Affirmative resolve of Legendre's conjecture if Riemann Hypothesis is true.

T.Nakashima E-mail address tainakashima@mbr.nifty.com

March 16, 2017

Abstract

Near m, the destance of primes is lower order than $\log m$. This is the key to solve the Legendre's conjecture.

1

Theorem 1.1. Legendre's conjecture There is at least 1 prime n^2 and $(n + 1)^2$

Definition 1.1.

$$Li(x) := \int_2^\infty \frac{1}{\log x} dx$$

Remark:Asymptotic expansion $Li(m) = \frac{m}{\log m} + \frac{1!m}{\log m^2} + \dots + \frac{(n-1)!m}{\log m^n} + O(\frac{x}{\log x^{n+1}})$

Next result is Riemann Hypothesis.

Theorem 1.2. The prime number less than m is

$$\pi(m) = Li(m) + O(\sqrt{m}\log m)$$

More,

Theorem 1.3. Littlewood

The prime number less than m sationsfies

$$\pi(m) - Li(m) = \Omega_+(\sqrt{m} \frac{\log \log \log m}{\log m})$$

 $f(m) = \Omega_+(g(m))$ means for large $m, {\rm there\ exists\ } c.\ c\ {\rm satisfies\ } f(m) > cg(m)$

Theorem 1.4. Near m, destance of two prime number is order $\log m$

$$\frac{m}{m/\log m} = \log m$$

We think constant K, for enough large m, "destance of primes" $\langle K \log m. K$ is not depend on m. So, if $(n + 1)^2 - n^2 >> K \log n^2$, then Legendre's conjecture is true for m.