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The effect of the electron sound absorption in a conducting medium (metal) was
previously considered on the assumption of the Fermi-surface deformation under the
action of the sound wave. In the present work will be considered another approach
to the problem based on dynamic (kinetic) interaction of the electron gas with the
lattice vibrations. The analysis is carried out for the case of arbitrary degeneration
degree of the solid-state plasma.
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1. Introduction

The impact of the electrons on the absorption of sound in conducting

media (mostly in metals) was considered at the assumption of the Fermi–

surface deformation under the action of sound waves [1], [2] [3]. However,

the process of change of Fermi-surface due to the interaction of the electron

gas with lattice inevitably depends on the characteristics of this interaction.

This process may not strictly speaking be considered in static approxima-

tion. Dynamic and kinetic processes must be considered in the analysis

of the formation of a Fermi-surface at the propagation of sound waves in

the metal. In the case of semiconductors and other materials with non-

degenerate electron plasma the situation it becomes even more complicated

because you have to consider the deformation do not Fermi surface, and

the entire spectrum of excitation of electrons. The nature of introduced

”fictitious” [1] or drift [4] forces is not completely clear. Unclear is also the
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question about the possibility of spreading of this approach on amorphous

materials.

In the present work will be considered the approach to the problem,

based on dynamic (kinetic) interaction of the electron gas with the lattice

vibrations.

We will consider the propagation of transverse sound in an isotropic

conductor. Our goal will be consideration of the problem how the con-

duction electrons and the generated electric field influence the process of

attenuation of the transverse sound waves.

A number of issues of propagation and attenuation of sound waves in

the metal have been considered in the works [4]–[11].

1. Statement of the problem and basic equations

Transverse sound wave creates a velocity field u in the conductor

u = u0e
i(kr−ωt), ku = 0, ω = strk, (1.1)

where str – velocity of transverse sound waves, k – the wave vector, k —

wave number, ω – frequency of the sound wave.

Kinetic equation with the relaxation type collision integral for electrons

will be as follows [2], [12]

∂f

∂t
+ v

∂f

∂r
+ eE

∂f

∂p
= ν(feq − f), (1.2)

where feq - the equilibrium Fermi distribution in a solid–state plasma

feq =
[
1 + exp

E − µ

kBT

]−1

Here E — the energy of the electrons, µ — chemical potential, T –

temperature, kB – Boltzmann’s constant, e – the charge of the electron.

The value ν = 1/τ – the electron collision rate, τ – the average time

between two successive collisions of an electron. The analysis of the value

of τ for different materials carried out in [13].

We assume that in the absence of a sound wave electron distribution

can be considered spherically–symmetric. In this case for electron energy

E0 we have



3

E0 =
mv2

2
.

Here m — the effective mass of the electron.

The sound wave breaks isotropy locally equilibrium distribution of elec-

trons. This distribution must now be an equilibrium in the coordinate

system, resting relative to the lattice. Because the local velocity of the

lattice is u in this case will be

E =
m(v − u)2

2
. (1.3)

We assume that the velocity u is much less than the thermal velocity of

electrons (or Fermi velocity for the case of degenerate Fermi–gas). Then

the value of (1.3) can be linearized

E ' mv2

2
−mvu = E0 −mvu.

Through appropriate linearization of the locally equilibrium function feq

we get

feq = f0 − ∂f0

∂E mvu, f0 =
[
1 + exp

E0 − µ

kBT

]−1
. (1.4)

Similarly, in the linear case, the term with the electric field in (1.2) has

the follows form

eE
∂f

∂p
' eEv

∂f0

∂E (1.5)

The linearized distribution function has the form [2]

f = f0 − ∂f0

∂E ψ. (1.6)

Taking into account relations (1.5), (1.6) and (1.7) the kinetic equation

(1.2) can be written for the function ψ [2] as follows

iωψ − ivkψ + evE = −ν(mvu− ψ). (1.7)

Equation (1.7) can be rewritten in the form
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−iωψ + ivkψ + νψ − νδµ = v(eE + νmu). (1.8)

The last term in the right-hand side of equation (1.8) corresponds to

accounting of the drag effect of electrons by movement of atoms of the

lattice at the scattering of electrons by lattice vibrations or defects. It is

analogous to the ”fictitious” force, introduced in [1] (see also [2]). Note

that in this approach this term occurs naturally and does not require any

additional assumptions.

Equation (1.8) coincides with the kinetic equation describing response

of electrons to a assumed external transverse electric field, if, instead of

the field E to consider the value E + νmu/e, that is, to replace

E → E +
νmu

e
.

Since u ∼ exp(ikr − iωt), then the functions ψ, E have the same de-

pendence on the coordinates and time, i.e.

ψ ∼ exp(ikr− iωt), E ∼ exp(ikr− iωt). (1.9)

Then the electron current density je taking into account (1.9) is deter-

mined by the following relation [14]

je = σtr

(
E +

νm

e
u
)
. (1.10)

Here σtr = σtr(k, ω) — transverse electrical conductivity of the electron

plasma.

Because of the electroneutrality volume charge density of ions (lattice) is

equal to (−eN), the current density is (−eNu), N = const — equilibrium

concentration of electrons. Then the equation for the field E has the form

4E− 1

c2

∂2E

∂t2
= −4πiω

c2 (je − eNu). (1.11)

Here je — the electron current density

je = e

∫
vf

2d3p

(2π~)3 .

By substituting the expression (1.10) into equation (1.11), we obtain
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−k2E +
ω2

c2

(
1 +

4πiσtr

ω

)
E =

4πiνmω

c2e

(e2N

νm
− σtr

)
u.

Transverse conductivity σtr is associated with a transverse dielectric

permittivity εtr by the ratio [14]

εtr(q, ω, ν) = 1 +
4πi

ω
σtr(q, ω, ν). (1.12)

Taking this into account, we obtain

(ω2εtr

c2 − k2
)
E =

4πiνmω

c2e
(σ0 − σtr)u. (1.13)

Here σ0 = Ne2/(mν) — static conductivity of an electron solid-state

plasma.

From the relation (1.13) we find the electric field E

E =
4πiνmω

e

σ0 − σtr

ω2εtr − c2k2u. (1.14)

Substituting the obtained expression for the field E (1.14) in equation

(1.10), we obtain for the density of electron current je the following exp-

ression

je = σtr

[4πiνmω

e

σ0 − σtr

ω2εtr − c2k2 +
νm

e

]
u.

After some transformations we get

je =
νmσtr

e

ω2ε∗ − c2k2

ω2εtr − c2k2u. (1.15)

The value ε∗ is introduced by analogy with εtr (1.12)

ε∗ = 1 +
4πi

ω
σ0.

2. Sound wave attenuation coefficient

The energy flux density carried by a longitudinal acoustic wave is equal

to [2]
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I =
ρ0u

2
0sl

2
. (2.1)

Here ρ0 – the density of the substance.

The damping coefficient Γ is defined by the following expression

Γ =
Q

I
. (2.2)

Here Q — the energy dissipation density of the sound wave. Dissipation

due to the anharmonicity of the lattice vibrations of Ql and interaction of

sound waves with the electronic component and generated by the wave

electric field Qe.

Then the value Q can be represented in the form

Q = Ql + Qe. (2.3)

We are interested in the value Qe, that is dissipation, associated with

the interaction of sound waves with solid–state plasma.

The value Qe is calculated as [5]

Qe =
1

2
Re(Fu∗) =

1

2
Re((−eNE + Fe)u

∗), (2.4)

where

Fe = −
∫

νm(u− v)f
2d3p

(2π~)3 . (2.5)

Here by Re is designated the real part of a complex number.

The value F in (2.4) represents the force acting on the lattice. It consists

of two parts. The first (−eNE) part corresponds to the force acting on the

charge of the lattice because of the presence of the electric field E. The

presence of the minus sign is due to the electroneutrality of the material.

So the charge density of the lattice is opposite to the charge density of

electrons and is equal to (−eN).

The second term Fe describes the force acting on the lattice from solid–

state electron plasma in the scattering of electrons on the lattice. This

force is described by formula (2.5).
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Fe = −νmNu +
νmje

e
. (2.6)

We denote the average drift velocity of electrons through v.

je = eNv.

Then formula (2.6) can be rewritten in the form

Fe = νmN(v − u). (2.7)

Thus according to (2.7) the force is proportional to the difference be-

tween the average drift velocity of the electrons in solid–state plasma and

displacement velocity of atoms in the sound wave.

Substituting (2.6) into (2.4) and using (1.10) we come to the following

expression for Qe

Qe = −1

2
Re((−eNE− νmNu +

νmje
e

)u∗), (2.8)

The electron current density je is determined by the expression (1.15).

Substitute this expression in (2.8). As a result, after some transformations

we get

Qe =
ν2m2u2

0

2e2 Re
(
(σ0 − σtr)

ω2ε∗ − c2k2

ω2εtr − c2k2

)
. (2.9)

In accordance with the expressions (2.2) and (2.3) the attenuation co-

efficient of sound wave Γ can be split into two parts

Γ = Γl + Γe, Γl =
Ql

I
, Γe =

Qe

I
(2.10)

We will be interested in the value Γe, due to the influence of electron

solid–state plasma and electric field. Taking into account expressions (2.1),

(2.9) and (2.10) for this value we received the following result

Γe =
ν2m2

ρ0stre2 Re
(
(σ0 − σtr)

ω2ε∗ − c2k2

ω2εtr − c2k2

)
. (2.11)

Note that at low frequencies , i.e. when ω → 0 wave number k → 0

too. Thus σtr → σ0 and εtr → ε∗. According to formula (2.11) we find that

in this limit Γe → 0.
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3. Conclusion

This paper presents a kinetic approach to the study of attenuation coef-

ficient of transverse sound waves in a conductive medium. A study of the

coefficient attenuation of the sound wave is based on the kinetic (dynamic)

interaction of solid–state electron plasma with the lattice vibrations. The

account of the influence of self–consistent electric field on the processes of

dissipation and sound attenuation is carried out. The obtained results are

valid for any degree of degeneracy of solid-state electron plasma.
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