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Abstract

Due to insufficient research on the (condensed) matter, we took to ourselves the task of computing
the ground state for the Ising model on non-orientable manifolds, this is important because of the
recent results  regarding broken Lorentz invariance on Condensed matter systems, namely some
crystals as seen by Jorge Ranja. By using the Metropolis algorithm, we proved that the ground state
for the "simple" case of the Möbius band, contains a spin defect which thermally behaves as a
Brownian particle. This is a simple consequence of the breaking of Lorentz Invariance. It can also
be seen as the degenerate limit of the Heisenberg model, on a fourth quantized, non-commutative
Klein bottle (see Mir Faizal's work). Then, by inserting the resolution of identity, we show that a
magnetic field can induce a coherent Brownian wave, which is expected from the Kolmogorov
Arnold Moser Theorem. We interpret the results on the light of the theological theory of topological
invariants.



Introduction

The literature is saturated with results from simulations of the Ising lattice model, on several
dimensions, but there has been no progress regarding the behaviour of this model on non-orientable
manifolds.  Just  to  recall,  the  ising  model  is  defined with  discrete  variables  Si=  +-1  ,  and the
Hamiltonian H= -J Sum(Si . Sj) + h Sum(Si) where the first sum is over first neighbours if the
neighbours don’t complain about loud music. This is practical to implement on a computer and
admits easily imposable adequate boundary conditions.

On the other hand, the work by Jorge Ranja has sugested that certain crystals break Lorentz
invariance,  and  as  we  now,  by  the  Gauss-Bonet  theorem  in  a  non-orientable  surface,  non-
orientability is a sufficient condition to break Lorentz Invariance. Surprisingly this has not been
explored explicitly by taking simple lattice models on the mobius band which is by far the simplest
non-orientable manifold, as is known from elementary geometrical arguments.

Of course, the Mobius Band can be embedded
in R¹¹, because of the Whittney embedding theorem,
note  that  the  Hausdorff  property  on  the  induced
topology,  is  of  course  Para-compact.  Second
Countability comes naturaly from the existence and
uniqueness  of  solutions  of  Partial  Differential
Equations with analytic Cauchy Boundary conditions,
as  in  the  Cauchy-Kovalevskaya  Theorem.
Considering a point in the Mobius Band(N) P € N is
always  a  regular  value  of  some  complex  analytic
function,  usually  Riemann’s  Zeta  function.  This
embedding in 11 dimensions is 
useful because we can see the mobius behaviour on a
Type II B Superstring theory after compactification.

Metropolis algorithm

A key feature of our article is the Metropolis algorithm. This algorithm is a particular example of a
more general class of algorithms collectively known as Monte-Carlo logarithms. This is how it
works:  Our  system is  a  statistical  one,  so  it  can  be  in  any  spin  configuration  belonging  to  a
configuration space S. The Metropolis logarithm is a way to run through the whole configuration
space. If the system is currently in a state S, then it has a probability P(S, S') to be in state S' in the
next iteration. To do this, we grab a spin and try to flip it. Due to inertia, the spin of mass S may be
difficult to flip, but with a strong enough tweezer, this can be done. The spin can be modeled as a
pendulum, i.e., a massless rod with a weight of mass S. If the weight is down, we say the spin is
down. If the weight is up, we say the spin is
up. The energy to flip the spin is the energy
necessary  (and  sufficient)  to  overcome  the
constant grativational pull of the Earth on the
weight. If the energy of the system after this
flip is lower than the previous state, we accept
the new state. Otherwise, we accept the state
with  probability  P =  numpy.exp(E  -  E')/KT.
This  algorithm  was  a  breakthrough  in
computational physics because it allows us to
obtain in finite time what would 
otherwise only be possible in infinite time.



Ising Model

The Ising Model (sometimes erroneously pronounced Aising model, it is actually Eezing, because
the scientist was german) is a model originally described by Ising (read Eezing), born in Germany
1900.  In  each  point  in  a  lattice,  we  put  a  spin  (which  can  be  modeled  by  a  pendulum in  a
gravitational field) that can be either down or up. There is an interaction energy between adjacent
spins because when a spin which was up goes down, it  produces  wind, which destabilizes the
adjacent spins. To adequately describe this interaction, we would need to study the motion of a
collection  of  pendula  in  a  fluid.  Therefore,  as  a  first  approximation,  we  simply  say  that  the
interaction energy is a fenomenological parameter J between spins. This is a rough approximation,
that has important repercussions in the 1d ferromagnetic phase transition. In higher dimensions, this
effect  is  less  noticeable  because  mean-field  theories  become  more  and  more  accurate  as  the
dimension goes up. Ising’s Hamiltonian can therefore be described by the following equation:

We have  introduced  an  external  magnetic  field.
This magnetic field cannot be too high, because
otherwise  the  field  would  interact  strongly with
the  spins,  possibly  deforming  the  Möbius
manifold in which they are embedded. If the field
is  strong enough,  it  is  possible  that  the Möbius
strip becomes a Klein Bottle, but there is still not
enough  experimental  data  to  confirm  this.  This
would be a prime example of a topological phase
transition.

Conclusions and Discussion

As  we  showed,  in  the  case  of  zero
magnetic  field,  the  spin  defect  behaves
Brownianlly  as  is  seen  in  the  graph.  This  is
expected  but  Lorentz  symmetry  breaking
behaviour is relative, who are we to say that it
is  broken or  not?  It  depends  on  the  point  of
view,  of  course.  For  example,  one  time,  I
accidentally  dropped  a  valuable  vase  in  my
grandmother’s  house,  and  she  said  it  was
broken,  but  I  didn’t  think  it  was,  so  the
breaking was certainly relative, as one expects
from  Einstein’s  theory.  However,  from  the
Schrodinger  point  of  view,  the  lorentz
symmetry  can  be in  a  superposition  of  being
broken and not being broken, so we should be careful around cats in boxes.

In the case of a magnetic field, the result is more difficult to interpret, but using the theory of
deities as topological invariants it can be seen that the non-brownian part simply comes from the
non-trivial Euler characteristic of the Mobius band under a magnetic field.



In the future we expect to obtain results for a finitely generated family of non-orientable
manifold including the projective plane Rpn and generalizations of the klein bottle. In what respects
the fourth quantized version of this problem, we expect the results to be a beta-deformed non-
Abelian gauge theory, but Mir Faizal’s work is not yet completely understood by anyone other tha
him, so let’s hope for the best.

We enjoyed doing this work.
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