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Abstract

Classical mathematics (involving such notions as infinitely small/large and
continuity) is usually treated as fundamental while finite mathematics is treated
as inferior which is used only in special applications. We first argue that the
situation is the opposite: classical mathematics is only a degenerate special case
of finite one and finite mathematics is more pertinent for describing nature than
standard one. Then we describe results of a quantum theory based on finite
mathematics. Implications for foundation of mathematics are discussed.
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1 Motivation

A belief of the overwhelming majority of scientists is that classical mathematics (in-
volving the notions of infinitely small/large and continuity) is fundamental while finite
mathematics is something inferior what is used only in special applications. This be-
lief is based on the fact that the history of mankind undoubtedly shows that classical
mathematics has demonstrated its power in many areas of science. Nevertheless a
problem arises whether classical mathematics is pertinent for constructing the ulti-
mate quantum theory. At present, in spite of efforts of thousands of highly qualified
physicists and mathematicians to construct such a theory on the basis of classical
mathematics, this problem has not been solved.

Historically the notions of infinitely small/large, continuity etc. have
arisen from a belief based on everyday experience that any macroscopic object can
be divided into arbitrarily large number of arbitrarily small parts. Classical physics
is based on classical mathematics developed mainly when people did not know about
existence of elementary particles. However, from the point of view of the present
knowledge those notions look problematic.

For example, a glass of water contains approximately 1025 molecules. We
can divide this water by ten, million, etc. but when we reach the level of atoms and
elementary particles the division operation loses its meaning and we cannot obtain
arbitrarily small parts. So, any description of macroscopic phenomena using conti-
nuity and differentiability can be only approximate. In nature there are no continuous

1



curves and surfaces. For example, if we draw a line on a sheet paper and look at this
line by a microscope then we will see that the line is strongly discontinuous because
it consists of atoms.

The official birth of quantum theory is 1925, and even the word ”quan-
tum” reflects a belief that nature is discrete. The founders of this theory were highly
educated physicists but they knew only classical mathematics because even now math-
ematical education at physics departments does not involve discrete and finite math-
ematics. In view of the above remarks it is reasonable to think that in quantum
theory classical mathematics might be used for solving special problems but ultimate
quantum theory should not be based on classical mathematics.

Classical mathematics is not in the spirit of the philosophy of quantum
theory and the Viennese school of logical positivism that ”A proposition is only cog-
nitively meaningful if it can be definitively and conclusively determined to be either
true or false”. For example, it cannot be determined whether the statement that
a+ b = b+ a for all natural numbers a and b is true or false.

Another example follows. Let us pose a problem whether 10+20 equals
30. Then we should describe an experiment which will solve this problem. Any
computer can operate only with a finite number of bits and can perform calculations
only modulo some number p. Say p = 40, then the experiment will confirm that
10+20=30 while if p = 25 then we will get that 10+20=5. So the statements that
10+20=30 and even that 2 ·2 = 4 are ambiguous because they do not contain explicit
information on how they should be verified. On the other hand, the statements

10 + 20 = 30 (mod 40), 10 + 20 = 5 (mod 25), 2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such an information. So only operations
modulo some number are well defined. This example shows that classical mathemat-
ical is based on the implicit assumption that in principle one can have any desired
amount of resources and, in particular, one can work with computers having as many
bits as desired.

The opinion that classical mathematics is fundamental is often based on
the fact that it contains more numbers than finite mathematics. Let us consider this
problem in greater details.

Classical mathematics starts from natural numbers and the famous Kro-
necker’s expression is: ”God made the natural numbers, all else is the work of man”.
However here only addition and multiplication are always possible. In order to make
addition invertible we introduce negative integers. They do not have a direct physi-
cal meaning (e.g. the phrases ”I have -2 apples” or ”this computer has -100 bits of
memory” are meaningless) and their only goal is to get the ring of integers Z.

However, if instead of all natural numbers we consider only a set Rp of p
numbers 0, 1, 2, ... p− 1 where addition and multiplication are defined as usual but
modulo p then we get a ring without adding new elements. If, for example, p is odd
then one can consider Rp as a set of elements {0,±i} (i = 1, ...(p− 1)/2). If elements
of Z are depicted as integer points on the x axis of the xy plane then it is natural to
depict the elements of Rp as points of the circumference in Fig. 1.
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Figure 1: Relation between Rp and Z

Let f be a function from Rp to Z such that f(a) has the same notation in
Z as a in Rp. Then for elements a ∈ Rp such that |f(a)| � p, addition, subtraction
and multiplication are the same as in Z. In other words, for such elements we do not
feel the existence of p. Indeed, for elements aj ∈ Rp (j = 1, 2) such that |f(aj)| <
[(p−1)/2]1/2 we have that f(a1±a2) = f(a1)±f(a2) and f(a1a2) = f(a1)f(a2) which
shows that f is a local isomorphism of some vicinities of zero in Rp and Z.

As explained in textbooks, both Rp and Z are cyclic groups with respect
to addition. However, Rp has a higher symmetry because, in contrast to Z, Rp has a
property which we call strong cyclicity: for any fixed a ∈ Rp any element of Rp can
be obtained from a by successively adding 1. As noted below, in quantum physics
the presence or absence of strong cyclicity plays an important role.

When p increases, the bigger and bigger part of Rp becomes the same as
Z. Hence Z can be treated as a degenerate case of Rp in the formal limit p → ∞
because in this limit operations modulo p disappear and strong cyclicity is broken.
Therefore, at the level of rings standard mathematics is a degenerate case of finite
one when formally p→∞.

The transition from Rp to Z is similar to the procedure, which in group
theory is called contraction. This notion is used when the Lie algebra of a group with
a lower symmetry can be treated as a formal limit of the Lie algebra of a group with
a higher symmetry when some parameter goes to zero or infinity. Known examples
are the contraction from the de Sitter to the Poincare group and from the Poincare
to the Galilei group.

The above construction has a well-known historical analogy. For many
years people believed that the Earth was flat and infinite, and only after a long
period of time they realized that it was finite and curved. It is difficult to notice
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the curvature when we deal only with distances much less than the radius of the
curvature. Analogously one might think that the set of numbers describing physics
in our Universe has a ”curvature” defined by a very large number p but we do not
notice it when we deal only with numbers much less than p.

One might argue that introducing a new fundamental constant p is not
justified. However, history of physics tells us that more general theories arise when
a parameter, which in the old theory was treated as infinitely small or infinitely
large, becomes finite. For example, nonrelativistic physics is the degenerate case of
relativistic one in the formal limit c→∞ and classical physics is the degenerate case
of quantum one in the formal limit h̄ → 0. Therefore, it is natural to think that in
quantum physics the quantity p should be not infinitely large but finite.

The above discussion shows that when we take the formal limit p → ∞
then we obtain a less general theory, not a more general one. Therefore the fact that
classical mathematics contains more numbers than finite one does not indicate that
classical mathematics is more fundamental.

From mathematical point of view standard quantum theory can be treated
as a theory of representations of special real Lie algebras in complex Hilbert spaces.
In Refs. [1, 2] and other publications we have proposed an approach called FQT
(Finite Quantum Theory) when Lie algebras and representation spaces are over a
finite field or ring with characteristic p. It has been shown that in the formal limit
p → ∞ FQT recovers predictions of standard continuous theory. Therefore classical
mathematics describes many experiments with a high accuracy as a consequence of
the fact that the number p is very large.

In Sec. 2 we consider several problems where it is important that the
number p is finite and not infinite and Sec. 3 is a discussion.

2 Main results of FQT

2.1 Particles and antiparticles in FQT

A known fact of particle physics is that a particle and its antiparticle have equal
masses. The explanation of this fact in quantum field theory (QFT) follows. Irre-
ducible representations (IRs) of the Poincare and anti-de Sitter (AdS) algebras by
Hermitian operators used for describing elementary particles have the property that
for each IR the Hamiltonian is either positive definite or negative definite. In the first
case, the energy has the spectrum in the range [m1,∞), while in the second case it
has the spectrum in the range (−∞,−m2] (m1,m2 ≥ 0). The quantities m1 and m2

are called the masses of the particle and its antiparticle, respectively.
Hence a particle and its antiparticle are described by different IRs and the

equality m1 = m2 is problematic. In QFT this equality follows from the assumption
that a particle and its antiparticle can be described by a local field satisfying a
covariant equation (e.g. the Dirac equation). However, a problem arises whether this
equality remains if locality is only approximate. In addition, the meaning of locality
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is not quite clear because local fields do not have probabilistic interpretation.
By analogy with standard quantum theory, it is natural to define the

elementary particle in FQT as a system described by an IR of a Lie algebra over a
finite field or ring with characteristic p. Representations of Lie algebras in spaces
with nonzero characteristic are called modular representations and there exists a well
developed theory of such representations.

To illustrate the difference between the treatment of particles and antipar-
ticles in standard theory and in FQT we first note how IRs for the AdS algebra are
described in standard theory. In the case of a particle one starts from the ”rest”
state e1 where energy equals m1. When the representation operators act on e1 one
obtains states with higher and higher energies and the energy spectrum is in the
range [m1,∞). On the other hand, for describing antiparticles one starts from the
state e2 where energy equals −m2. When the representation operators act on e2 one
obtains states with lower and lower energies and the energy spectrum is in the range
(−∞,−m2].

However, in FQT one can prove [3] that: The IR with the cyclic vector e1
and the IR with the cyclic vector e2 are the same and m1 = m2. The explanation
follows. When the representation operators act on e1 and increase the energy, then,
since the values of the energy now belong not to Z but to Rp, we are moving not in
the positive direction of the x axis but along the circumference in Fig. 1. Then, as
a consequence of strong cyclicity, sooner or later we will arrive to states where the
energy is ”negative” (i.e. in the range [−(p− 1)/2,−1]) and finally we will arrive to
the state where the energy equals −m1. From the point of view of physics this means
that one modular IR describes a particle and its antiparticle simultaneously.

As shown in Ref. [4], in standard theory a particle and its antiparticle are
described by the same IR in a special case when the theory is based on de Sitter (dS)
symmetry. However, in FQT this is true for any symmetry as a consequence of strong
cyclicity.

As a consequence, in FQT a particle and its antiparticle automatically have
the same masses. Moreover, while in standard theory the existence of antiparticles
depends on additional assumptions, in FQT it is inevitable. Therefore, the very
existence of antiparticles is a strong indication that nature is described by a finite
field or ring rather than by complex numbers.

Since a particle and its antiparticle belong to the same IR, transitions
particle ↔ antiparticle are not prohibited. This means that the very notions of a
particle and its antiparticle are only approximate and the conservation of the electric
charge and the baryon and lepton quantum number is approximate too. At present
the corresponding conservation laws work with a high accuracy because p is very
large (see below) and the dS energies are much less than p. However, a reasonable
possibility is that at early stages of the Universe p was not as large as now. This
might explain the problem known as the baryon asymmetry of the Universe (see Ref.
[3] for a detailed discussion).
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2.2 Vacuum energy in FQT

The vacuum energy problem is discussed in practically every textbook on quantum
field theory. Its essence is as follows. After quantization the energy operator can
be written in the form E = Ẽ + Evac where Ẽ has the normal form (when creation
operators always precede annihilation ones) and Evac is a constant. In the vacuum
state, when particles are absent, the energy equals Evac and therefore Evac should be
zero. However, the actual calculation shows that it is infinite. This is an indication
that standard theory has consistency problems.

In FQT for calculating the vacuum energy one should break all possible
states into two parts which can be treated as physical and nonphysical ones, respec-
tively. As explained in Ref. [3], this can be achieved only for fermions with the mass
m and spin s such that in dS units f(m) and f(s) are odd. Then a direct calculation
(see Ref. [3]) gives that

Evac = (m− 3)(s− 1)(s+ 1)2(s+ 3)/96 (1)

Our conclusion is that while in standard theory the vacuum energy is
infinite, in FQT it is not only finite (in finite mathematics it cannot be infinite) but
is exactly zero if s = 1 (i.e. s = 1/2 in the usual units). Note that if p is treated
only as a regulator then the vacuum energy would be a quantity which depends on
p and becomes infinitely large in the formal limit p → ∞. However, since the rules
of arithmetic in finite mathematics are different from those for complex numbers the
vacuum energy is exactly zero as it should be.

Existence of infinities is one of the main problems in constructing standard
quantum theory. However, in FQT infinities cannot exist in principle and the above
example is a clear demonstration of this fact.

2.3 Cosmological constant and gravity

The philosophy of general relativity (GR) is that the curvature of space-time is defined
by matter in that space-time. Therefore empty space-time should be flat, i.e. the
cosmological constant (CC) Λ should be zero. This was one of the subjects of the
debates between Einstein and de Sitter. However, the phenomenon of the cosmological
acceleration discovered in 1998 is interpreted such that Λ > 0 with the accuracy better
than 5%. To reconcile this fact with the requirement Λ = 0 the term with Λ in the
Einstein equations is moved from the l.h.s. to the r.h.s. and is interpreted not as the
curvature of empty space-time but as dark energy.

In QFT one starts from the choice of the space-time background. The
background has the symmetry group and the operators characterizing the system
under consideration should satisfy the commutation relation of the Lie algebra for
this group. By analogy with the philosophy of GR it is believed that the choice of the
Minkowski background is more physical than the choice of the dS one and that the
goal of quantum gravity is to explain the value of Λ. The existing quantum theory of
gravity contains strong divergencies and with a reasonable cutoff the theory gives for
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Λ a value exceeding the experimental one by 122 orders of magnitude. This is called
the CC problem.

However, the physical meaning of the curvature is to describe the motions
of bodies. Therefore the curvature of empty space-time is only a mathematical notion
which does not have a physical meaning. As argued in Ref. [2], the approach should
be opposite to standard one. Every quantum system is described by a set of operators
which somehow commute with each other and the rules of their commutation define
the symmetry algebra. Therefore in quantum theory one should start not from the
space-time background, which is the classical notion, but from the symmetry algebra.
From this point of view the dS symmetry is more preferable than the Poincare one
because the Poincare algebra is less symmetric than the dS one and can be obtained
from the latter by contraction.

In Poincare invariant theory the mass operator of the free two-body system
depends only on relative momenta but not on relative distances. As a consequence, in
semiclassical approximation the relative acceleration of the bodies is zero. Consider
now what happens when one starts from the dS algebra.

The problem contains the dS radius R (the radius of the Universe) because
instead of working with dimensionless dS angular momenta M4µ (µ = 0, 1, 2, 3) which
are fundamental we wish to work with the Poincare four-momenta P µ = M4µ/R. The
problem why R is as is does not arise since the answer is: because we wish to measure
distances in meters. Then, as shown in Ref. [4], in semiclassical approximation one
recovers the same result for the relative acceleration as in GR for the dS background
if we denote Λ = 3/R2.

However, although the result is the same its interpretation fully differs
from that in GR. This result has been obtained without using space-time background
and Riemannian geometry (metric tensor, connection etc.) but only in the framework
of standard quantum mechanical calculation. In that case Λ has nothing to do with
the curvature of the background space-time and has no relation to the value of the
gravitational constant G. Therefore the problem of explaining the value of Λ does not
arise, the CC problem does not exist and for explaining the cosmological acceleration
there is no need to involve empty space-time and dark energy.

In dS theory the spectrum of the free two-body mass operator is not
bounded below by m1 + m2, where m1 and m2 are the masses of the particles, but
contains values less than m1 + m2. There is no law prohibiting that in semiclassical
approximation the mean value of the free mass operator contains the term −Gm1m2/r
with possible corrections. Here r is the relative distance and G is not a quantity taken
from the outside but a value which should be calculated.

As shown in Ref. [3], for macroscopic bodies standard distance operator is
semiclassical only at cosmological distances. Therefore this operator should be mod-
ified. We propose a new distance operator which satisfies all the required properties.
Then a detailed calculation [3] gives that in quantum theory based on representa-
tions of the dS algebra the mean value of the Hamiltonian for a system of two free
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nonrelativistic bodies is given by

H = H0 −
Cm1m2

(m1 +m2)r
(

1

δ1
+

1

δ2
) (2)

where H0 is the free Hamiltonian, C is a constant and δi (i = 1, 2) is the width of the
dS momentum distribution for body i. The last term in Eq. (2) represents the dS
correction to standard expression. We see that the correction disappears if the width
of the momentum distribution for each body becomes very large. In standard theory
there is no limitation on the width and this correction is negligible.

However, in FQT the width cannot be arbitrarily large. Suppose that
a macroscopic body consists of N components and δj (j = 1, 2, ...N) is the width
of the momentum distribution of the jth component with the mass mj. Then, as
shown in Ref. [3], a necessary condition for a wave function to have a probabilistic
interpretation is

R
N∑
j=1

δjlnwj � lnp (3)

where wj = 4R2m2
j . This condition shows that the greater the number of components

is, the stronger is the restriction on the width of the momentum distribution for each
component. This is a crucial difference between standard theory and FQT. A naive
explanation is that if p is finite, the same set of numbers which was used for describing
one body is now shared between N bodies. In other words, if in standard theory each
body in the free N -body system does not feel the presence of other bodies, in FQT
this is not the case.

The existing theory does not make it possible to reliably calculate the
width of the total momentum distribution for a macroscopic body and at best only
a qualitative estimation of this quantity can be given. Equation (3) indicates that
the quantities δi in Eq. (2) are inversely proportional to the corresponding masses
mi in agreement with the Newton law. A detailed discussion in Ref. [3] shows that
with reasonable assumptions the result given by Eq. (2) can be written in the form
H = H0 − Gm1m2/r where G = constR/(m0lnp) and m0 is the nucleon mass. We
also discuss whether relativistic corrections to the Newton gravity law are compatible
with GR.

We conclude that in FQT the phenomenon of gravity can be treated not
as an interaction but simply as a consequence of the fact that p is finite. If we assume
that const is of the order of unity and take for R a reasonable value R = 1026m then
the comparison with the experimental value of G gives that lnp is of the order of 1080.
Therefore p is a huge number of the order of exp(1080).

2.4 Ring or field?

In standard quantum theory states are described by elements of Hilbert spaces. Such
spaces are linear spaces over a field of complex numbers. A field is a set with four
operations: addition, subtraction, multiplication and division. In the literature there
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have been also discussed approaches where quantum theory is based on the body of
quaternions, p-adic fields or adelic rings built on the field of rational numbers (see e.g.
Ref. [5] and references therein). In the cellular automation interpretation of quantum
theory proposed by ’t Hooft (see Ref. [6] and references therein) the observables can
be only integers and the evolution of states with such observables is described by
standard mathematics. In all those approaches a problem remains whether or not it
is possible to construct quantum theory without infinities.

In FQT linear spaces can be over either finite rings or finite fields. A ring
is a set with three operations: addition, subtraction and multiplication. Known facts
from standard algebra are that invariance of dimension, basis and linear independence
are well defined only in spaces over a field or body. In addition, existence of division
is often convenient for calculations.

At the same time, as argued in Sec. 1, in quantum theory division is not
fundamental. History of physics tells us that it is desirable to construct physical
theories with the least required notions. Therefore a problem arises whether ultimate
quantum theory can be constructed without using division at all. For the first time
this possibility has been discussed in Ref. [7].

As shown in Ref. [3], modular IRs describing massive and massless par-
ticles can be constructed only in spaces over a field. However, in Ref. [8] titled ”A
Remarkable Representation of the 3 + 2 de Sitter group” Dirac discovered the exis-
tence of a new type of particles - Dirac singletons. In Standard Model only massless
particles are fundamental but, as shown in Ref. [9], massless particles can be con-
structed from singletons. This poses a problem whether singletons are the only true
fundamental particles.

As discussed in Ref. [3], in FQT Dirac singletons are even more remarkable
than in standard theory and the singleton physics can be constructed only over a ring.
This poses a problem whether the ultimate quantum theory will be constructed over
a ring, not a field.

3 Discussion and conclusion

In Sec. 1 we argue that classical mathematics is a degenerate case of finite one in
the formal limit p → ∞ and that ultimate quantum theory will be based on finite
mathematics. The results described in Sec. 2 can be treated as arguments in favor of
this statement.

The estimation of the gravitational constant shows that at present physics
in our Universe is described by finite mathematics such that p is a huge number of
the order of exp(1080). Nevertheless, gravity is a manifestation of the fact that p is
finite and not infinite. The matter is that the gravitational constant depends on p as
1/lnp. Therefore in the formal limit p→∞ this constant disappears. The fact that p
is a huge number explains why in many cases classical mathematics describes natural
phenomena with a very high accuracy. At the same time, the above discussion shows
that the explanation of several phenomena can be given only in the theory where p
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is finite.
Although classical mathematics is a degenerate case of finite one, a prob-

lem arises whether classical mathematics can be substantiated as an abstract science.
It is well-known that, in spite of great efforts of many great mathematicians, the
problem of foundation of classical mathematics has not been solved. For example,
Gödel’s incompleteness theorems state that no system of axioms can ensure that all
facts about natural numbers can be proven and the system of axioms in classical
mathematics cannot demonstrate its own consistency.

The philosophy of Cantor, Fraenkel, Gödel, Hilbert, Kronecker, Russell,
Zermelo and other great mathematicians was based on macroscopic experience in
which the notions of infinitely small, infinitely large, continuity and standard division
are natural. However, as noted above, those notions contradict the existence of ele-
mentary particles and are not natural in quantum theory. The illusion of continuity
arises when one neglects the discrete structure of matter.

However, since classical mathematics is a special degenerate case of finite
one, foundational problems in this mathematics do not have a fundamental role and
classical mathematics can be treated only as a technique which in many cases (but
not all of them) describes reality with a high accuracy.
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