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We present a new quantum algorithm. It determines a property of a function. It is f(x) = f(−x)
or it is not so. Our quantum algorithm overcomes a classical counterpart by a factor of O(2N ).
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I. INTRODUCTION

The quantum theory (cf. [1—6]) gives approximate
and at times remarkably accurate numerical predictions.
Much experimental data approximately fits to the quan-
tum predictions for the past some 100 years. We do
not doubt the correctness of the quantum theory. The
quantum theory also says new science with respect to
information theory. The science is called the quantum
information theory [6]. Therefore, the quantum theory
gives us very useful another theory in order to create
new information science and to explain the handling of
raw experimental data in our physical world.

As for the foundations of the quantum theory, Leggett-
type non-local variables theory [7] is experimentally in-
vestigated [8—10]. The experiments report that the quan-
tum theory does not accept Leggett-type non-local vari-
ables interpretation. However there are debates for the
conclusions of the experiments. See Refs. [11—13].

As for the applications of the quantum theory, im-
plementation of a quantum algorithm to solve Deutsch’s
problem [14] on a nuclear magnetic resonance quantum
computer is reported firstly [15]. Implementation of the
Deutsch-Jozsa algorithm on an ion-trap quantum com-
puter is also reported [16]. There are several attempts to
use single-photon two-qubit states for quantum comput-
ing. Oliveira et al. implement Deutsch’s algorithm with
polarization and transverse spatial modes of the electro-
magnetic field as qubits [17]. Single-photon Bell states
are prepared and measured [18]. Also the decoherence-
free implementation of Deutsch’s algorithm is reported
by using such single-photon and by using two logical
qubits [19]. More recently, a one-way based experimental
implementation of Deutsch’s algorithm is reported [20].
In 1993, the Bernstein-Vazirani algorithm was reported
[21, 22]. It can be considered as an extended Deutsch-
Jozsa algorithm. In 1994, Simon’s algorithm was re-
ported [23]. Implementation of a quantum algorithm
to solve the Bernstein-Vazirani parity problem without
entanglement on an ensemble quantum computer is re-
ported [24]. Fiber-optics implementation of the Deutsch-

Jozsa and Bernstein-Vazirani quantum algorithms with
three qubits is discussed [25]. A quantum algorithm for
approximating the influences of Boolean functions and its
applications is recently reported [26]. Quantum compu-
tation with coherent spin states and the close Hadamard
problem is also discussed [27].

On the other hand, the earliest quantum algorithm,
the Deutsch-Jozsa algorithm, is representative to show
that quantum computation is faster than classical coun-
terpart with a magnitude that grows exponentially with
the number of qubits. In 2015, it is discussed that the
Deutsch-Jozsa algorithm can be used for quantum key
distribution [28]. In 2017, it is discussed that secure
quantum key distribution based on Deutsch’s algorithm
using an entangled state [29].

In this paper, we present a new quantum algorithm. It
determines a property of a function. It is f(x) = f(−x)
or it is not so. Our quantum algorithm overcomes a clas-
sical counterpart by a factor of O(2N ).

II. QUANTUM COMPUTING DETERMINING

A PROPERTY OF A FUNCTION

Suppose

f : {0, 1}N → {0, 1}N (1)

is a function with a N -bit domain and a N -bit range. We
assume f(−x) = f(x) and the following case

f(x) = f(−x).
x = (x1, x2, ..., xN ). (2)

Our algorithm combines quantum parallelism with a
property of quantum mechanics known as interference.

Let us follow the quantum states through the algo-
rithm. The input state is

|ψ0� = |0�⊗N |0�. (3)
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After the Hadamard transformation on the first N -bit
state we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N
|0�. (4)

Next, the function f is evaluated using

Uf : |x, y� → |x, y ⊕ f(x)�, (5)

giving

|ψ2� =
�

x

|x�√
2N
|f(x)�

= (
1√
2N

)|0, 0, ..., 0�f(0, 0, ..., 0) +
�

x �=0

|x�√
2N
|f(x)�. (6)

We introduce the following (N + 1)-bit state:

|ψ3� =
�

x∈{0,1}N

| − x�√
2N

|0�. (7)

The function f is also evaluated using

Uf : | − x, y� → | − x, y ⊕ f(−x)�. (8)

We have

|ψ4� =
�

x

| − x�√
2N

|f(−x)�

= (
1√
2N

)|0, 0, ..., 0�f(0, 0, ..., 0) +
�

x �=0

| − x�√
2N

|f(−x)�

= (
1√
2N

)|0, 0, ..., 0�f(0, 0, ..., 0) +
�

x �=0

| − x�√
2N

|f(x)�

= (
1√
2N

)|0, 0, ..., 0�f(0, 0, ..., 0)−
�

x �=0

|x�√
2N
|f(x)� (9)

by using f(x) = f(−x). Thus we have

|ψ5� =
1

2
(|ψ2�+ |ψ4�)

= (
1√
2N

)|0, 0, ..., 0�f(0, 0, ..., 0). (10)

Therefore, if Alice measures |0, 0, ..., 0� then

f(x) = f(−x). (11)

Otherwise, the function is f(x) 	= f(−x). Our quantum
algorithm overcomes a classical counterpart by a factor
of O(2N ).

III. CONCLUSIONS

In conclusion, we have presented a new quantum al-
gorithm. It has determined a property of a function. It
has been f(x) = f(−x) or it has not been so. Our quan-
tum algorithm has overcome a classical counterpart by a
factor of O(2N ).
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[12] M. Żukowski, Found. Phys. 38, 1070 (2008).
[13] A. Suarez, Found. Phys. 39, 156 (2009).
[14] D. Deutsch, Proc. Roy. Soc. London Ser. A 400, 97

(1985).
[15] J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648

(1998).
[16] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J.
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