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Abstract. 
The challenge of this paper is to relate quantum-inspired dynamics represented by a self-
supervised system, to solutions of noncomputable problems. In the self-supervised 
systems, the role of actuators is played by the probability produced by the corresponding 
Liouville equation. Following the Madelung equation that belongs to this class, non-
Newtonian properties such as randomness, entanglement, and probability interference 
typical for quantum systems have been described in [1]. It has been demonstrated there, 
that such systems exist in the mathematical world: they are presented by ODE coupled 
with their Liouville equation, but they belong neither to Newtonian nor to quantum 
physics. The central point of this paper is the application of the self-supervised systems to 
solve traveling salesman problem. 
 
1.Introduction.  
        In order to illuminate specific features of self-supervised systems, we will start with 
control dynamics that described by a system of ODE: 

 
dv
dt
= F[v,U ]    (1)   

Here 
 v = v1,v2,…vn is the vector of state variables to be controlled, 
u = u1,u2 ,...um  is the control vector that represents external actuators. 
Let us compare the control system Eq. (1) with the following system 

dv
dt
= F[ρ(v)]        (2) 

where the probability ρ is introduced via the Liouville equation corresponding to Eq. (2) 

∂ρ
∂t
+∇•(ρF) = 0        (3)   

It describes the continuity of the probability density flow originated by the error 
distribution  
ρ0 =ρ(t = 0)          (4) 
 in the initial condition of ODE (3).  
Comparison of Eqs.(1) and (2) shows that they have similar structure, and the role of the 
external actuator U  in the control system (1) is played by the term ρ (v) in the system 
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(2). However the origins of these actuators are fundamentally different: the actuator U 
represents an external force, while the actuator ρ (v) is an internal one. Indeed it is 
defined by Eq. (3) that, in turn, uniquely follows from Eq. (2). That is why the system 
(2),(3) can be called self- controlled, or self-supervised. 
     From the physical viewpoint, the feedback from the Liouville equation is a 
fundamental step in our approach: in Newtonian dynamics, the probability never 
explicitly enters the equation of motion. In addition to that, the Liouville equation 
generated by Eq. (2) is nonlinear with respect to the probability density ρ   

∂ρ
∂t
+∇•{ρF[ρ(V)]}= 0        (5) 

and therefore, the system (2),(3) departs from Newtonian dynamics. However although it 
has the same topology as quantum mechanics (since now the equation of motion is 
coupled with the equation of continuity of probability density as it does in the Madelung 
version of the Schrödinger equation), it does not belong to it either. Indeed Eq. (2) is 
more general than the Hamilton-Jacoby equation: it is not necessarily conservative, and F 
is not necessarily the quantum potential although further we will impose some restriction 
upon it that links F to the concept of information. The relation of the system (2), (3) to 
Newtonian and quantum physics is illustrated in Fig.1.  

 
Figure 1. Classic Physics, Quantum Physics and Physics of Life 
 
Remark. Here and below we make distinction between the random variable v(t) and its 
values V in probability space. 
 
2. Selected self-supervised dynamical system. 
In this section, following [2],we will concentrate on a special type of the self-supervised 
system Eqs. (2),(3).  
We will start with derivation of an auxiliary result that illuminates departure from 
Newtonian dynamics. For mathematical clarity, we will consider here a one-dimensional 
motion of a unit mass under action of a force f depending upon the velocity v and time t 
and present it in a dimensionless form 
!v = f (v,t)          (6)            

referring all the variables to their representative values v0 ,t0 ,etc.  
If initial conditions are not deterministic, and their probability density is given in the 
form 
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ρ0 =ρ0 (V ), whereρ ≥ 0, and ρdV
−∞

∞

∫ =1   (7)   

 while ρ  is a single- valued function, then the evolution of this density is expressed by the 
corresponding Liouville equation 
∂ρ
∂t
+
∂
∂V
(ρf ) = 0    (8)         

The solution of this equation subject to initial conditions and normalization constraints 
(7) determines probability density as a function of V and t: 
 ρ =ρ(V ,t)   (9)  
In order to deal with the constraint (7) let us integrate Eq. (8) over the whole space 
assuming that 0→ρ  at ∞→||V  and ∞<|| f  . Then 

∂
∂t

ρdV = 0, ρdV = const,
−∞

∞

∫
−∞

∞

∫  (10)    

Hence, the constraint (7) is satisfied for 0>t  if it is satisfied for .0=t  
      Let us now specify the force f  as a feedback from the Liouville equation 
 f (v,t) = φ[ρ(v,t)]   (11)  
and analyze the motion after substituting the force (11) into Eq.(6)  
!v = φ[ρ(v,t)],     (12)  

Although the theory of ODE does not impose any restrictions upon the force as a function 
of space coordinates, the Newtonian physics does: equations of motion are never coupled 
with the corresponding Liouville equation. Moreover, it can be shown that such a 
coupling leads to non-Newtonian properties of the underlying model. Indeed, substituting 
the force f from Eq. (11) into Eq. (8), one arrives at the nonlinear equation of evolution 
of the probability density  
∂ρ
∂t
+
∂
∂V
{ρφ[ρ(V ,t)]}= 0  (13)   

Let us now demonstrate the destabilizing effect of the feedback (11). For that purpose, it 
should be noticed that the derivative v∂∂ /ρ must change its sign at least once, within the 
interval ∞<<−∞ v , in order to satisfy the normalization constraint (7). 
 But since 

Sign ∂ !v
∂v

= Sign dφ
dρ
Sign ∂ρ

∂v
       (14)                   

there will be regions of v where the motion is unstable, and this instability generates 
randomness with the probability distribution guided by the Liouville equation (13). It 
should be noticed that the condition (14) may lead to exponential or polynomial growth 
of v (in the last case the motion is called neutrally stable, however, as will be shown 
below, it causes the emergence of randomness as well if prior to the polynomial growth, 
the Lipchitz condition is violated). 
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3. Self-supervised dynamics as a quantum-classical hybrid. 
In order to illustrate mathematical aspects of the concepts of Liouville feedback in 
systems under consideration as well as associated with it instability and randomness, let 
us take the feedback (11) in the  
following form 

f = ξ
ρ(v,t)

[ρ(η,t)−ρ*(η
−∞

v

∫ )]dη               (26) 

Here )(* vρ is a preset probability density satisfying the constraints (13), and ξ is a 
positive constant with dimensionality [1/sec]. As follows from Eq. (26), f has 
dimensionality of a force per unit mass that depends upon the probability density ρ , and 
therefore, it can be associated with the concept of information, so we will call it the 
information force. In this context, the coefficient ξ can be associated with the Planck 
constant that relates Newtonian and information forces. But since we are planning to deal 
with systems that belong to the macro-world, ξmust be of order of a viscose friction 
coefficient.  
With the feedback (26), Eqs. (7) and (8) take the form, respectively 

v = ξ
ρ(v,t)

[ρ(η,t)−ρ*(η
−∞

v

∫ )]dη                                                                (27)            

∂ρ
∂t
+ ξ[ρ(t)−ρ*]= 0                                                                            (28)                                                   

  The last equation has the analytical solution  
ρ = [(ρ0 −ρ

*)e−ξt +ρ*]                                                                               (29)                                 
Subject to the initial condition 
ρ(t = 0) =ρ0                               (30)            
that satisfies the constraint (13). 
This solution converges to a preset stationary distribution )(* Vρ . Obviously the 

normalization condition for ρ is satisfied if it is satisfied for ρ0 and ρ*. Indeed, 

ρ
−∞

∞

∫ dV = [ ∫ (ρ0 −ρ*)dV ]e−ξt +
−∞

∞

∫ ρ*dV =1    (31) 

Rewriting Eq. (29) in the form 
ρ =ρ0e

−ξt +ρ*(1− e−ξt )        (32) 
                   
one observes that 0≥ρ at all 0≥t  and −∞ <V <∞.  
As follows from Eq. (29), the solution of Eq. (28) has an attractor that is represented by 
the preset probability densityρ*(V ) . Substituting the solution (29) into Eq. (27), one 
arrives at the ODE that simulates the stochastic process with the probability distribution 
(29) 
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!v = ζe−ξt

[ρ0 (v)−ρ
*(v)]e−ξt +ρ*(v)

[ρ0 (η)−ρ
*(

−∞

v

∫ η)] dη                                      (33)  

It is reasonable to assume that the solution (4) starts with sharp initial condition  
)()(0 VV δρ =           (34) 

As a result of that assumption, all the randomness is supposed to be generated only by the 
controlled instability of Eq. (33). Substitution of Eq. (34) into Eq. (33) leads to two 
different domains of v: v ≠ 0  and v=0 where the solution has two different forms, 
respectively 

ρ*

−∞

v

∫ (ξ)dξ = ( C
e−ξt −1

)1/ξ , v ≠ 0      (35)  

  0≡v                      (36)                

Indeed, v = ζe−ξt

ρ*(v)(e−ξt −1)
ρ*(

−∞

v

∫ η)]dη   

whence 
ρ*(v)

ρ*(η)dη
−∞

v

∫
dv = ζe−ξt

e−ξt −1
dt  . Therefore, ln ρ*(

−∞

v

∫ η)dη= ln( C
e−ξt −1

)1/ξ   

and that leads to Eq. (35) that presents an implicit expression for v as a function of time 
since ρ* is the known function. Eq. (36) represents a singular solution, while Eq. (35) is a 
regular solution that includes arbitrary constant C . The regular solutions is 
discontinuous:  
v→∞ at t→ 0, v = 0 at t = 0      (37) 

  the Lipschitz condition is violated 

| ∂ v
∂v
|→∞ at t→ 0 , | v |→ 0                  (38)  

and therefore, the uniqueness of the solution is lost thereby generating randomness.  
 As follows from Eq. (35), all the particular solutions for different values of C possess the 
same property (37), and that leads to non-uniqueness of the solution due to violation of 
the Lipchitz condition. Therefore, the same initial condition at t→ 0  yields infinite 
number of different solutions forming a family (35); each solution of this family appears 
with a certain probability guided by the corresponding Liouville equation (28). For 
instance, in cases plotted in Fig.2, a) and Fig.2, b), the “winner” solution is, respectively,  

 
 a) b) 

                                               Figure 2. Stochastic processes and their attractors. 
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v1 = ε→ 0, ρ(v1) =ρmax , and v = v2 , ρ(v2 ) = sup{ρ}              

since it passes through the maximum of the probability density . However, with lower 
probabilities, other solutions of the same family can appear as well. Obviously, this is a 
non-classical effect. Qualitatively, this property is similar to those of quantum mechanics: 
the system keeps all the solutions simultaneously and displays each of them “by a 
chance”, while that chance is controlled by the evolution of probability density (29).  
Let us emphasize the connections between solutions of Eqs. (27) and (28): the solution of 
Eq. (27) is an one-parametrical family of trajectories (35), and each trajectory occurs with 
the probability described by the solution (32)  of Eq. (28). ). It should be recalled that the 
choice of displaying a certain solution is made only once, at t=0, i.e. when it departs from 
the deterministic to a random state; since than, it stays with this solution as long as the 
Liouville feedback is present. 
Example1. Let us start with the following normal distribution 

2*
2

2
1)(

V

eV
−

=
π

ρ           (39) 

Substituting the expression (39) and (34) into Eq. (35) at V=v, and ξ =1 one obtains 

0),
1

( 11 ≠
−

=
−

− v
e
Cerfv t

                (40) 

 
Example 2. Let us choose the target density *ρ  as the Student’s distribution, or so-called 
power law distribution 

2/)1(
2

* )1(
)
2
(

)
2
1(

)( +−+
Γ

+
Γ

= ν

νν
νπ

ν

ρ
VV            (41)          

Substituting the expression (41) and (34) into Eq. (35) at V=v, ν=1, and ξ =1one obtains 

0)
1

cot( ≠
−

= − vfor
e
Cv t                             (42) 

The 3D plot of the solutions of Eqs.(40) and (42),  are presented in Figures 3a, and 3b, 
respectively.   
 
 

 
 
Figure 3a. Dynamics driving random events        Figure 3b. Dynamics driving  
                 to normal distribution.                                     random events to power law.  
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The approach is generalized to n-dimensional case simply by replacing v with a 
vectorv = v1,v2 ,...vn  since Eq. (28) does not include space derivatives 

!vi =
ξ

nρ({v},t)
[ρ({η},t)−ρ*({η}

−∞

vi

∫ )]dηi       (43)                      

∂ρ({V},t)
∂t

+ ξρ({V}t)−ρ*({V}) = 0        (44)  

The idea of the proposed algorithm in more details is the following: introduce a positive 
function ∞<||),,...,( 21 in vvvvψ  to be maximized as the probability density 

ρ*(v1,v2 ,...vn ) to which the solution of Eq. (44) is attracted.  
Then the larger value of this function will have the higher probability to appear. 
4. Proposed Methodology. 
 The following steps are needed to implement this algorithm:  
1. Build and implement the n-dimensional version of the model Eqs. (43), and (44), as an 
analog devise 

!vi =
e−t

n{[ρ0 (v)−ρ
*(v)]e−t +ρ*(v)}

[ρ0 (ζ)−ρ
*(

−∞

vi

∫ ζ)] dζ , i =1,2,...n.   

(45)    
2. Normalize the function to be maximized 

∫
∞

∞−

=

}{})({

})({})({
vdv

vv
ψ

ψ
ψ                          (46) 

3. Using Eq. (32), evaluate time τ of approaching the stationary process to accuracy ε 

τ ≈ ln1−ψ
εψ

                              (47)      

4. Substitute ψ instead of ρ* into Eqs. (45) and run the system during the time interval τ. 
5. The solution will “collapse” into one of possible solutions with the probability ψ . 
Observing (measuring) the corresponding values of {v*}, find the first approximation to 
the optimal solution.  
6. Switching the device to the initial state and then starting again, arrive at the next 
approximations. 
7.  The sequence of the approximations represents Bernoulli trials that exponentially 
improve the chances of the optimal solution to become a winner. Indeed, the probability 
of success sρ  and failure fρ  after the first trial is, respectively 

ρs = ψ1, ρ f =1−ψ1                                     (48)                 

Then the probability of success after M trials is 
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ρsM =1− (1−ψ)
M →1 at M →∞                                 (49)       

 Therefore, after polynomial number of trials, one arrived at the solution to the problem. 
As follows from the above, the execution of the algorithm does not depend upon the 
dimensionality of the problem. 
However despite several computational advantages of this algorithm over existing 
algorithms, the basic problem in question is the implementability of analog simulations 
using Newtonian/quantum resources. Indeed, the model described by Eq. (45) does not 
belong to physical space, as we know it: it belongs to the expanded quantum space, (see 
Fig. 1). This means that, in principle, the pure analog simulation of this algorithm is 
impossible unless some digital device is included, (see [1]). More fundamental 
mathematical approach that briefly described in Section 2 was performed in [8]. 

 
 

5. Traveling Salesman Problem.  
 
The TSP is formulated as following: given N cities with distances dij between them; find 
the minimum-length closed tour that visit each city once and return to its starting point, 
see Fig.23. This NP-complete problem became a standard test-bed for methods of 
combinatorial optimization. We will follow here the approach developed in Neural 
Network simulation, Hertz,J.,1991, by introducing N2 binary variables biα to represent 
possible solutions: biα =1  if and only if city i is the αth stop on the tour. The total length 
of the tour is  
L = 0.5 dij

ij ,α
∑ biα (bj ,α+1 +bj ,α−1)       (50) 

and there are two global constraints for every city i and every stop α,  
biα

α

∑ =1,    (for every city i) biα
i
∑ =1,   (for every stop α )  (51)  

The function !L  to be minimized should be supplemented by the penalty terms in (58) of 
the weight γ 
 !L = [0.5 dij

ij ,α
∑ biα (bj ,α+1 +bj ,α−1)+0.5γ[ (1− biα

i
∑

α

∑ )2 + (1− biα
α

∑
i
∑ )2 ]   (52)  

 
Now we introduce the function that is maximized as soon as the function (59) is 
minimized: 
ψ(bij ) ={[0.5 dij

ij ,α
∑ biα (bj ,α+1 +bj ,α−1)+0.5γ[ (1− biα

i
∑

α

∑ )2 + (1− biα
α

∑
i
∑ )2 ]}−1  

(53) 
 Obviously           
ψ > 0          (54)   
and that allows us to consider the normalized version of the function(60) as a target 
probability distribution 
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ρ(bij ) =
ψ(bij )

(nn−1 dij )
−1

i , j
∑

       (55) 

where    
S = nn−1 dij

i , j
∑         (56) 

is the sum of the lengths of all possible tours. 
But prior to that we need to introduce the continuous variables Vij (in probability space), 
and the corresponding variables vij in actual space instead of binary variables bij. 
Exploiting the hyperbolic tangent we have 

bij ≅
1
2
(1+ tanhλvij )      at large λ      (57) 

Now replacing the variables bij in Eq. (55) via the rule (57), one arrives at the target 
probability in the form used in the proposed methodology (see Eqs. (45) through (49)) 
 

ρ*(Vij ) =
ψ(Vij )

(nn−1 dij )
−1

i , j
∑

      (58) 

This target probability should be substituted into the following equations that are similar 
to Eqs. (43) and (44 ) 

!vij =
e−t

n{[δ(vij )−ρ
*(vij )]e

−t +ρ*(vij )}
[δ(ζij )−ρij

*(
−∞

vi

∫ ζ)] dζij i =1,2,...n.  (59)  

∂ρ(Vij ,t)
∂t

+ ξρ(Vij ,t)−ρ
*(Vij ) = 0       (60) 

       
   (61)   

       
As follows from Eqs.(60) and (61), the normalized function expressed by Eq. (55) 
represents a static attractor in probability space: starting with the initial distribution in the 
form of delta-function, the probability distribution eventually approaches the target 
function (55). But one should remember that both of Eqs. (60) and (61) dwell in 
probability space, and they are not a part of the simulations: they only describe how Eq. 
(59) works: when Eq. (59) are run many times  (in actual space), and statistics is 
collected, then Eq.(60) and its solution Eq. (61) demonstrate how this statistics changes in 
time. In addition to that, Eq.(61) guarantees uniqueness of the final probability 
distribution. But Eq. (59) is a part of the simulations: it produces random solutions with 
probability controlled by the solution (61). Obviously the best chance to appear is given 
to those variables vij that maximize the function (58). 

ρ(Vij ) ={[δ(Vij )−ρ
*(Vij )]e

−ξt +ρ*(Vij )]}
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   Following the steps of the proposed algorithm (see Eqs. (45) through (49)) one finds the  
optimal trajectory !vij (τ)  that delivers global maximum to the target function Eq. (51) at  

t = τ , i.e. 

ρ*[ !vij (τ)]= supv[ρ
*(vij )]        (62) 

while the time of the measurement t = τ is evaluated by Eq. (47). 
The trajectory could be presented in a sequence of n variables (out of n2 original 
variables) as 
!vij = v1s1 ,v2s2 ,...vnsn          (63) 

in which the first sub-index shows the number of a city, and the second index shows the 
corresponding number of the stop.  
 
6. Discussion and conclusion 

The basic idea of this paper is to exploit a new kind of dynamical systems that would 
preserve superposition of random solutions, while allowing one to measure its state 
variables using classical methods. In other words, such a hybrid system would reinforce 
the advantages and minimize limitations of both quantum and classical aspects. These 
systems have been analyzed in [1,2,4,5,6]. It should be noticed that neural-net-based 
simulation of TSP is usually fails because of the local minima problem, or a poor choice 
of penalty parameters. In contradistinction to that, the proposed approach is not sensitive 
to local maxima: as mentioned above, the larger value of the function to be maximized 
will have the higher probability to appear regardless of the function’s landscape. 
Therefore, the TSP problem can be solved in polynomial time by applying Eqs. (43),(44) 
to the function Eq.(58). Actually these work ads a positive comment to a question posed 
in [7]: Can NP-complete problems be solved efficiently in the physical universe? The 
answer given by the author, Scott Aaronson, is negative. To our opinion, it could be 
positive if we complement the “physical world” with the quantum-classical hybrids 
represented by self-supervised systems considered above in order to find short cuts to 
solutions of combinatorial problems.  
Thus the main achievement of this work is a theoretical demonstration that quantum-
classical hybrids represented by self-supervised systems can solve NP-complete problems 
in polynomial time by replacing an enumeration of exponentially large number of 
possible choices with a short cut provided by a non-Newtonian and non-quantum nature 
of self-supervised systems. 
 However, the main limitation of this work is that the proposed algorithm cannot be 
simulated neither by Newtonian, nor by quantum resources in the same way in which 
quantum algorithms cannot be simulated by only Newtonian resources. Nevertheless as 
shown in [1], the simulation of self-supervised systems as a quantum-classical hybrid can 
be arranged via quantum neural nets.  
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