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This paper analyses electron stability and applies the resulting stability principle to resolve di-
vergence issues in quantum electrodynamics (QED) without renormalization. Stability is enforced
by requiring that the positive electromagnetic �eld energy be balanced by a negative interaction
energy between the observed electron charge and a local vacuum potential. Then in addition to the
observed core mechanical mass m, an electron system consists of two electromagnetic mass compo-
nents of equal magnitude M but opposite sign; consequently, the net electromagnetic mass is zero.
Two virtual, electromagnetically dressed mass levels m ±M , constructed to form a complete set
of mass levels and isolate the electron-vacuum interaction, provide essential S-matrix corrections
for radiative processes involving in�nite �eld actions. Total scattering amplitudes for radiative cor-
rections are shown to be convergent in the limit M → ∞ and equal to renormalized amplitudes
when Feynman diagrams for all mass levels are included. In each case the in�nity in the core mass
amplitude is canceled by the average amplitude for electromagnetically dressed mass levels, which
become separated in intermediate states and account for the stabilizing interaction energy between
an electron and its surrounding polarized vacuum. In this manner, S-matrix corrections are shown
to be �nite for any order diagram in perturbation theory; all the while, maintaining the mass and
charge at their physically observed values.

I. INTRODUCTION

A long-standing enigma in particle physics is how an elementary charged particle such as an electron can
be stable in the presence of its own electromagnetic �eld (see [1, 2] and cited references). Critical accounting
for electron stability is essential since radiative corrections in quantum �eld theory involve self-interactions
that can change the mass and charge of an electron. This analysis seeks to identify, understand, and account
for the hidden interaction that energetically stabilizes an electron such that its mass and charge assume their
physically observed values.
The agreement between renormalized QED theory and experiment con�rms the e�ect of vacuum �uctu-

ations on the dynamics of elementary particles to astounding accuracy. For example, electron anomalous
magnetic moment calculations currently agree with experiment to about 1 part in a trillion [3, 4]. This
achievement is the result of more than six decades of e�ort since the relativistically invariant form of the
theory took shape in the works of Feynman, Schwinger, and Tomonaga (see Dyson's uni�ed account [5]).
The agreement leaves little doubt that QED predictions are correct; however, the renormalization technique
[6, 7] used to overcome divergence issues in radiative corrections o�ers little insight into the underlying
physics behind electron stability in the high-energy regime. Recall that divergent integrals occur in scatter-
ing amplitudes for self-energy processes and arise in sums over intermediate states of arbitrarily high-energy
virtual particles. This stymied progress until theoretical improvements were melded with renormalization
to isolate the physically signi�cant parts of radiative corrections by absorbing the in�nities into the electron
mass and charge. Although the renormalization method used to eliminate ultraviolet divergences results
in numerical predictions in remarkable agreement with experiments, rede�nition of fundamental physical
constants remains an undesirable feature of the current theory.
Our main purpose is to develop an alternative to mass and charge renormalization in QED. We begin

by revisiting the classical self-energy problem where we de�ne an energetically stable charge. From the
resulting stability principle, we construct two virtual, electromagnetically dressed mass levels to isolate the
interaction between the observed charge and the polarized vacuum. The total scattering amplitude for a
radiative correction with a primitive divergence includes contributions from observed core mechanical mass
and electromagnetically dressed core (EDC) mass levels; therefore, three Feynman diagrams are de�ned,
one for each mass level. In particular, S-matrix corrections for the EDC are simply constructed using
core amplitudes from the literature and account for the action of the vacuum back on the electron via an
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opposing vacuum current. After de�ning divergent integrals for EDC amplitudes, we verify that net S-
matrix corrections for vacuum polarization, electron self-energy, and vertex processes are �nite to all orders
in perturbation theory.

II. FORMULATION

Regarding an electron as a point particle [8], the classical electrostatic self-energy e2/2a ≡ αΛ◦ diverges
linearly as the shell radius a → 0, or energy cuto� Λ◦ → ∞, where −e is the charge and α = e2/4π~c is
the �ne-structure constant. However, Weisskopf [9, 10] showed using Dirac's theory [11] that the charge is
e�ectively dispersed over a region the size of the Compton wavelength due to pair creation in the vacuum
near an electron, and the self-energy only diverges logarithmically. Feynman's calculation [12] in covariant
QED yields an electromagnetic mass-energy

mem =
3αm

2π

(
ln

Λ◦
mc2

+
1

4

)
, (1)

where m is the electron mass. In the absence of a compensating negative energy, (1) signals an energetically
unstable electron. It is the key ultraviolet divergence problem in QED, whose general resolution will result
in �nite amplitudes for all radiative corrections. In this section we derive a stability condition and apply it
to develop corrections to scattering amplitudes for otherwise divergent processes.
To ensure that the total electron mass is its observed value, renormalization theory posits that a negatively

in�nite 'bare' mass must exist to counterbalance mem. For lack of physical evidence, negative matter
is naturally met with some skepticism (see Dirac's discussion [13] of the classical problem, for example).
Nevertheless, energies that hold an electron together are expected to be negative, and we can understand
their origin by �rst considering the source for the electrical energy required to assemble a classical charge
in the rest frame. Recall that the work done in assembling a charge from in�nitesimal parts is equal to the
electromagnetic �eld energy. Since the agents that do the work must draw an equivalent amount of energy
from an external energy source (well), the well's energy is depleted and the total energy

E = mc2 + E+
em + Ew (2)

of the system including matter, electromagnetic �eld E+
em, and energy well Ew is constant. For an elementary

particle, could the depleted energy well be the surrounding vacuum?
Speci�cally, consider an electron and its neighboring vacuum treated as two distinct systems that can act

on one another. Suppose the electron acts on the vacuum to polarize it creating a potential well, then there
must be opposing reaction of vacuum back on the electron. The resulting vacuum potential Φvac con�nes
the observed core charge akin to a spherical capacitor as shown in Fig. 1, and the interaction energy

Ew → E−em ≡ −eΦvac (3)

is assumed to just balance E+
em resulting in a stability condition

E+
em + E−em = 0 (4)

m+
em +m−em = 0 ,

where the mass-energy equivalence E±em = m±emc
2 has been used to obtain an equivalent expression in terms

of electromagnetic masses. Therefore, the net mass-energy of a free electron is attributed entirely to the
observed core mechanical mass m. In contrast to Poincaré's theory [14] wherein internal non-electromagnetic
stresses hold an electron together, external vacuum electrical forces are assumed to provide charge stabi-
lization and energy balance via a steady state polarization �eld surrounding the electron. Corresponding to
a divergent self-action process, we require a mechanism whereby the core charge interacts locally with the
polarized vacuum according to (3).
The energy of the core charge in the potential well of Fig. 1 is
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FIG. 1: E�ective vacuum potential con�nes core electron charge similarly to spherical capacitor. Since the
stability principle requires E+

em − eΦvac = 0, the total energy of core electron in the well and dressed in its
electromagnetic �eld is just its observed mass-energy.

E−core = mc2 + E−em ≡ mbc
2 , (5)

where mb may be identi�ed with the bare mass, and

mb +m+
em = m (6)

captures the mass renormalization condition which is equivalent to (2) with (3) and (4). However, notice
that the bare mass corresponds to a core electron dressed in negative electromagnetic energy; hence, its
characterization as a 'bare mechanical mass' is a misnomer (see [15] for example). Only the core mass is
observable, and only it is expected to appear in the Lagrangian if one takes (4) seriously. In renormalization
theory, however, one starts with a bare electron, self-interaction dresses it with positive electromagnetic
energy, and (6) is subsequently applied to rede�ne the mass. On the other hand, suppose we start with
the observed electron charge; then taking into account (2), (3), and (4), m+

em and m−em are always present,
and the total mass reduces to the observed core mechanical mass. Starting with this premise, we can
formulate a �nite theory of radiative corrections that accounts for all possible electromagnetically dressed
intermediate states, and no asymmetry necessitating a rede�nition of mass and charge is introduced. For
the ensuing development, relativistic notation de�ned in [16] is employed, and natural units are assumed;
that is, ~ = c = 1.
Equations (2) and (4) suggest that a stable electron consists of three rest mass components: a core mass

m and two electromagnetic masses m±em that are assumed large in magnitude but �nite until the �nal step
of the development. We can think of m±em as components of an electromagnetic vacuum (zero net energy)
which are tightly bound to the core mass and inseparable from the core and each other, at least for �nite
�eld actions. Considering all non-vanishing masses constructed from the set {m, m+

em, m
−
em}, we are led to

de�ne a complete set of mass levels m + λM , where λ = {0, ±1} and M ≡ |m±em|. Associated 4-momenta
are p + λPM , where {p, PM} correspond to {m, M}, respectively. In the following, an electromagnetically
dressed core (EDC) refers to a composite particle with mass level m±M .
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To implement the EDC model in quantum theory, �rst consider a free particle state |p, m〉 with momentum
satisfying p2 ≡ pµp

µ = m2, where pµ = (p◦, ~p) and pµ = gµνp
ν are contravariant and covariant momentum

4-vectors, respectively. Metric tensor gµν has non-zero components

g00 = −g11 = −g22 = −g33 = 1 .

Spin is omitted in |p, m〉 since it is inessential to the subsequent development, and the rest mass is included
because it is the fundamental particle characteristic which varies in EDC corrections to the S-matrix [see
Eq. (16)]. We employ the relativistic normalization

〈p′, m |p, m〉 = 2E (~p, m) (2π)
3
δ
(
~p− ~p ′

)
,

where E (~p, m) =
√
~p 2 +m2.

Now construct the superposition

|χ〉 =
1√
2

∑
λ=±1

∣∣Υedc
λ (p)

〉
(7)

of EDC states ∣∣Υedc
λ (p)

〉
= |p+ λPM , m+ λM〉 , (8)

where the core 4-momentum is dispersed per an uncertainty ∆p ≡ λPM . Electromagnetically dressed states
are normalized according to〈

Υedc
λ′ (p′)

∣∣ Υedc
λ (p)

〉
= 2E

(
~p+ λ~PM , m+ λM

)
(2π)

3
δ
(
~p− ~p ′ + (λ− λ′) ~PM

)
,

' 2E
(
~PM , M

)
(2π)

3
δ
(
~p− ~p ′

)
δλλ′

where the latter form follows upon assuming M � m and requiring the vector components satisfy∣∣P iM ∣∣� ∣∣pi − p′i∣∣ , i = 1, 2, 3

thereby excluding a zero in the delta-function argument at in�nity for λ′ 6= λ. The expected momentum and
mass are given by

〈χ |{pop,mop}|χ〉
〈χ |χ 〉

= {p,m} ,

where { pop, mop} are corresponding operators. Therefore, the composite state (7) is energetically equivalent
to the core mass state |p, m〉 as required by (2) and (4). A core electron dressed with positive or negative
energy as in (8) is a transient state that is sharply localized within a spacial interaction region r ' ~/Mc in
accordance with Heisenberg's uncertainty principle [17] ∆pµ∆xµ ≥ ~/2 (no implied sum over µ). Scattering
amplitudes for low-energy processes are assumed una�ected because the energies are insu�cient to induce a
separation of tightly bundled states (8) in (7). For in�nite �eld actions, however, EDC states may become
separated in intermediate states with in�nitesimally small lifetimes; in this case, we shall need to account
for both core and EDC scattering amplitudes. To account for all possible intermediate states in QED and
satisfy (4), both mass levels m±M are required; this generalizes the classical model depicted in Fig. 1 which
assumed that only a positive energy electron interacts with the vacuum potential well.
Since the interaction region reduces to a point as M →∞ for EDC states, self-interaction e�ects vanish,

and a electromagnetically dressed electron interacts only with the polarized vacuum. The vacuum potential
is generated by a net positive current in close proximity to the core electron charge since Φvac > 0. Therefore,
suppose a dressed electron is located at space-time position x1 such that it is constrained to interact only
with an opposing vacuum current as indicated in Fig. 2. The current density at a neighboring point x2 6= x1

is distinct from that of the dressed core and reversed in sign; that is,

sgn [jµ (x2)] = −sgn [jµ (x1)] . (9)
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FIG. 2: Dressed core electron interacts with opposing vacuum current resulting in an exchange of the core
and vacuum electrons and a sign reversal of the EDC scattering amplitude relative to the core.

With core current de�ned by the normal product [18, 19]

jµ (x1) = −e
2

[
ψ̄γµψ − ψ̄cγµψc

]
x1

= −eN
[
ψ̄γµψ

]
x1
,

where γµ are Dirac matrices, the vacuum current operator at x2 may be generated by interchanging the �eld
operator ψ with its charge conjugate ψc to satisfy (9) and model an exchange of core and vacuum electrons
via the e+e− annihilation process suggested in Fig. 2 , then

jµ (x2) = eN
[
ψ̄γµψ

]
x2
.

Similarly to (9), the Hamiltonian density at nearby points must satisfy

sgn [Hint(x2)] = −sgn [Hint(x1)] , (10)

where Hint(x) = jµ (x)Aµ (x) in the interaction representation [20], and Aµ (x) is the radiation �eld. From
(10) we anticipate a sign reversal in the EDC scattering amplitude relative to that for the core mass since
second-order S-matrix [21] corrections involve a product Hint (x1)Hint (x2).
For radiative corrections containing primitive divergences, evaluation of S-matrix corrections for EDC

states entails a core mass replacement

m→ m+ λM (11)

in fermion lines internal to loops as indicated in Fig. 3; that is, in each fermion propagator [22]

iSF (p,m) =
i

�p−m+ iε
,

where �p = γµp
µ. Resulting loop-operator amplitudes are averaged over mass levels; that is, λ = ±1. For an

external line entering a loop, the momentum is similarly modi�ed

p→ p+ λPM , (12)

since the propagator is required to have a pole at m+λM . For processes containing infrared divergences, in
which a �ctitious photon mass mγ 6= 0 is introduced [12] to regulate singularities for soft photon emissions,
inspection of fermion self-energy and vertex functions in Sec. IV reveals that a replacement

mγ → mγ + λMγ (13)
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is also needed in the modi�ed photon propagator

iDαβ
F (k) =

−igαβ

k2 −m2
γ + iε

,

wherein the Feynman gauge is assumed. Since resulting amplitudes involve a ratio m/mγ , we require
Mγ = ηmγ with η = M/m to ensure reduction to known results.
In summary, the total second-order loop-operator associated with a self-energy or vertex part is de�ned

by

Ω = Ωcore +Ωedc , (14)

where Ωcore accounts for self-interaction e�ects involving the core mass and Ωedc enforces stability via
interaction of EDC states with the polarized vacuum. Ωedc is evaluated by substituting (11), (12), and (13)
into known Ωcore. In addition to massm, Ωcore depends on external momenta {p, q, k} for Feynman diagrams
in Fig. 3. For notational simplicity, any dependence on an external momentum parameter is suppressed
during construction of Ωedc because {p, q} are implicitly dependent on the core mass. Since Ωcore and Ωedc
are both divergent for loop corrections, their improper integrals must be temporarily regulated using an
energy cuto� Λ◦ or by dimensional regularization. Assuming an energy cuto�, the net amplitude (14) is
convergent and reduces to expected results if we de�ne

Ω = lim
Λ◦→∞

[Ωcore (m,Λ◦) +Ωedc(m,Λ◦)] , (15)

where

Ωedc (m,Λ◦) = −1

2
lim
η→∞

∑
λ=±1

Ωcore (m+ λM, Λ)|M=ηm,Λ=ηΛ◦
. (16)

The overall minus sign in (16) ensures that the core charge associated with an EDC state interacts with an
opposing vacuum current as required by (9). Scaling rules

M = ηm (17)

Λ = ηΛ◦ (18)

are required for consistent de�nition of the integrals � they ensure that Λ � M for arbitrarily large M,
synchronize cuto� to Λ◦, and yield a well de�ned limit as η → ∞ in (16). As veri�ed in Sec. IV, the
operator Ωedc is independent of {PM , M} for M � m. In contrast to the regulator technique of Pauli and
Villars [23], the above method employs physically meaningful EDC mass levels (albeit virtual only), and the
same principle applies to all self-energy processes in QED without introduction of auxiliary constraints.

III. DIVERGENT INTEGRALS

Here we develop integration formulae required for evaluation of EDC corrections using cuto� and di-
mensional regularization. In the p-representation, loop diagrams involve four-dimensional integrals over
momentum space, and the real parts of scattering amplitudes contain integrals of the form [24]

D (∆) =
1

iπ2

ˆ
d4p

(p2 −∆)
n =

(−1)
n

π2

ˆ
d4pε

(p2
ε + ∆)

n , (19)

where ∆ depends on the core mass, momentum parameters external to the loop, and integration variables.
On the right side of (19), a Wick rotation has been performed via a change of variables p = (ip◦ε, ~pε), so that
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FIG. 3: Baseline radiative corrections a) Vacuum polarization, b) Fermion self-energy, and c) Vertex
involve the core mass only in internal fermion lines. Two additional diagrams, obtained by replacing the
core mass with electromagnetically dressed mass levels m±M , are required for each radiative process to

account for interaction with an opposing vacuum current and ensure stability.

the integration can be performed in euclidean space where p2
ε = p◦εp

◦
ε + ~pε · ~pε. Integrals for the divergent

case (n = 2) must be regulated such that they are consistently de�ned for core and dressed core masses. For
the core mass, D is regularized using a cuto� Λ◦ on s = |pε|. In four-dimensional polar coordinates, we have

D (∆,Λ◦) =
1

π2

ˆ
dΩ

ˆ Λ◦

0

ds
s3

[s2 + ∆]
2 . (20)

For EDC states, ∆ depends on |m±M | ' ηm with η � 1, and the domain of integration in (20) must be
scaled according to (18); consequently, we need to evaluate

Dedc = D [∆ (ηm) , ηΛ◦] .

With a change of variables s = ηt and taking the limit η →∞, we obtain

Dedc = D (∆◦,Λ◦) , (21)

where

∆◦ = lim
η→∞

η−2∆(ηm) . (22)

For example, considering the standard divergent integral [24]

D◦ ≡ D
(
∆ = m2,Λ◦

)
= ln

Λ2
◦

m2
− 1 +O

(
m2

Λ2
◦

)
, (23)

we see that D◦ is invariant under scaling rules (17) and (18); that is,

D◦ = D
(
M2,Λ

)
. (24)
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In contrast to the cuto� method, dimensional regularization evaluates a Feynman diagram as an analytic
function of space-time dimension d. For n = 2 and d4p→ ddp in (19), D may be evaluated using [16, 25]

D (∆, σ) = π−σΓ (σ) ∆−σ (25)

=
1

σ
− γ − ln ∆ +O (σ) ,

where σ = 2− d/2 and γ = 0.577... is Euler's constant. For σ 6= 0, the limit Λ◦ →∞ may be taken since σ
regulates the integral. For EDC states, Dedc must yield consistent results for both cuto� and dimensional
regularization methods. Considering the requirements used to derive (21) and employing appendix formulae
in [25], we conclude

Dedc = D (∆◦, σ) . (26)

Therefore, the net S-matrix correction computed from (15) is convergent and involves a factor

δD = D −Dedc = − ln
∆

∆◦
, (27)

where we have manually negated Dedc as required by (16). For examples, compare (27) with the photon and
fermion self-energy expressions in (36) and (40).

IV. APPLICATION TO SECOND ORDER LOOP PROCESSES

Let us apply the foregoing theory with integration formulae given above to verify that the net amplitudes
for radiative corrections are convergent and agree with results obtained via renormalization theory. To this
end, the approximations

(m+ λM)
2 ' η2m2 (28)

(p+ λPM )
2 ' P 2

M = M2 + δ ' η2m2 (29)

(mγ + λMγ)
2 ' η2m2

γ , (30)

utilizing (17) with η � 1, will be useful for reduction of EDC corrections. They ensure that the regulated
integral Dedc in (21) or (26) and Ωedc in (16) are independent of individual mass levels (λ = ±1) forM � m.
In the expansion of P 2

M about M2 on the right side of (29), the o�-shell term δ is assumed bounded and
therefore negligible compared to M2. Dimensional and cuto� regularization approaches will be used to
illustrate the method.

A. Vacuum polarization

Fig. 3 (a) results in a photon propagator modi�cation [21]

iD′αβF = iDαβ
F + iDαµ

F (iΠµν) iDνβ
F , (31)

where

Πµν ≡ Πcore
µν +Πedc

µν

is a polarization tensor generalized to include the EDC correction, and whose core mass term

Πcore
µν (k, m) =

ie2

(2π)
4

ˆ
d4pTr [γµSF (p,m)γνSF (p− k,m)] (32)
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follows from the Feynman-Dyson rules [5, 12]. In consequence of Lorentz and gauge invariance [7] or by
direct calculation, it factors into

Πcore
µν (k, m) = Πcore

(
k2, m

) (
kµkν − gµνk2

)
, (33)

where Πcore

(
k2,m

)
is a scalar function. As is well known, the contribution from terms kµkν vanishes

due to current conservation upon connection to an external fermion line. After dimensional regularization,
reduction using Dirac matrix algebra, and Feynman parameterization, (25) is employed to cast Πcore into a
form equivalent to that given in Mandl & Shaw [16]

Πcore

(
k2, m

)
=

2α

π

ˆ 1

0

dz z (1− z)D (∆, σ) , (34)

where

∆ = m2 − k2z (1− z) .

Applying (16) and (26) we obtain

Πedc = −1

2
lim
η→∞

[
Πcore

(
k2, m+ ηm

)
+ Πcore

(
k2, m− ηm

)]
(35)

= −2α

π

ˆ 1

0

dz z (1− z)D (∆◦, σ) ,

where

∆◦ = m2

follows from (22) using (28). We see that (35) is equivalent to the subtracted core amplitude evaluated on
the light cone

Πedc = −Πcore(k
2 = 0, m) ,

which is associated with a correction to the bare charge in renormalization theory, but here the correction
represents an interaction between the observed core electron charge associated with a transient EDC state
and a polarization current that is required for charge stability in the intermediate state. Combining (34),
(35), and using (25), we obtain

Π = Πcore + Πedc (36)

= −2α

π

ˆ 1

0

dz z (1− z) ln

[
1− k2z (1− z)

m2

]
in agreement with the renormalization result [16]. For a free photon, Π

(
k2 = 0

)
= 0 as required.

B. Fermion self-energy

The fermion self-energy operator for the core mass corresponding to the Feynman diagram in Fig. 3 (b)
with λ = 0 is given by

Σcore (p,m) =
−ie2

(2π)
4

ˆ
d4k γµ SF (p− k,m) γµ

1

k2 −m2
γ

. (37)

Employing dimensional regularization, Σcore simpli�es to
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Σcore (p,m) =
α

2π

{
S1 +

ˆ 1

0

dx [2m− �px+ σ (�px−m)] D (∆, σ)

}
, (38)

where D (∆, σ) is given by (25) with

∆ = (1− x)
(
m2 − xp2

)
+ xm2

γ .

The integral expression in (38) is equivalent to a form given in Peskin & Schroeder [26], while the term

S1 = −1− σ
4 �p

follows from appendix formulae in [24] and represents a surface contribution arising from a term linear in k
during reduction of (37).
Evaluation of Σedc using (16) reduces to negating (38) and replacing ∆→ ∆◦ according to (26); we obtain

Σedc (p,m) = − α

2π

{
S1 +

ˆ 1

0

dx [2m− �px+ σ (�px−m)] D (∆◦, σ)

}
, (39)

where

∆◦ = m2 (1− x)
2

+ xm2
γ

follows from (22) using (28), (29), and (30). Terms involving (λPM , λM) have canceled in the average over
EDC mass levels yielding a function of the core mass and momentum only. The net correction, including all
three mass levels in Fig. 3 (b), is given by (cf. [12])

Σ = Σcore + Σedc (40)

=
α

2π

ˆ 1

0

dx (2m− �px) ln
m2 (1− x)

2
+ xm2

γ

(m2 − xp2) (1− x) + xm2
γ

,

where the limit σ → 0 has been taken to recover four-dimensional space-time. With a change of variables
x = 1− z, (40) is seen to be identical to the renormalized result given in Bjorken & Drell [27].
The processes in Fig. 3 (b), including iterations, results in a modi�ed propagator [5, 21]

iS′F = iSF + iSF (−iΣ) iS′F (41)

=
i

�p−m− Σ + iε
,

which has the desired pole at �p = m since (40) vanishes on the mass shell

Σ
(
p2 = m2

)
= 0 . (42)

Upon identifying

m+
em = Σcore (�p = m, mγ = 0) (43a)

m−em = Σedc (�p = m, mγ = 0) , (43b)

we see that (42) is equivalent to the stability principle (4). Setting σ = 0 and using (19) with cuto� Λ◦, it
follows that (43a) reduces to Feynman's result (1); for derivation, see [24]. In the language of renormalization
theory, the bare mass in the propagator [16]

iS′F (p,m) =
i

�p−mb − Σcore + iε
(44)

must be renormalized using (6) with (43a).
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C. Vertex

Since the scattering amplitude is a complex analytic function, it follows from Cauchy's formula that the
real and imaginary parts are related by a dispersion relation; for applications in quantum theory, see [28].
The imaginary part is divergence free; it may be obtained by replacing Feynman propagators with cut
propagators on the mass shell according to Cutkosky's cutting rule [29] or, alternatively, via calculation in
the Heisenberg representation as shown in Källén [30].
In particular, the second-order correction to a corner involves a replacement

ieγµ → iΓµ = ie (γµ + Λµ) , (45)

where the vertex function Λµ for the core mass corresponding to Fig. 3 (c) with λ = 0 is given by

Λµcore (q,m) = γµF1

(
q2,m

)
+

i

2m
σµνqνF2

(
q2,m

)
, (46)

where

σµν =
i

2
[γµ, γν ]

are spin matrices, and the form factors {F1, F2} are de�ned by Hilbert transforms [31]

Fi =

ˆ 4Λ2
◦

4m2

ds
Λi

(
4m2

s

)
s− q2

(47)

with imaginary parts given by

Λ1 (w) =
α

4π

1√
1− w

{
(w − 2) ln

[
1 + 4

(
m

mγ

)2(
1− w
w

)]
+ 3− 4w

}
(48)

Λ2 (w) =
α

4π

w√
1− w

. (49)

For evaluation of the EDC correction using (16), only the divergent term F1 needs to be considered since
F2 is convergent and its coe�cient vanishes as M → ∞. Upon substituting {(11),(12),(13)}, using {(28),
(30)}, and performing a change of variables s = η2t in F1, we have

Λµedc = −γµ 1

2

∑
λ=±1

lim
η→∞

ˆ 4Λ2
◦

4m2

dt
Λ1

(
4m2

t

)
t− η−2Q2

λ

, (50)

where Qλ = q + λ
(
P
′

M − PM
)
. Assuming Q2

λ is bounded, we �nd

Λµedc = −γµF1

(
q2 = 0,m

)
; (51)

therefore, the total vertex function, including the stability correction (51), is convergent and given by

Λµ (q) = Λµcore + Λµedc (52)

= γµ
[
F1

(
q2
)
− F1 (0)

]
+

i

2m
σµνqνF2

(
q2
)
,
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where the term in brackets reduces to a once-subtracted dispersion relation in agreement with renormalized
QED, and the functional dependence on m is now omitted for simplicity. This completes veri�cation that
lowest-order S-matrix corrections are �nite without renormalization.
Historically, the identi�cation of the last term in (52) marked a milestone in QED's development � sub-

stituting (49) into (47) yields

F2

(
q2 = 0

)
=

α

2π
≡ a(2)

as the leading correction to the anomalous magnetic moment a of the electron �rst derived by Schwinger
[32] and veri�ed experimentally by Foley & Kusch [33].

V. GENERALIZATION TO HIGHER ORDERS

The remaining task is to show that higher-order radiative corrections are convergent. The proof closely
follows methods in the references; therefore, we keep our remarks brief highlighting required modi�cations.
Irreducible (skeleton) diagrams include second-order self-energy (SE) and vertex (V) parts discussed in

Sec. IV plus in�nitely many higher-order primitively divergent V-parts. Using Dyson's expansion method
[21], second-order SE- and V-part operators for the core mass are

Σcore = mA+ (�p−m)B + Σ , (53)

Πcore = C +Π , (54)

Λµcore = γµL+ Λµ , (55)

where {A, B ,C , L = B} are logarithmically divergent coe�cients depending on D◦. For example,

A =
3α

4π

(
D◦ +

3

2

)
may be obtained using (1), where mem ≡ mA, and vanishingly small terms in (23) are dropped. Refer to
Jauch & Rohrlich [24] for the remaining coe�cients, or derive from expressions given in Sec. IV noting that
insigni�cant �nite terms can depend on the regularization method used. Higher-order primitively divergent
V-parts are also of the form (55) since K = 0 in the convergence condition

K = 4− 3

2
fe − be ,

where fe (be) are the number of external fermion (boson) lines; in this case, L (D◦) is a power series in α.
To determine the interaction of an electromagnetically dressed core with the polarized vacuum, we apply

(16) using the invariance of D◦ under the scaling rules (17) and (18) [see Eq. (24)] to obtain

Σedc = − [mA+ (�p−m)B] , (56)

Πedc = −C , (57)

Λµedc = −γµL , (58)

where the vanishing of the �nite parts {Σ, Π, Λµ} as M →∞ is both a physical requirement and a conse-
quence of their convergent integrals. In this way, (14) yields convergent results

Σ = Σcore +Σedc (59)

Π = Πcore +Πedc (60)

Λµ = Λµcore + Λµedc (61)

for all irreducible diagrams; therefore, SE-part insertions

iSF → iSF (−iΣ) iSF

iDαβ
F → iDαµ

F

(
−igµνk2Π

)
iDµβ

F

12



into lines, and V-part insertions

γµ → Λµ

into corners of a skeleton diagram yield well-de�ned higher-order corrections to the S-matrix.
For reducible vertex diagrams, the V-part resolves into a skeleton along with SE- and V-part insertions.

Working from inside out and applying (59), (60), and (61) to the irreducible subdiagrams, we see that the
insertions, the skeleton, and therefore the complete reducible V-part are convergent.
Similarly, reducible SE-parts involve a second-order skeleton along with SE- and V-part insertions. Self-

energy insertions and the skeleton are handled in the same way as for reducible vertex diagrams. However,
vertex insertions into a SE skeleton involve overlapping divergences that have been addressed by Salam [34]
and Ward [35]; in the following, we employ Ward's method. For vertex insertions into fermion and photon
SE skeletons, Ward's identities

∂Σ∗ (p,m)

∂pµ
= Λµ (p,m) = γµL+ Λµf (p,m)

−∂Π
∗ (k,m)

∂kµ
= ∆µ (k,m) = 2kµC + ∆µ

f (k,m)

are integrated to derive expressions of the same form as (53) and (54), respectively. Self-energy operators
Σcore ≡ Σ∗ and Πcore ≡ −k−2Π∗ denote sums over all proper SE-parts, and Λµ (p′ = p,m) and ∆µ (k,m)
are corresponding sums over all V-parts connected to a zero-momentum photon line generated by the dif-
ferentiation. In this case, the coe�cients {A, B ,C} are all power series in α depending on D◦, and vertex
insertions in SE-parts are convergent upon including EDC corrections (56) and (57). This result is consistent
with our assumption that in�nite �eld actions excite mass levels m ±M in all internal fermion lines of a
loop for EDC corrections; for a speci�c example, apply (15) to calculate the real part of the fourth-order
vacuum polarization kernel [36] using the method given in Sec. IV for the vertex. Therefore, a diagram with
overlapping divergences is not a special case for implementation of EDC corrections for fermion stability.
The complete fermion and photon propagation functions are given by

iS′F (p) =
i

�p−m− Σ (p) + iε
, (62)

iD′αβF (k) =
−igαβ

k2 [1 +Π (k)] + iε
, (63)

where {Σ, Π} are given by sums over all proper self-energy parts. Self-energy insertions (62) and (63)
replace fermion and photon lines in a skeleton diagram. Similarly, the most general vertex replacing a corner
in a skeleton diagram is given by a sum over all proper V-parts. Since both core and EDC contributions are
included for each divergent subdiagram as outlined above, the complete propagators and vertices are well
de�ned (convergent).

VI. CONCLUDING REMARKS

In this paper, we developed a model for a stable elementary charge wherein a hidden interaction between the
electromagnetically dressed charge and an opposing polarization current o�sets the positive electromagnetic
(EM) �eld energy. Concise rules for constructing S-matrix corrections for the electromagnetically dressed core
were developed and applied to resolve divergence issues to all orders, and we maintained the observed fermion
mass and charge as fundamental constants throughout. Model predictions agree precisely with renormalized
QED and therefore are consistent with current experiments also. Our �ndings provide compelling evidence
for negative and positive EM mass components in virtual intermediate states of in�nitesimally short duration.
Since there is no renormalization in this approach, the EM coupling is a constant independent of the energy
scale; therefore, QED is scale-invariant. This prediction is in sharp contrast to renormalization group
arguments which contend that the coupling constant scales with energy; see review given in [37]. The
stability approach for computing �nite amplitudes in QED is simplier compared to renormalization, and it
more accurately characterizes the physics involved in radiative processes since it includes the reaction (16)
of the vacuum back on a core charge.
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