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Abstract—Dempster-Shafer theory of evidence is widely ap-
plied to uncertainty modelling and knowledge reasoning because
of its advantages in dealing with uncertain information. But some
conditions or requirements, such as exclusiveness hypothesis and
completeness constraint, limit the development and application
of that theory to a large extend. To overcome the shortcomings
and enhance its capability of representing the uncertainty, a
novel model, called D numbers, has been proposed recently.
However, many key issues, for example how to implement the
combination of D numbers, remain unsolved. In the paper, we
have explored the combination of D Numbers from a perspective
of conflict redistribution, and proposed two combination rules
being suitable for different situations for the fusion of two D
numbers. The proposed combination rules can reduce to the
classical Dempster’s rule in Dempster-Shafer theory undera
certain conditions. Numerical examples and discussion about the
proposed rules are also given in the paper.

Index Terms—Combination rule, D numbers, Dempster-Shafer
theory, Information fusion, Uncertainty modelling

I. I NTRODUCTION

Since first proposed by Dempster and developed by Shafer,
Dempster-Shafer theory of evidence [1], [2], also called
Dempster-Shafer theory (DST) or belief function theory, has
been paid much attention for a long time and continually
attracted growing interests [3], [4]. This theory needs weaker
conditions than the Bayesian theory of probability, so it is
often regarded as an extension of the Bayesian theory [5].
Many studies have been devoted to further improve and perfect
this theory in many aspects, for instance combination of
evidences, conflict management, independence of evidence,
generation of mass function, similarity measure between evi-
dences, uncertainty measure of evidences, to name but a few.
Due to its advantages in handling uncertain information, DST
has been extensively used in many fields, such as informa-
tion fusion, statistical learning, classification and clustering,
granular computing, uncertainty and knowledge reasoning,
decision making, risk assessment and evaluation, knowledge-
based systems and expert systems, and so forth [6], [7], [8],
[9], [10].

As a theory of reasoning under the uncertain environment,
DST has the advantage of directly expressing the “uncer-
tainty” by assigning the probability to the subsets of the
set composed of multiple objects, rather than to each of the
individual objects. However, it is also constrained by many

strong hypotheses and hard constraints which limit its further
development and application to a large extend. For one hand,
the elements in the frame of discernment (FOD) are required to
be mutually exclusive. It is called the exclusiveness hypothesis.
For another, the sum of basic probabilities of a mass function
must be equal to 1, which is called completeness constraint.
In this paper, we will show how these conditions limit the
application of DST.

To overcome these shortcomings in DST and strengthen
its capability of representing uncertain information, a novel
model called D numbers has been proposed recently [11].
Compared with the classical DST, D numbers abandon FOD’s
exclusiveness hypothesis and mass function’s completeness
constraint. Therefore, it has stronger ability of dealing uncer-
tain information. So far, there were already some exploratory
research and applications with D numbers [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21]. But some key issues
still remain unsolved. One of the most important issues is
that how to combine effectively multiple D numbers. Ideally,
a combination rule for D numbers can be degenerated to the
Dempster’s rule of combination, since the model of D numbers
is designed as a generalization of DST. From this perspective,
the existing studies on the combination rules of D numbers
are basically not satisfactory [11], [14], [22], [23]. In the
paper, we try to study the issue of D numbers’ combination
rules from a perspective of conflict redistribution [24] that is
originally from the investigations of evidence combination in
DST. A new combination rule for D numbers is proposed in
which the redistribution of global conflict and partial conflict
has been simultaneously involved. The details of the proposed
combination rule will be presented in the following sections.
And the merits and demerits of the rule are discussed as well.

The rest of this paper is organized as follows. Section II
gives a brief introduction about DST. In Section III, the model
of D numbers is introduced. Then, novel combination rules
for D numbers are proposed in Section IV. In Section V some
discussion is given. Finally, Section VI concludes the paper.

II. D EMPSTER-SHAFER THEORY

A. Basic concepts in DST

For completeness of the explanation, some basic concepts
in DST are introduced as follows.



For a finite nonempty setΩ = {H1, H2, · · · , HN}, Ω is
called a frame of discernment (FOD) when satisfying

Hi ∩Hj = ∅, ∀i, j = {1, · · · , N}. (1)

Let 2Ω be the set of all subsets ofΩ, namely

2Ω = {A | A ⊆ Ω}, (2)

2Ω is called the power set ofΩ.
Given FODΩ, a mass function is a mappingm from 2Ω to

[0, 1], formally defined by

m : 2Ω → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑

A∈2Ω

m(A) = 1. (4)

In DST, a mass function is also called a basic probability
assignment (BPA). Given a BPA, the belief measureBel :
2Ω → [0, 1] is defined as

Bel(A) =
∑

B⊆A

m(B). (5)

The plausibility measurePl : 2Ω → [0, 1] is defined as

Pl(A) = 1−Bel(Ā) =
∑

B∩A 6=∅

m(B), (6)

whereĀ = Ω − A. These measuresBel andPl express the
lower bound and upper bound in which subsetA has been
supported, respectively.

B. Combination rules for DST

Evidence combination is a core issue in DST. Among
existing combination rules for DST, the conjunctive rule [1]
and disjunctive rule [25], [26] are two representative rules in
which respectively

(m1 ∩m2)(A) =
∑

B∩C=A

m1(B)m2(C) = m∩(A) (7)

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C) = m∪(A) (8)

andK = m∩(∅) is called the global conflict between BPAs
m1 andm2, andm1(B)m2(C) with B ∩ C = ∅ the partial
conflict caused byB andC.

The way of managing conflict leads to different combination
rules for DST. Two typical ways are the redistribution of
global conflict and the redistribution of partial conflict. In the
redistribution of global conflict, if the global conflictK is all
redistributed to the FOD, it leads to Yager’s rule [27]; ifK
is uniformly redistributed to non-empty focal elements, the
widely used Dempster’s rule is derived:

mD(A) =
m∩(A)

1−K
, ∀A ⊆ Ω, A 6= ∅ (9)

andmD(∅) = 0 in the close world. As for the redistribution of
partial conflict, a representative rule was proposed by Dubois
and Prade [28] which is defined by

mDP (A) = m∩(A) +
∑

B∪C=A
B∩C=∅

m1(B)m2(C) (10)

with A ⊆ Ω, A 6= ∅, andmDP (∅) = 0.

III. D NUMBERS

In the mathematical framework of DST, there are several
strong hypotheses and constraints on the FOD and BPA.
However, these hypotheses and constraints limit the ability
of DST to represent uncertain information.

First, a FOD must be a mutually exclusive and collectively
exhaustive set, the elements of FOD are required to be
mutually exclusive, as shown in Eq. (1). In many situations,
however, it is very difficult to be satisfied. Take assessment
as an example. In evaluating one object, it often uses lin-
guistic variables to express the assessment result, such as
“Very Good”, “Good”, “Fair”, “Bad” and “Very Bad”. Due to
given by human, it inevitably exists intersections among these
linguistic variables. Therefore, the exclusiveness hypothesis
cannot be guaranteed precisely so that the application of DST
is questionable for such situations. There are already some
studies about FOD with non-exclusive hypotheses [29], [30].

Second, the sum of basic probabilities of a normal BPA must
be equal to 1, as shown in Eq. (4). It is called the completeness
constraint. But in some cases, due to lack of knowledge and
information, it is possible to obtain an incomplete BPA whose
sum of basic probabilities is less than 1. For example, if an
assessment is based on little partial information, the lackof
information may result in a complete BPA cannot be obtained.
Furthermore, in an open world [9], the incompleteness of
FOD may also lead to the incompleteness of BPA. Hence the
completeness constraint is hard to completely meet in some
cases and it restricts the application of DST.

To overcome these existing shortcomings in DST and en-
hance its capability in expressing uncertain information,a
novel model, named as D numbers, has been proposed recently
[11]. D numbers loose FOD’s exclusiveness hypothesis and
BPA’s completeness constraint.

Definition 1: Let Θ be a nonempty setΘ =
{F1, F2, · · · , FN} satisfying Fi 6= Fj if i 6= j, ∀i, j =
{1, · · · , N} , a D number is a mapping formulated by

D : 2Θ → [0, 1] (11)

with
∑

B⊆Θ

D(B) ≤ 1 and D(∅) = 0 (12)

where∅ is the empty set andB is a subset ofΘ.
It is found that the definition of D numbers is similar with

the definition of BPA. But note that, differ from the definition
of FOD in DST, the exclusiveness hypothesis is removed,
i.e., the elements inΘ don’t require mutually exclusive for
D numbers.



Example 1:Assume a local government plans to build a
hydropower station nearby a river. Before to implement this
project, environmental impact assessment (EIA) is carriedout,
which is to identify and assess the consequences or potential
impacts of human activities to the environment. Two groups
of experts are employed to execute the task, independently.
Assume the evaluation result is expressed by linguistic vari-
ablesHigh, Medium andLow. One group evaluates that the
damage of this project to the environment isHigh. The other
group’s isMedium.

If these results are modeled by using DST, two BPAs can
be obtained thatm1(High) = 1, m2(Medium) = 1. The
Dempster’s rule of combination is then used to combine the
evaluations given by these two groups. However, due tom1

andm2 are completely conflicting, i.e.,K = 1, the Dempster’s
rule is unable to handle this situation. Actually, in DST there is
a hypothesis thatHigh andMedium are mutually exclusive,
i.e., High ∩Medium = ∅, as shown in Fig. 1.

O x

Fig. 1. The linguistic variables ofHigh andMedium in DST

But in the real situation, it inevitably exists intersections
among linguistic variables given by human beings. D numbers
abandon the exclusiveness hypothesis that elements must be
mutually exclusive, as shown in Fig. 2. In D numbers, these
evaluation results can be indicated by two D numbers that
D1(High) = 1, D2(Medium) = 1. The model of D numbers
is more reasonable and capable to model the imprecise,
ambiguous, and vague information.

O x

Fig. 2. The linguistic variables ofHigh andMedium in D numbers

Besides, the completeness constraint is also released in
D numbers. If

∑

B⊆Θ

D(B) = 1, the information is said to

be complete; if
∑

B⊆Θ

D(B) < 1, the information is said to

be incomplete. The degree of information’s completeness is
defined as below.

Definition 2:Let D be a D number on a finite nonempty set
Θ, the degree of information’s completeness inD is quantified
by

Q =
∑

B⊆Θ

D(B) (13)

For the sake of simplification, the degree of information’s
completeness of a D number is called as itsQ value.

IV. PROPOSED COMBINATION RULES FORD NUMBERS

In DST, Dempster’s rule of combination is mostly used to
synthesize all knowledge involved in initial BPAs. However,
the combination of D numbers is still an unsolved issue
among current research. In this paper, a combination rule is
proposed for D numbers to synthesize uncertain information
from a perspective of conflict redistribution as used in DST.
Before presenting the combination rule, we will study the non-
exclusiveness in D numbers first.

A. Non-exclusiveness in D numbers

The non-exclusiveness is the opposite of exclusiveness.
The exclusiveness refers to the characteristic that one object
excludes the others. For example, suppose there are two
propositionsA and B, we say they are mutually exclusive
if A ∩ B = ∅; Corresponding, ifA ∩ B 6= ∅ thenA andB

are of non-exclusiveness, as shown in Fig. 3. Noted that the
concept of non-exclusiveness is an either-or related thingbut
not the similarity.

A B

(b) Non-exclusiveness

A B

(a) Exclusiveness

Fig. 3. Exclusiveness and non-exclusiveness

As mentioned above, in D numbers the elements in the FOD
Θ are not required to be mutually exclusive, which means that
Fi may be not completely exclusive toFj , for Fi, Fj ∈ Θ, and
also, at the same time,Bi may be not completely exclusive to
Bj evenBi∩Bj = ∅, for non-empty setsBi, Bj ⊆ Θ. In order
to express the non-exclusiveness inΘ, in the paper we use
a fuzzy membership function to measure the exclusive/non-
exclusive degree.

Definition 3: Let Bi andBj be two non-empty elements in
2Θ, the non-exclusive degree betweenBi andBj is charac-
terized by a fuzzy membership functionu¬E as follows,

u¬E : 2Θ × 2Θ → [0, 1] (14)

with

u¬E(Bi, Bj) =

{

1, Bi ∩Bj 6= ∅
p, p ∈ [0, 1], Bi ∩Bj = ∅

(15)

and
u¬E(Bi, Bj) = u¬E(Bj , Bi) (16)

If the exclusive degree betweenBi andBj is denoted asuE,
thenuE = 1− u¬E.

Based on the above definition, the matrix of non-exclusive
or exclusive degrees can be obtained once the FODΘ is given.
An illustrative example is shown as follows.



a
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Fig. 4. Non-empty setΘ = {a, b, c} as the FOD of D numbers

Example 2:Assume there is a non-empty setΘ = {a, b, c}
wherea, b, c are three fuzzy linguistic variables as shown in
Fig. 4.

And suppose in the initial we haveu¬E(a, b) = 0.1,
u¬E(b, c) = 0.2, andu¬E(a, c) = 0. It must be noted again
that the non-exclusiveness is not the similarity between two
objects. Then, the matrix of non-exclusive degrees regarding
Θ can be constructed based on the following equation:

u¬E(Bi, Bj) = max
x∈Bi,y∈Bj

{u¬E(x, y)}, Bi, Bj ∈ 2Θ. (17)

For exampleu¬E(a, {b, c}) = max{u¬E(a, b), u¬E(a, c)} =
0.3. Hence, the matrix of non-exclusive degrees is

M
¬E =

{a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
{a}
{b}
{c}

{a, b}
{a, c}
{b, c}

{a, b, c}



















1 0.1 0 1 1 0.1 1
0.1 1 0.2 1 0.2 1 1
0 0.2 1 0.2 1 1 1
1 1 0.2 1 1 1 1
1 0.2 1 1 1 1 1
0.1 1 1 1 1 1 1
1 1 1 1 1 1 1



















.

(18)

And the matrix of exclusive degrees can be calculated by

ME = 1−M¬E. (19)

Within the above example, Eq. (17) shows a simple ap-
proach to derive all non-exclusive degrees according to that
of between single elements in FODΘ.

B. Combination rule for D numbers: Case 1

In this subsection, we initially assume that all D num-
bers have complete information, therefore only the non-
exclusiveness is considered in the proposed combination rule
for D numbers. Recalling the combination rules in DST, the
key issue is how to deal with the conflict. In Dempster’s rule,
the global conflict is uniformly redistributed to non-empty
propositions (see Eq. (9)), while in Dubois and Prade’s rule
each partial conflict is redistributed to the union of associated
propositions (see Eq. (10)). In this paper, we propose a combi-
nation rule for D numbers by simultaneously considering the
redistribution of global and partial conflict as follows.

Definition 4 (DCR1):Let D1 andD2 be two D numbers
overΘ with

∑

B⊆Θ

D1(B) = 1 and
∑

B⊆Θ

D2(B) = 1, the com-

bination ofD1 andD2, indicated byD = D1⊙1D2, is defined
by

D(A) =































0, A = ∅

1
1−KD

(

∑

B∩C=A

u¬E(B,C)D1(B)D2(C)+

∑

B∪C=A
B∩C=∅

u¬E(B,C)D1(B)D2(C)



 , A 6= ∅

(20)
with

KD =
∑

B∩C=∅

(1− u¬E(B,C))D1(B)D2(C). (21)

In Definition 4, the quantity redistributed to the union of
propositions, namelyB ∪C, is not the partial conflict but the
non-exclusive degree multiplyingD1(B)D2(C). The rationale
behind that is to thinkB andC are not completely conflicting
but useA = B ∪ C to reflect the possible non-exclusiveness
betweenB and C. In addition, in the above definition,
the global conflict is decreased since the existence of non-
exclusiveness. In essence, the combination rule DCR1 given
in Definition 4 is similar to the idea behind the Dempster’s
rule in DST. It is easy to find that DCR1 can be degenerated
to the classical Dempster’s rule ifu¬E(B,C) = 0 for any
B ∩ C = ∅.

Now let us simply revisit Example 1 based on combination
rule DCR1 proposed above. Assumeu¬E(High,Medium) =
p, wherep 6= 0 and p ∈ [0, 1]. For these two D numbers
D1(High) = 1 andD2(Medium) = 1, according to Defini-
tion 4, we have the result of combiningD1 andD2:

KD = (1− u¬E(High,Medium))D1(High)D2(Medium)
= 1− p,

D({High,Medium})
= 1

1−KD
u¬E(High,Medium)D1(High)D2(Medium)

= p
1−(1−p) = 1.

.

Noted that, on the one hand the result is the same to any
p > 0; On the other hand, ifp = 0, we still cannot combine
the two D numbers using the DCR1 because the denominator
of 1

1−KD
becomes 0.

C. Combination rule for D numbers: Case 2

In this subsection, the incompleteness of D numbers are
simultaneously taken into consideration in constructing the
D numbers combination rule. The designed combination rule,
denoted as DCR2, is given as below.

Definition 5 (DCR2):Let D1 andD2 be two D numbers
over Θ, the combination ofD1 and D2, indicated byD =
D1 ⊙2 D2, is defined by

D(A) =







0, A = ∅

f(Q1, Q2)
Dt(A)∑

B⊆Θ

Dt(B) , A 6= ∅ (22)



with

Dt(A) =
∑

B∩C=A

u¬E(B,C)D1(B)D2(C)+
∑

B∪C=A
B∩C=∅

u¬E(B,C)D1(B)D2(C), ∀A ∈ Θ (23)

and
Q1 =

∑

B⊆Θ

D1(B), Q2 =
∑

B⊆Θ

D2(B) (24)

wheref(Q1, Q2) is a function satisfying0 ≤ f(Q1, Q2) ≤
max{Q1, Q2}, f(Q1, Q2) = 1 if Q1 = 1 andQ2 = 1.

In respect to the combination rule DCR2, at first, it is
derived based on the perspective of conflict redistribution.
Second, it contains the normalization step that is used in
Dempster’s rule. Third, at the same time it also considers the
factor of incomplete information by normalizing the supports
of all propositions to the quantityf(Q1, Q2) which reflects
the information volume after the combination. Fourth, DCR2
can be totally reduced to DCR1 ifQ1 = 1 andQ2 = 1, and
DCR1 can be re-written in the form of DCR2, therefore DCR2
can also be degenerated to the classical Dempster’s rule.

In the next, a simple example is given to show the combi-
nation process of D numbers according to DCR2.

Example 3:Assume there are two D numbers overΘ =
{a, b, c}:
D1({a}) = 0.7, D1({b, c}) = 0.1, D1({a, b, c}) = 0.1;
D2({a}) = 0.5, D2({c}) = 0.3.
Suppose the non-exclusive degrees between pairs of propo-

sitions are shown in Eq. (18), and letf(Q1, Q2) = Q1 ×Q2.
The combination result ofD1 and D2 can be obtained as
follows.

At first, we can have Table I, and
∑

B⊆Θ

Dt(B) = 0.465.

TABLE I
INTERSECTION TABLE IN COMBININGD1 AND D2

D1 ⊙2 D2 D2({a}) = 0.5 D2({c}) = 0.3
D1({a}) = 0.7 Dt({a}) = 0.35 Dt({a, c}) = 0
D1({b, c}) = 0.1 Dt({a, b, c}) = 0.005 Dt({c}) = 0.03
D1({a, b, c}) = 0.1 Dt({a}) = 0.05 Dt({c}) = 0.03

Then, sinceQ1 = 0.9 andQ2 = 0.8, f(Q1, Q2) = 0.72.
Hence, we have
D({a}) = f(Q1, Q2)

Dt({a})∑

B⊆Θ

Dt(B) = 0.72× 0.4
0.465 = 0.6194,

D({c}) = f(Q1, Q2)
Dt({c})∑

B⊆Θ

Dt(B) = 0.72× 0.06
0.465 = 0.0929,

D({a, b, c}) = f(Q1, Q2)
Dt({a,b,c})∑

B⊆Θ

Dt(B) = 0.72 × 0.005
0.465 =

0.0077,
andD(A) = 0 for otherA ⊆ Θ.

V. D ISCUSSION

In this paper, we have given two combination rules for D
numbers, namely DCR1 and DCR2. Actually, DCR1 is totally
included by DCR2. Therefore, it is only needed to analyze
and discuss combination rule DCR2.

Overall, the main advantage of the proposed combination
rule DCR2 is that it has simultaneously considered the non-
exclusiveness and information-incompleteness which are the
two major characteristics of D numbers, by integrating the
idea of global conflict redistribution and partial conflict re-
distribution from DST. Essentially, DCR2 can be seen as a
generalization of Dempster’s rule for the model of D numbers,
since it can totally reduce to the classical Dempster’s rule
under a certain conditions. The work provides a practical
combination rule for D numbers. Based on this rule, the theory
of D numbers can be really used in many related applications.

Meanwhile, we have to admit that there are some drawbacks
within the proposed rule. The major problem is that it does not
meet the associativity. For this problem, if there are more than
two D numbers, we have to either combine them together at
the same time, or generate the average of all D numbers and
repeatedly combine the average like References [31], [32].Of
course, the proposed combination rule is suitable to fuse the D
numbers having orders. Besides, in DCR2, the matrix of non-
exclusive degreesM¬E and functionf must be determined
in advance before the combination. The problems mentioned
above must be further addressed in the future research.

VI. CONCLUSIONS

In this paper, the combination of D numbers have been
studied. Inspired by related research in DST, two novel com-
bination rules, DCR1 and DCR2, have been proposed for the
combination of two D numbers based on the perspective of
conflict redistribution. DCR1 is suitable for the situationwith
non-exclusiveness and information-completeness, and DCR2
can be used in the case of non-exclusiveness and information-
incompleteness. DCR2 has generalized DCR1. Both of these
rules can degenerate to the classical Dempster’s rule in DST.
In this sense, the model of D numbers with the proposed
combination rules is compatible with the framework of DST.
At last, the features of these rules have been discussed. In
the future research, the combination of multiple D numbers
(≥ 3) will be studied, and the properties and applications of
combination rules for D numbers will be further investigated
as well.
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