Böhi, M. S. Kim, and A. Zeilinger, Phys. Rev. Lett. 98, 140501 (2007).
- [21] E. Bernstein and U. Vazirani, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC '93), pp. 11-20 (1993), doi:10.1145/167088.167097;
- [22] E. Bernstein and U. Vazirani, SIAM J. Comput. 26-5, pp. 1411-1473 (1997).
- [23] D. R. Simon, Foundations of Computer Science, (1994) Proceedings., 35th Annual Symposium on: 116-123, retrieved 2011-06-06.
- [24] J. Du, M. Shi, X. Zhou, Y. Fan, B. J. Ye, R. Han, and J. Wu, Phys. Rev. A 64, 042306 (2001).

- [25] E. Brainis, L.-P. Lamoureux, N. J. Cerf, Ph. Emplit, M. Haelterman, and S. Massar, Phys. Rev. Lett. 90, 157902 (2003).
- [26] H. Li and L. Yang, Quantum Inf. Process. 14, 1787 (2015).
- [27] M. R. A. Adcock, P. Hoyer, and B. C. Sanders, Quantum Inf. Process. 15, 1361 (2016).
- [28] K. Nagata and T. Nakamura, Open Access Library Journal, 2: e1798 (2015). http://dx.doi.org/10.4236/oalib.1101798.
- [29] K. Nagata, T. Nakamura, and A. Farouk, International Journal of Theoretical Physics (accepted). http://vixra.org/abs/1703.0191.