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The emergence of sentience in the physical world - the ability to sense, feel, and respond - is
central to questions surrounding the mind-body problem. Cloaked in the modern mystery of the
wavefunction and its many interpretations, the search for a solid fundamental foundation to which
one might anchor a model trails back into antiquity. Given the rather astounding presumption
that abstractions of the mathematician might somehow inform this quest, we examine the role of
geometric algebra of 3D space and 4D spacetime in establishing the foundation needed to resolve
contentions of quantum interpretations. The resulting geometric wavefunction permits gut-level
intuitive visualization, clarifies confusion regarding observables and observers, and provides the solid
quantum foundation essential for attempts to address emergence of the phenomenon of sentience.

INTRODUCTION

The human eye [1, 2] has single photon sensitivity,
renders the collapse of a single wavefunction as a vi-
sual sensation. The experiment bridges the full gap from
Maxwell’s equations and the wavefunction to the sen-
tience that prompts the observer’s aim and intent to re-
port the photon’s arrival. It echoes the theme of the
Foundational Questions Institute’s 2017 essay contest[3].

“Wandering Towards a Goal: How can mindless math-
ematical laws give rise to aims and intention?”

With some consideration one might conclude they
can’t, and with further consideration might take this to
be obvious. At the least, the task requires both math and
physics. If one chooses to keep focus on the mathematics,
the question might better be phrased as

“What mathematical laws are most useful in modelling
the physics that gives rise to aims and intention?”

This rephrasing appears to have the significant advan-
tage of moving the hard problem, that of origins of the
sentience that manifests aims and intention, from math
to physics, to ground it more solidly in the tangible phys-
ical foundation of real 3D space and 4D spacetime.

In his essay on the making of the Standard Model[4],
Professor Weinberg shares that

“The study of what was not understood by scientists,
or was understood wrongly, seems to me often the most
interesting part of the history of science.”

That essay makes no mention of the geometric inter-
pretation of Clifford algebra[5], a tool absent from the
dialog of particle physicists during the decades preceed-
ing its writing. It makes no mention of this background
independent algebra of interactions of geometric primi-
tives of physical space - interactions of the point, line,
plane, and volume elements of Euclid.

What follows places this omission in historical context,
presents a model of wavefunctions and their interactions
based upon the Pauli and Dirac algebras of 3D space and

4D spacetime, and explores consequences of its inclusion
in worldviews of physicist and philosopher. With empha-
sis upon the measurement problem, it examines the role
of the observer in quantum mechanics and emergence of
the sentience essential for aims and intention in our phys-
ical world.

GEOMETRIC CLIFFORD ALGEBRA

Figure 1 illustrates an important point - geometric al-
gebra (and its extension into geometric calculus) claims
to encompass the better part of the particle physicist’s
mathematical toolkit[6–8].

FIG. 1. Evolution of Geometric Algebra [9]
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It would seem that there is a certain profundity to
this, that the physicist’s essential set of mathematical
tools shown in the figure are a subset of the interaction
algebra of fundamental geometric objects - point, line,
plane, and volume elements - of our physical space.

One can argue that a possible measure of this profun-
dity might eventually be found in the truth (or not) of
the assertion that, if a mathematical model is ever to
begin to approach the mind-body problem, that model
will have its roots in the language of geometric algebra.
Indeed, this might be taken as the point of this essay.

Clifford Algebra as originally conceived is the algebra
of interactions between geometric objects[10–12]. Grass-
man was “...a pivotal figure in the historical development
of a universal geometric calculus for mathematics and
physics... He formulated most of the basic ideas and...
anticipated later developments. His influence is far more
potent and pervasive than generally recognized.”[13]

Grassman’s work lay fallow until Clifford “...united the
inner and outer products into a single geometric product.
This is associative, like Grassman’s product, but has the
crucial extra feature of being invertible, like Hamilton’s
quaternion algebra.”[14]

While Clifford algebra attracted considerable interest,
with his early death in 1879 the absence of an advocate
to balance the powerful Gibbs contributed to its even-
tual neglect. It was “...largely abandoned with the in-
troduction of what people saw as a more straightforward
and generally applicable algebra, the vector algebra of
Gibbs... This was effectively the end of the search for a
unifying mathematical language and the beginning of a
proliferation of novel algebraic systems...”[8].

Geometric algebra resurfaced, unrecognized, as alge-
bra without geometric meaning in the Pauli and Dirac
matrices of the 1920s.

Forty years passed until the original geometric intent
[10–12] was rediscovered by David Hestenes, expanded,
and introduced to physics [5], and yet another forty until
he was awarded the 2002 Oersted Medal by the American
Physical Society for “Reformulating the Mathematical
Language of Physics”[6]. It remains that the power of
geometric interpretation has for the most part been lost.

When realized, the algebra suggests an intuitive under-
standing in which all of physics is geometry[15]. Accord-
ing to Wheeler, “There is nothing in the world except
empty curved space. Matter, charge, electromagnetism,
and other fields are only manifestations of the curvature
of space.”[16]

However, the geometry of point particles (quarks and
leptons) is static, their attributes taken to be intrinsic,
internal. It is only with the external gauge fields that dy-
namics enters geometry and the phase coherence defining
quantum system boundaries is manifested. ‘Internal’ co-
herence is geometrically inaccessible.

While string theory moves beyond dimensionless points
to mode structures of 1D strings and 2D branes, it is not
unreasonable to suggest that a satisfactory model will
ultimately require fundamental geometric objects corre-
sponding to the full three dimensions of physical space.

As jumping to strings led to innumerable landscapes,
and yet more so with branes, it would seem that step-
ping up to the full 3D Pauli algebra of our physical
space would yield dynamics of landscapes upon land-
scapes upon landscapes, burying insight under the in-
tractable wealth of possibilities.

However, with that jump the dynamics are now those
of the 4D Dirac algebra of flat Minkowski spacetime.
Couldn’t be simpler. Dimensions of string theory become
a subset of the degrees of freedom of the model. The per-
spective shifts from abstract higher dimensions to inter-
actions of objects one can visualize in 3D space. Within
the more limited constraints of the Standard Model, the
perspective shifts from point particles to the structure of
spacetime. The perspective shifts.

THE WAVEFUNCTION

The wavefunction presented here is comprised of two
constructs - geometry and fields [17]. For geometry it
adopts the minimally complete 3D Pauli algebra of phys-
ical space - one scalar, three vectors, three bivector pseu-
dovectors, and one trivector pseudoscalar - point, line,
plane, and volume elements of Euclid, with the additional
attribute of being orientable [18]. For fields it endows
them with quantized electric and magnetic fields [19].

FIG. 2. Geometric algebra components in 3D Pauli algebra
of space. The term grade is preferred to dimension, whose
meaning is sometimes ambiguous and confused with degrees
of freedom. The two products (dot and wedge or inner and
outer) comprising the geometric product lower and raise the
grade. Mixing of grades makes geometric algebra unique in
the ability to handle geometric concepts in any dimension[20]

.
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FIG. 3. The S-matrix As shown at top and left, a minimally complete Pauli algebra of 3D space is comprised of one scalar,
three each vectors and bivectors, and one trivector. Attributing electric and magnetic fields to these fundamental geometric
objects (FGOs) yields the wavefunction model [19]. In the manner of the Dirac equation, taking those at top to be the electron
wavefunction suggests those at left correspond to the positron. Their geometric product generates the background independent
4D Dirac algebra of flat Minkowski spacetime, arranged in odd transition modes (yellow) and even eigenmodes (blue) by grade.
Time (relative phase) emerges from the interactions. Modes of the stable proton are highlighted in green[37, 38].

While this wavefunction can be easily and intuitively
visualized, it is not an observable[21, 22]. Observables
are interactions, represented in geometric algebra by ge-
ometric products of wavefunctions. As shown in figure 3,
these geometric products generate a 4D Dirac algebra of
flat Minkowski spacetime. Time (relative phase) emerges
from the interactions.

Topological symmetry breaking is implicit in geometric
algebra. As shown in figure 2, given two vectors a and
b, the geometric product ab mixes products of different
dimension, or grade. In the product ab = a · b + a ∧ b,
two 1D vectors have been transformed into a point scalar
and a 2D bivector.

“The problem is that even though we can transform
the line continuously into a point, we cannot undo this
transformation and have a function from the point back
onto the line...” [23].

Interactions of wavefunctions are represented by the
geometric product. They break topological symmetry
due to this property of grade increasing operations.
Topological duality[24–27] is evident in the differing ge-
ometric grades of electric and magnetic charges of figure
3. Electric charge is a scalar, magnetic charge its topo-
logical dual and the highest grade element of the Pauli
algebra, the pseudoscalar (see appendix).

Knowing geometries and fields of modes shown in fig-
ure 3, one can calculate the mode impedances, an equiva-
lent representation[28] of the complete scattering matrix
description of observables of particle physics[29–38].

Absent electric and magnetic fields, the geometric
model represents the vacuum impedance structure. Ex-
citation of the lowest order mode, the Coulomb mode
shown at the upper left of figure 3, yields the 377 ohm
vacuum impedance seen by the photon [39].
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QUANTUM INTERPRETATIONS

Interpretations of the formalism and phenomenology of
quantum mechanics address distinctions between knowl-
edge and reality, between epistemic and ontic, between
how we know and what we know. It’s a pursuit that
straddles the boundary between philosophy and physics.
There are many areas of contention, including reality
and observability of the wavefunction and wavefunction
collapse, determinism and the probabilistic character of
wavefunction collapse, entanglement and non-locality,
hidden variables, realism versus the instrumentalism of
‘shut up and calculate’, observer role,...[21, 22, 38].

In each of these areas quantum interpretations seek to
address the same basic question - how to understand the
measurement problem?[40, 41] How does one get rid of
the shifty split[42] of the quantum jump[43], develop a
smooth and continuous real-space visualization of state
reduction dynamics?[44] What governs the flow of energy
and information in wavefunction collapse?

The point here is that, unlike other interpretations,
the present approach has a working electromagnetic ge-
ometric model. The wavefunction can be visualized in
our 3D physical space. It is this that permits resolution
of the contentions of quantum interpretations, providing
the solid foundation for modeling towards sentience.

The Measurement Problem

“The measurement problem in quantum mechanics is
the problem of how (or whether) wavefunction collapse
occurs. The inability to observe this process directly has
given rise to many different interpretations of quantum
mechanics, and poses a key set of questions that each
interpretation must answer.”[45]

At root the confusion arises from modeling electrons
and quarks as point particles. Points cannot collapse.
One cannot understand the decoherence of wavefunction
collapse without understanding self-coherence. Presence
of the point particle in the Standard Model leaves self-
coherence lost in mathematical abstraction, rather than
presenting the impedance-driven coherence and decoher-
ence of interacting electromagnetic modes visualized in
4D spacetime.

Reality and Observability of the Wavefunction

The wavefunction is comprised of fundamental geo-
metric objects of geometric algebra. The wavefunction
is not observable. Interactions of wavefunctions gener-
ates the observable S-matrix of the elementary particle
spectrum[36, 37]. By conservation of energy, the reality
of observable interactions would seem to require that the
things that interact, the wavefunctions, are real.

FIG. 4. Comparison of Interpretations. The Index parameter quantifies strength of agreement between a given interpretation
and the rest. Values in the Index column are calculated by adding a point for entries that agree with a given interpretation,
subtracting for entries that disagree, and giving half values for agnostics. Appearance over nearly a century of growing numbers
of quantum interpretations demonstrates the lack of proper physical understanding of fundamental phenomena[21].
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Reality and Observability of Wavefunction Collapse

Collapse of the wavefunction follows from
decoherence[46, 47], from differential phase shifts
between the coupled modes of a given quantum system.
The phase shifts are generated by interaction impedances
of wave functions [44]. What emerges from collapses are
observables. The reality of observables would seem to
require that the collapse is real, however the smooth and
continuous dynamics of wavefunction collapse are not
observable, only the end result.

Determinism and Probabilistic
Wave Function Collapse

“... the Schrodinger wave equation determines the
wavefunction at any later time. If observers and their
measuring apparatus are themselves described by a de-
terministic wave function, why can we not predict precise
results for measurements, but only probabilities?” [48]

The probabilistic character of quantum mechanics fol-
lows from the fact that phase is not a single measurement
observable. The measurement extracts the amplitude.
The internal phase information of the coherent quantum
state is lost as the wave function decoheres. For quan-
tum mechanics to be deterministic would require phase to
be a single measurement observable, a global symmetry
rather than local.

Deterministic aspects are present in the sense that en-
semble probabilities are determined by the impedance
matches[49]. This unobservable determinism, as required
by gauge invariance, removes some of the mystery from
‘probabilistic’ behavior.

Superposition of Quantum States

Investigating the meaning of the newly discovered
quantum states of Heisenberg and Schrodinger, Dirac led
the way in introducing state space (later to be identified
with Hilbert space) to the theory. He defines states as
“...the collection of all possible measurement outcomes.”
[50] According to Dirac,

“The superposition that occurs in quantum mechanics
is of an essentially different nature from any occurring
in the classical theory” (italics in original) [51].

What distinguishes quantum superposition from clas-
sical is linear superposition of states, of wavefunctions, as
opposed to superposition of fields. The wavefunction is
comprised of coupled electromagnetic modes, their fields
sharing the same energy at different times. The state into
which they collapse is determined by time/phase shifts of
impedances they see.

Entanglement

“Entanglement is simply Schrodinger’s name for su-
perposition in a multiparticle system.” [52] For wave-
functions to be entangled means they are quantum phase
coherent, that they share that unobservable property.

non-Locality

Scale invariant impedances (photon far-field, quantum
Hall/vector Lorentz, centrifugal, chiral, Coriolis, three
body,...) are non-local. Excepting the massless photon,
which has both scale invariant far-field and scale depen-
dent near-field impedances, invariant impedances cannot
do work, cannot transmit energy or information. The re-
sulting motions are perpendicular to the applied forces.
They only communicate phase, not a single measurement
observable. They are the channels linking the entangled
eigenstates of non-local state reduction. They cannot be
shielded[53, 54]. The invariant impedances are topologi-
cal. The associated potentials are inverse square.

Hidden Variables

Early on in quantum theory, the probabilistic charac-
ter prompted Born[55, 56] to comment “...anybody dis-
satisfied with these ideas may feel free to assume that
there are additional parameters not yet introduced into
the theory which determine the individual event.”

If one takes the ‘hidden’ variables to be quantum
phases (not observable), then it follows that the “...addi-
tional parameters not yet introduced into the theory...”
are the phase shifters, the quantum impedances.

Observer Role

Both geometric algebra and quantized impedances are
background independent[57], the one ‘first person’, the
other two body[58]. No independent observers.

There is no role for an observer within coherent quan-
tum systems, within a wavefunction. To ‘observe’, to
make a measurement, one must perturb the wavefunc-
tion. To extract the amplitude one must collapse the
wavefunction.

One might define an observer as both the impedance
that decoheres the wavefunction and that system which
accepts the energy/information of the collapsing wave-
function. Or one might take the impedance for granted
and consider the observer simply as that which accepts
the energy. Either way the term is redundant, the con-
ceptual artifice unnecessary and confusing, implying as
it does aims and intention. The description in terms of
wavefunction decoherence is adequate.
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SUMMARY AND CONCLUSION

Taking the wavefunction to be comprised of the funda-
mental geometric objects of physical 3D space yields an
approach that appears to ‘illuminate the Standard Model
from within’ [17], a remarkable example of the unreason-
able effectiveness of math in describing physics. It leaves
one in yet further awe of the architecture and curious
about the ancient architects, the old ones, and just how
subtle their construction might prove to be.

It brings us back to the point of this essay, the assertion
that if a mathematical model is ever to begin to approach
the mind-body problem, that model will have its roots
in the language of geometric algebra, the mathematical
language of the physical spacetime in which we exist.

It appears that only with such an approach, with a geo-
metric wave function, can the foundational contentions of
the quantum interpretations community be resolved. It
seems that such a resolution is essential to permit one to
begin to coherently address the much more subtle emer-
gence of sentience from the interactions of wavefunctions.

Nowhere in this do we find an observer unless we put
one there. It brings to mind the Buddhist view of the illu-
sion of self, of the absence of an observer in full awareness
of this moment. “...grasping is not something done by the
self, but rather self is something done by grasping.” [59]
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APPENDIX

Clarifying Terminology in Geometric Algebra

There is possibility for confusion in the terminology of
geometric algebra.

FIG. 5. Bivector and trivector are pseudovector and pseu-
doscalar of the Pauli algebra. Trivector and quadvector are
pseudovector and pseudoscalar of the Dirac algebra.

As shown in the figure, the highest grade element of an
algebra is the pseudoscalar of that algebra. In the Dirac
algebra, this results in the bivector being interposed be-
tween vector and pseudovector of the Pauli algebra, and
opens possibilities for endless confusion. For this reason
we favor the scalar/vector/bivector/trivector/quadvector
nomenclature, but at times the use of conventional pseu-
dovector or pseudoscalar tags seems well advised. At
such times both appelations will be shown.
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