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ABSTRACT

Length contraction is a principal feature of the Special Theory of Relativity. It is pur-
ported to be independent of position, being a function only of uniform relative velocity,
via the Lorentz Transformation. However, it is not possible for a system of clock-
synchronised stationary observers to assign by the Lorentz Transformation, a common
definite length to any object in a ‘moving system’. Consequently, the Theory of Rela-
tivity is false due to an insurmountable intrinsic logical contradiction.

1 Introduction
In previous papers [1, 2] I proved that Einstein’s system of
clock-synchronised stationary observers is logically incon-
sistent with the Lorentz Transformation. Herein I assure by
mathematical construction a system of clock-synchronised
observers and assume the Lorentz Transformation, then prove
that Einstein’s ‘length contraction’ is false because there is no
common determinable length contraction for all observers in
the ‘stationary system’ K at any given time t of K.

The Lorentz Transformation is,

τ = β
(
t − vx/c2

)
, ξ = β (x − vt) ,

η = y, ζ = z,
β = 1/

√
1 − v2/c2.

(1)

According to Special Relativity a moving ‘rigid body’∗ un-
dergoes a length contraction in the direction of its motion. If
the length of a body in the x-direction in the ‘stationary sys-
tem’ K is l0, then according to the ‘stationary system’ K the
length of the very same body in the ξ-direction of the moving
system k is l′0 = l0/β = l0

√
1 − v2/c2. However, at any time

t > 0 of the ‘stationary system’ K there is always a place x∗

in K from which the length of the moving body is not l0/β.

2 Einstein’s rigid sphere
Einstein [3, §4] considered a rigid sphere of radius R:

“We envisage a rigid sphere1 of radius R, at
rest relatively to the moving system k, and with
its centre at the origin of co-ordinates of k. The
equation of the surface of this sphere moving rel-
atively to the system K with velocity v is

ξ2 + η2 + ζ2 = R2.

∗Although Einstein utilised rigid bodies, these bodies change their
lengths when they are in motion.

The equation of this surface expressed in x, y, z
at the time t = 0 is

x2( √
1 − v2/c2

)2 + y2 + z2 = R2.

A rigid body which, measured in a state of rest,
has the form of a sphere, therefore has in a state
of motion - viewed from the stationary system -
the form of an ellipsoid of revolution with the
axes

R
√

1 − v2/c2,R,R.

“Thus, whereas the Y and Z dimensions of
the sphere (and therefore of every rigid body of
no matter what form) do not appear modified by
the motion, the X dimension appears shortened
in the ratio 1 :

√
1 − v2/c2, i.e. the greater the

value of v, the greater the shortening.

“1 That is, a body possessing spherical form
when examined at rest.”

Einstein’s rigid sphere “at rest relatively to the moving
system k” is illustrated in figure 1. The radius of the sphere at
rest is R in all directions. Since Einstein’s rigid sphere moves
only in the X-direction, the radius R in that direction is pur-
ported to shorten to R

√
1 − v2/c2, according to the ‘stationary

system’ K. This is easily seen by setting y = z = 0 in Ein-
stein’s equation for the “ellipsoid of revolution”, from which
it immediately follows that x = R

√
1 − v2/c2. The ‘stationary

system’ K however contains observers at different locations.
Einstein does not specify the location of any such observer
of his distorted sphere. Evidently his length contraction is the
same for all his stationary observers since his contracted rigid
sphere is “viewed from the stationary system”.

It is evident from Einstein’s equation for “an ellipsoid of
revolution” that his ellipsoid is centred at the origin of coor-
dinates x = y = z = 0 for the ‘stationary system’ K. Hence
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Fig. 1: Initial conditions: a rigid sphere of radius R centred at the
origin of coordinates for the ‘moving system’ k. The sphere is at
rest with respect to k. In the k system the sphere has the equation
ξ2 + η2 + ζ2 = R2. When t = 0 in the ‘stationary system’ K, the time
τ = 0 at the origin ξ = 0 but at ξ = R the time is τ = −Rv/c2, by the
Lorentz Transformation.

Einstein [3, §4] superposed the two coordinate systems for K
and k respectively, so that their origins coincide at the ‘sta-
tionary system’ time t = 0, illustrated in figure 2. In this case
it is imagined that the sphere is moving at a constant speed v
in the common X-direction according to the ‘stationary sys-
tem’ K.

Fig. 2: Subsequent conditions: a rigid sphere of radius R centred
at the origin of both coordinate systems. The sphere is at rest with
respect to k but moving at a constant speed v with respect to K, in
the common X-direction. The ellipsoid is the ‘shortened sphere’
observed from the stationary system K. In the k system the sphere
has the equation ξ2 +η2 + ζ2 = R2. In the K system it is not a sphere,
but an ellipsoid, with equation x2

(1−v2/c2) + y
2 + z2 = R2. Here the time

t = 0 at all time-synchronised points in the ‘stationary system’ K,
but for the ‘moving system’ k the time is, according to K, τ = 0 at
ξ = 0 but τ = −Rv/c2 at ξ = R.

Einstein set t = 0 at the common origin of coordinates,
so that, by the Lorentz Transformation (1), ξ = βx. Conse-
quently, at the common origin, x = 0 and ξ = 0. Referring
to figure 2, when t = 0 at all time-synchronised points in the

‘stationary system’ K, at ξ = 0 the k-time is, according to K,
τ = 0, but at ξ = R the k-time is τ = −Rv/c2, by the Lorentz
Transformation. Einstein did not mention this. If t > 0, then
ξ = β (x − vt) and the equation of the “ellipsoid of revolution”
according to the ‘stationary system’ K is,

(x − vt)2( √
1 − v2/c2

)2 + y2 + z2 = R2. (2)

This ellipsoid is centred at x = vt, y = 0, z = 0 of the ‘sta-
tionary system’ K. The first term of equation (2) is not con-
stant, but varies with the ‘time’ t. To avoid this awkward
problem, Einstein set t = 0. However, it follows from the
Lorentz Transformation that for any time t > 0 there is al-
ways a place x∗ in the ‘stationary system’ K, from which the
moving sphere of radius R in k is, for instance, a sphere of
radius R in K.

Since length contraction supposedly occurs only in the
direction of motion, consider a ‘rigid rod’ of length l0 in the
as yet ‘stationary system’ k and the ‘statonary system’ K, as
shown in figure 3.

Fig. 3: A rigid rod of length l0 in the stationary system K, and in the
as yet stationary system k.

Attach the coordinate system for k to the rod and imagine
the system k with rod to have a constant speed v in the positive
direction of the x-axis of K, as shown in figure 4. Let the time
t of the ‘stationary system’ K be reckoned from t = 0 when
the y and η axes coincide. After a time t > the k system
advances to a distance vt from the origin of the K system, for
example, as shown in figure 5.

Now, according to Special Relativity, the length of the
‘moving’ rod l′0 is the same at any time t and place x of
observer in the ‘stationary system’ K, because length con-
traction is independent of the value of t and position of the
rod in either system, depending only on the constant rela-
tive speed v. According to the Lorentz Transformation (1),
ξ = β (x − vt). Thus, when t = 0, x = ξ/β, and so if ξ = l0
at rest relative to the ‘moving system’ k, then x = l′0 = l0/β
= l0
√

1 − v2/c2. But when t > 0,

l0 = β (x − vt) . (3)
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Fig. 4: After time t > 0 the k system advances a distance vt and
the observers in system K determine the length l′0 of the moving rod
from their vantage points x∗.

To assure a system of clock-synchronised observers set,

σl0 = β (x∗ − vt) , (4)

where 0 ≤ σ. Solving (4) for x∗ gives,

x∗ =
σl0 + βvt
β

. (5)

When t = 0, x∗ = σl0/β. If the length of the rigid rod at
rest relative to the ‘moving system’ k is l0 there is always
an observer located at x∗ in the clock-synchronised system K
from which the rod has the length l′0 = σl0, 0 ≤ σ, for any
synchronised time t in K; sample values tabulated.

σ x∗ l′0

0 vt 0
1/2 (l0 + 2βvt) /2β l0/2
1 (l0 + βvt) /β l0
2 (2l0 + βvt) /β 2l0

1/β
(
l0 + β2vt

)
/β2 l0/β

β (l0 + vt) βl0

Only for the observer at x∗ =
(
l0 + β2vt

)
/β2 does Einstein’s

‘length contraction’ equation hold. Therefore, only for the
observer at x = R/β2 does Einstein’s ‘length contraction’ hold

for his moving rigid sphere, not for his observer at x = 0, not
for his observer at x = R/β, not for his observer at x = R, or
anywhere else, as seen by setting t = 0 in the table of sam-
ple values. Einstein’s ‘length contraction’ depends upon the
position of the observer in K. Furthermore, although clock-
synchronised, observers x∗ are not stationary, contrary to Ein-
stein’s assumption of a system of clock-sychronised station-
ary observers K.

3 Conclusions
For t ≥ 0 none of the observers in the ‘stationary system’
K can assign any common definite length l′0 to a body in
the ‘moving system’ k. Consequently there is no common
determinable length contraction from the ‘stationary system’
K. Consequently Einstein’s length contraction is inconsistent
with the Lorentz Transformation. Einstein’s assumption that
a system of clock-synchronised stationary observers is con-
sistent with the Lorentz Transformation is false. Hence, the
Theory of Relativity is false.
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