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Introduction

How little we know about our universe.

Everywhere in the universe there are events whaste ho do with the gravitation forces, described
by Isaac NewtonThe planets rotate around the sun. The sun, hasvithousands of other stars are
making part of a galaxy, and they rotate aroundtétstre, in balance with the gravitation forces.
Galaxies themselves are part of clusters. The boafighe whole universe respond to the law of
gravitation.

But a number of cosmic phenomena are up to now leftnexplained.

How does it happen that the solar system is almo#at? This is not really explained nor can be
calculated with the gravitation theory of Newtorisé other theories fail explaining it, and if they
would do so, they can not be added to any exisiexatry in order to form a coherent global system.
Why do all planets revolve in the same direction aund the sun?Could it be possible that the
one or the other planet could revolve in the ofdpadirection in a any other planetary system? And
what happens to the trajectory of a meteorite wihanrives into our planetary system? Also that

has never been explained.

It is still accepted that the rotation of the ssitransferred "in the one or the other way" todHmt
of the planets. However, never earlier the transfegingular momentum of the sun to the planets

has been clearly and simply explained.

Still much more questions concerning the univeeseshremained unanswered.

Why are also some galaxies flatwith in the centre a more spherical bulge? Thas wlways
considered as "normal”, because of the same redlsencentre of the galaxy rotates, and that
rotation is also partly transferred on the galaxi&c. But are really all the stars of the disc mgv

in the same direction? Isn’t there any odd one?

But is it really worth searching further ? Didn’'t A Ibert Einstein found the solution in the
Special and the General Relativity Theory AVell, the truth is that still some mysteries reneai
unknown and unsolved until now, in spite of yearsesearch by thousands of scientists over the
world, observing the sky, and analysing or invemnseveral theories.

We have got now several years of observation withHubble telescopeand anyone has seen
magnificent photographs of supernova, galaxies,several techniques made it possible observing

bursts of black holesAlbert Einsteinhowever lived in a period where cosmic observatiorere
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still limited and he couldn’'t be aware of pulsams’ supernova’s dynamics. Even so, Albert
Einstein’s genius has invented quite similar equretito those we shall deduct very simply and
logically.

Einstein analysed the dynamics of light in Bpecial Relativity Theoryand extended it to the
dynamics of masses. For that, a complicated tramsftion of classic coordinates into curved space
coordinates has been used. In this book, we wallrsmv we can avoid this complication and come
to excellent results.

The great advantages of this present theory are thaur equations are made of simple Euclid
maths, that they exist already since more than ongentury and that they are applicable to the
events of electromagnetism and to all sorts of engy fluxes. Their efficiency is proven since
more than a century in other domains than in gation.

In fact, reality is much more simple than one coeker dream. And we are now starting

discovering it.

Here then the next questiomiow does come that all stars of flat galaxies rotat with
approximately the same speed about the central budgof the galaxy?Thus, a star closer to the
centre revolve with speagdand a star in the middle of the disc also revelith a speed !

This seems much more difficult to explain. Accoglio the laws of gravitation, more precisely the
Kepler law, the more distant the star is away fittwn centre, the lower its speedhould be. The
solution which is presently offered by science tbis problem is not persuading at all. The
hypothetical existence dflark matter"which is supposed to conta®®% of the total mass of the
universe, and which would be able correcting tHeutations in order to get flat galaxies explained,
just do not exist. We will not discuss "dark mdtteself because we will find a solution for flat
systems which immediately follows from our theory.

Still a question:Why is the flat galaxy spirally wound, the spiralsbecoming larger to the
outside?As well, its cause does not just follow from thewidon gravitation laws, and we shall see

why this is so.

A question which continues occupying science isrthegual influence of the planets when they
cross nearby in their respective orbits. It seem# the planets move chaotically without entirely
satisfying to the laws of the gravitationGhaos Theoryalso calledPerturbation Theoryhas been
developed especially in order to try explainingdebur like this. Here, we will see that in spite o

its complexity, our theory delivers the solutiom #o

Observation of the last decades has shown spirstamg rotating that fast that they should explode.
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Some of them are called pulsars because the oltieerig intermittent with pulses. Some pulsars
are called millisecond pulsars because they spmatas of a thousand revolutions per second. A
pinching question is alsehy fast rotating stars can rotate that fast withou exploding or falling
apart. With the centripetal force, the stars should edplowhat keeps them together?
Observation shows that even when the fast rotasitag explodes, as it happens with some
supernova, nebulae, or quasars, this explosiomitetl at the equator and above a certain angle,

causing so two lobes, one in the northern hemisplogre in the southern.

With this sole simple theory we will find an answerall these questions.

How will we solve these questions ?

Objects move when we exert forces on them accordirtige laws of motion, and obtain velocities,
accelerations and moments. This is actually knaweeslong, but it Isaac Newton recognised it as

a law, and wrote it down.

All these interactions happen by acting directlytlos objects, by the means of a physical contact.

Newton found also the law of gravitation. But thime it concerned interactions between objects
which do not touch each other, and nevertheless gettion, getting only a small fraction of the
forces which would be obtained by direct contacwikbn could effectively observe the flat solar
system, during many months, spoiling his healthweler he could only see that plane, in which
only a part of the possible gravitational motiosislearly visible.

When we have to do with very large masses in th@mos, the gravitation forces are clearly
measurable, and their importance become very laige Hubble telescope and other
information which is now widely available to all of us, give us the chance to discover and
defend new insights.

This will able us to check our theory much bettemt Newton or Einstein ever could.

In 2004, even a scientist with high reputati®ephen Hawkinghas been greatly humble against
the entire world by revising his theory on blackdso Earlier, Hawking stated that black holes
couldn’t ever reveal information to the outsideitpfmaking it impossible knowing its anterior or
future “life”. Stephen Hawking had the chance to be still alivenduthis fast technical progress,

allowing him to correct and improve his view. Newémd Einstein have never had this chance.



In this book, we will study the motion laws of masss where no direct mutual contact occur,
but only the gravitation-related fields. We will discover a second field of gravitation, called co-
gravitation field, or gravitomagnetic field, or Heaviside field, or what | prefer to call

Gyrotation, which form a whole theory, completing he classic gravitation theory to what we

could call the Gyro-gravitation Theory.

A model is developed by the use of mass fluxes,analogy with energy fluxes.
By this model the transfer of gravitational angularmovement can be found, and by that, the
fundament for an analogy with the electromagnetic @uations. These equations will allow us to

elucidate an important number of never earlier exphined cosmic phenomena.

Within a few pages we will be aware of the reasdry wur solar systems nearly flat, and why
somegalaxiesare flat as well with in the centre a more spladrmlge. Furthermore we will know
why the galaxy becomespiralled and why some galaxies olustersget strange matrix shapes.
And a simple calculation will make clear why tharst of flat galaxies have approximately a
constant speed around the centre, solving at thee dane the tlark mas$ problem of these

galaxies.

We will also get more insight why the spirals oflag@ges have got so few windings around the
centre, in spite of the elevated age of the galsoyeover we will discover the reason for the shape
of the remnants of some exploding supernovae. Whey explode, the ejected masses called
remnants, get the shape of a twin wheel or a tale Wwith a central ring.

Next, some calculations concerning certain binangars follow, these are sets of two stars twisting
around each other.

We get an explanation for the fact that some fasingng stars cannot disintegrate totally, and also
a description of the cannibalization process ofabinpulsars: the one compact star can indeed

absorb the other, gaseous star while emitting bafsgjasses at the poles.

An apparent improbable consequence of the Gyratahieory is that mutual repulsion of masses is
possible. We predict the conditions for this, whiefil allow us understanding how the orbit

deflection of the planets goes in its work.

Furthermore we will bring the proof that Gyrotatignvery similar to the special relativity prinagpl

of Einstein, allowing a readier look on how theatslity theory looks like in reality. The
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conclusions from both, Gyrotation Theory and ReiatiTheory are however totally different, even
somehow complementary, but not always recognisaties by the scientific world.
Also more detailed calculations ftast spinning stardblack holestheir orbits and theigvent

horizonsare calculated.

Great physicists.

1. Isaac Newton Gravitation , second half of 17 century : the well-known pure gravitational

attraction law between two masses.
F=Gmm,/r?
2. Michael Faraday, Electromagnetic Induction, first half of 14h century : voltage (a.k.a.

electromotive force) inductiog through a ring, by a changing magnetic fib.
E=-0G, /0t

3. James Maxwel|] Maxwell Equations, second half of 16 century : the equations describing

the electromagnetic mutual influences.

4. Hendrik Lorentz , Lorentz Force, end of 18 century : the transversal force obtained by a
charged particle moving in a magnetic field. Thaggi&tion is the foundation for explaining
many cosmic events.

F=q(vxB).

5. Oliver Heaviside, Heaviside Field end of 18 century : the Maxwell Equations Analogy,
which are the Maxwell Equations, but transpose@ igtavitation fields, extending so
Newton’s Gravitation Theory. These equations ateerain account for most of our
deductions in our Gyrotation Theory.

6. Albert Einstein, Special Relativity Theory, begin of 25 century : linear relativity theory
in only one dimension, valid for light phenomenavieen two systems with relative
velocity, without gravitation.

7. Albert Einstein,General Relativity Theory, begin of 26 century : gravitation theory in
curved space-time, requiring complicated mathsidvedr wave phenomena in dynamic
gravitational systems.

8. Jefimenko, HeavisideJefimenko Field, end of 28" century : the Heaviside Field, but
written out in full for linear and non-linear fiedd taking in account the time-delay of
gravitation waves. This field lead to a coherenavgation system generating five

simultaneous forces in the most general situation.
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We shall use a field that resembles the Heaviseld &ind the Jefimenko field, and after having
defined the correct physical meaning of absoluteratative velocity, we will be able to predict the
dynamics of gravitation in our extended Gravitatibmeory, which adds a mass- and velocity-
dependent Gyrotation field to the original Gravdatfield of Newton.

In due time, we will come back to the fundameniedaries of the mentioned scientists. But let's
start exploring Gyrotation first.

Goals of this book

If so many events in space can be explained by tfiex theory, becoming so a simple extension
of the Newton gravitation, why should we preservetber theories which do not fulfil the aim
of science: offer the best comprehensible theory thithe easiest possible mathematical model.

This exactly is our intention.

The second goal in our book is to show the hisaébgecoundof the Gyrotation Theorliver

Heavisidesuggested such a theory more than one hundresd ggar based on the electromagnetic
theory assembled bylaxwell Some years lateEinsteinsuggested this analogy as well, but he
preferred nevertheless to create his own spe@alyhof relativity, which appeared at that time

more defensible.

The real breakthrough came only recerlieg Jefimenkdas understood that the Maxwell
equations have sometimes been misinterpreted aredneé written in full until then. Jefimenko
wrote several books wherein he explains the comgletuations, and the nefast consequences for
the validity of the Special and the General Reigtiof Einstein. Oleg Jefimenko has the merit and
the courage to having objectively developed, itespf a furious establishment, a totally consistent
and simple theory, which completes the Theory afd@yics (momentum, forces and energies) and
which can successfully replace the General Retgtiieory and the Perturbation Theory as well.
Most of the cosmic evidence that we bring up hereat even consider time-dependent

equations. And we will develop many cosmic preditsi based thereon.

At this stage of our introduction, we should noiti@nger and let you see the (steady state) basics
which we shall use in this book. They are much s&minan the approach from Jefimenko,
although the idea is the same. Therefore, in osi fiaper, we make clear to the reader what are the
basic physics needed for understanding the Gyootdatheory, and which options we will more
closely look at, regarding our explicative cosmasctiption.



Successes of

a Novel Gravity
Interpretation

The four next papers were written in different pds, but | rearranged that for an easier lecture.
Also, | changed minor parts of the text that weoe e¢lear enough when | reviewed them for this
book.

In the first paper, | need to tell you that if twell-known Michelson and Morley experiment had a
null result, their was a good reason for it. Oneusth not invent a non-null result instead. The
consequences are that the whole presetting foval gpavity theory changes. Although the novel
gravity theory doesn't need the aether in the nmadities of this book, we should come to it sooner
or later, because space contains electromagnetiesahat should be carried by something, be it
other electromagnetic waves.

I have used many names for the novel gravity theémaxwell Analogy for Gravitation”, “Gyro-
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Gravitation”, “Heaviside-Maxwell Theory”, “Gravitmaagnetism” and maybe one that | forgot to
mention. All these names stand for exactly the straery. The most honest name should be: the
“Heaviside Gravity Theory”, because Heaviside wibie set of ten equations that Maxwell had put
down, into the four that we know today. MoreoveeaMiside was the first to suggest the analogy
between Electromagnetism and Gravity. But unfortielya“Gravitomagnetism” is the name that |
found the most on the Internet. So, when | wanetpect some marketing rules, | should take the
latter one.

The second paper, which | wrote in 2003, shows alevket of solution that the brings : many
cosmic phenomena can be solved by simple mathesntiat are a perfectly similar to the Maxwell
formulations of Electromagnetism! | refer in thettéo the two next papers (akeéctures’ and as
“Relativity Theory analyzed”) that are explicative for more complex maths oneepts, and where |
show the link with the former Special Relativityddry of Einstein.

Who is interested to enter more in dept about soraths and some concepts, will enjoy the next
paper: it is the paper in which | came to the ihsigf the possible validity of the novel gravity
theory (based on my first interest in the 1980sxgmined again and understood in 1992, when |
discovered the meaning of “gyrotation” as the iotatof gravity, but with the particularity that
“gyrotation” and (Newtonian) gravity are totallydependent from each-other (there is a 90° angle
between them). The last part of that paper alstagxpmore on disc galaxies as well.

How are the novel gravity theory and the SpecidhfRaty Theory related? This is the subject of
the last paper of this chapter, where the relatsigts from the second paper is analyzed.
Enjoy the reading!
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The great Michelson & Morley, Lorentz and Einstein trap

T. De Mees - thierrydemees @ pandora.be

Abstract

Thinking in terms of the Michelson & Morley experiment, the Lorentz interpretation and the Einstein
interpretation brings us inevitably to wrong results. To that conclusion I come in this paper by analyzing the null
result of the experiment, which brings me to the inevitable assumption : the aether drag velocity to
(measurement-) objects is always zero. First we analyze this assumption and its consequences to the velocity of
light and to the aether dynamics. A direct consequence is : the velocity of light to (measurement-) objects is
always ¢. Furthermore, acther drag is not universal as believed around 1900, but object-bound.

We come to the conclusion that any theory based on a non-null result of the Michelson & Morley experiment, like
the Lorentz contraction or the Special Relativity Theory (SRT) must be fully based on wrong ideas. The
invariance of the Maxwell Equations to the Lorentz contraction term should not be seen as a confirmation of the
validity of SRT but rather as a confirmation of the validity of gravitomagnetism.

Key words : gravitation, gravitomagnetism, gyrotation, Lorentz interpretation, Heaviside-Maxwell analogy,
Michelson-Morley experiment, Trouton and Noble experiment.
Method : analytical.

1. The Michelson & Morley experiment, the Lorentz and the Einstein interpretation.

Never in the history of science, a null result in an experience was able to transform the outcome of science during
a whole century. Michelson and Morley tried to measure the speed of aether of the Earth. Also Trouton and Noble
tried to do so by using a parallel capacitor that was supposed to follow the aether's drag orientation. Also with a
null result.
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Fig. 1.1. Scheme of the Michelson & Morley experiment.
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The Lorentz interpretation that resulted in the believe that distances are shortened in the direction of the aether
flow, is well known. Also known is the Einstein interpretation that included the constancy of the speed of light
and the conservation of the total energy, and that resulted also in the elongation of time in the direction of the
aether flow.

Mirror NN [~ _C” ]

A I\

\‘ N Mirror
Light Source | A i N =
C}‘ — £ /\\B/ I ll
L
A — ———E
Beam NG I
. I
splitter Nyt .
( ’,
w:ves in :, ‘\’ waves out
phase ™ v -] of phase
A — _\.._l\_[/"
s
]
LY
l,’ :I
DF D F

Fig. 1.2. Scheme of how the non-event (null-result) of the Michelson &
Morley experiment became an event (non-null result) out of nothing.

Again, what inspired scientists to make up a whole theory, lasting for a century, based on a null result? The fact is
that everyone at the end of the 19" century was indoctrinated by the believe that the Earth was traveling through
an absolute, universal aether. And, those experiences were used to find out how much the acther drag really is.

But what would the theory have looked like if that indoctrination wasn't existing?

2. A null result means : a null result.

A null result means : a null result. Acther has a velocity zero against the Earth. And the null result occurs for all
possible setups of the experiments and for all kinds of experiments that want to find the speed of aether.

One might say: but jf the aether were moving, what would then happen? We then come in a world of idealized
physics, just like Plato did. And that was 2500 years ago. That is the world of the thought experiments, made by
people that believed they could outmaneuver nature itself. Don't fall in this trap. Never! Prefer not to know it
instead of imagining things. None of the scientists that made up or nourished, during a whole century, such
unscientific and megalomaniac theories, out of a non-event, merit any pardon.

When we get a null result for the Michelson and Morley experiment and for the Trouton and Noble experiment,
there is no other choice than the outcome that the drag speed of aether is zero for the Earth and for the measuring
devices that were used. It is no coincidence that for any measuring device, the null result occur. This leads us to
bring up the following generalized result of the experiments.

To any object whatsoever, the aether drag velocity is zero.
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Since the speed of light is always measured as being ¢ , this makes sense. I mean that if the aether's drag velocity
is always measured as being zero, the velocity of light should also be measured as being ¢ .

We can even say that the speed of light is always ¢ if we compare it to 'its proper' acther. That is, whatever the
speeds of several object are, the speed of light will always be ¢ for each of the objects! Thus: consequence one:

The speed of light in its aether is always c.

Isn't this the same as what Einstein said? Not quite. We see that the consequence of the assumption is that aether
is not an absolute, universal aether, as was believed at the end of the 19" century, but a local, mass-bounded

acther. Because for any body, the acther speed is zero and the speed of light is ¢ .

The only possible outcome to make these issues fit, is to account for a fluid-like acther. The latter guarantees that

light will always travel at the same speed ¢ against 'its own' aether, and only be refracted when passing from one
to another zone of the aether, where theoretically slightly different densities may occur. This refraction guarantees
also that there will not be any loss of light. Reflection is not an option for light through aether with slightly
changing densities. Only strongly differing media allow for reflection. Thus, consequence two:

Aether behaves like fluid dynamics.

How exactly does aether behave and what are the consequences for light? This has to be investigated by setting up
experiments. But the main issue for such experiments is the presence of the aether of the Earth, which will
overwhelm the other aethers. One of the most discussed items in the past was the description of the transformation
between relative systems, the simultaneity of events and the twin paradox. These items again are false issues,
because they are created from thought experiments, based on a null-result experiment.

And if one says: “but if we want to know simultaneity, how to manage that?”, we have to get back to
gravitomagnetism, that solved so many cosmic issues up to now.

(see: http://wbabin.net/papers.htm#De%20Mees).

The first things to realize then is that (see my papers “Did Einstein cheat?” and “On the Origin of the Lifetime
Dilation of High Velocity Mesons™):
1. there is no proven mass increase due to velocity. Instead, a gravitation field increase occurs.
2. there is no proven time dilatation due to velocity. Instead, a cylindrical compression occurs;
clock systems can be delayed differently, depending from their mechanism.
3. there is no proven length contraction due to velocity.
However, a certain length contraction is expected by gravitomagnetism.

One issue however cannot directly be solved by gravitomagnetism : the fluid dynamics of aether. It should be
associated to cosmological reasoning and to experiments.

3. Conclusion.

When analyzing the non-event of the Michelson & Morley and the Trouton & Noble experiments, it is clear that
1°: to any object whatsoever, the aether drag velocity is zero, 2°: the speed of light in its aether is always ¢, and
3°: aether behaves like fluid dynamics.

The astonishing change of these non-events (null-results) into events (non-null results) by scientists is unworthy
and made themselves irresponsible. It also persevered the wrong idea of a universal global aether drag. The
mislead became even more underhand in SRT by denying the need of an acther.
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Abstract

This publication concerns the fundamentals of §madics of masses interacting by gravitation.

We start with the Maxwell analogy for gravitation the Heaviside field, and we develop a model. Thizdel of
dynamics, which we know takes in account the retiiwd of light, allow us to quantify the transfef angular
movement point by point by the means of vectorsl, tanbring a simple, precise and detailed explanatd a large
number of cosmic phenomena. And to all appearaticesheory completes gravitation into a wave tjieor

With this model the flatness of our solar systerd aor Milky way can be explained as being causearyangular
collapse of the orbits, creating so a density iaseeof the disc. Also the halo is explained. Théssing mass” (dark
matter) problem is solved, and without harmingKleglerian motion law.

The theory also explains the deviation of massilikéne Diabolo shape of rotary supernova having mass lossest and
defines the angle of mass losses at 0° and at 35°16

Some quantitative calculations describe in detal telativistic attraction forces maintaining emtthe fast rotating
stars, the tendency of distortion toward a tordid-shape, and the description of the attractielu$i outside of a rotary
black hole. Qualitative considerations on the hinaulsars show the process of cannibalization, withrepulsion of
the mass at the poles and to the equator, anddhbld also explain the origin of thepin-upand thespin-downprocess.
The bursts of collapsing rotary stars are explaiasdwell. The conditions for the repulsion of massee also
explained, caused by important velocity differenbesveen masses. Orbit chaos is better explainetehs Finally,
the demonstration is made that gyrotation is rdlédethe Relativity Theory.

Keywords. gravitation — star: rotary — disc galaxy — refaris- relativity — gyrotation — gravitomagnetisnchaos
Methods : analytical
Photographs: ESA / NASA
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1. Introduction : the Maxwell analogy for gravitation: a short history.

Several studies have been made earlier to finchalogy between the Maxwell formulas and the gréeita
theory. Heaviside O., 1893, predicted the fielthis implies the existence of a field, as a regilthe
transversal time delay of gravitation waves. Furttevelopment was also made by several authors. L.
Nielsen, 1972, deducted it independently usingLitrentz invariance. E. Negut, 1990 extended the wadix
equations more generally and discovered the coeseguof the flatness of the planetary orbits, Jefiko
0., 2000, rediscovered it, deducted the field frinm time delay of light, and developed thoughtsualip
and M. Tajmar & C.de Matos, 2003, worked on theesabject.
This deduction follows from the gravitation law ldéwton, taking into account the time delay causgthk
limited speed of gravitation waves and therefoeetthnsversal forces resulting from the relativioeigy of
masses. The laws can be expressed in the equétiotas(5) hereunder.

Lecture A : a word on the Maxwell analogy

The formulas (1.1) to (1.5) form a coherent seegfiations, similar to the Maxwell equations. Eleelr
charge is then substituted by mass, magnetic bgldyrotation, and the respective constants as arell

substituted (the gravitation acceleration is wnites g , the so-called “gyrotation field” a& , and the
universal gravitation constant & = 411 , whereG is the “universal” gravitation constant. We usgnsi
O instead of= because the right hand of the equation inducetethéand. This sigri]l will be used when
we want to insist on the induction property in #dwuation.F is the induced force/ the velocity of massn
with densityp.

FOm(@+vxQ) (1.1)
O.90p/C (1.2)
ccOxQoj/{+aglot (1.3)

wherej is the flow of mass through a surface. The té@fot is added for the same reasons as Maxwell did:
the compliance of the formula (1.3) with the equati

divjo -dpl/at
It is also expected dvQ=002=0 (1.4)
and Oxg 0O -0R/0t (1.5)

All applications of the electromagnetism can frdrart on be applied on tlgravitomagnetisnwith caution.
Also it is possible to speak of gravitomagnetisnvesg where

¢=1/(1) (1.6)
whereT = 4nG/C.

2. Law of gravitational motion transfer.

In this theory the hypothesis is developed thatahgular motion is transmitted by gravitation. &ttf no
object in space moves straight, and each motiorbeaseen as an angular motion.

Considering a rotary central mass $pinning at a rotation velocitgp and a mas#, in orbit, therotation
transmitted by gravitatiofidimension [rad/s]) is namegyrotation £2.
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Equation (1.3) can also be written in the integmim as in (2.1), and interpreted as a flux thedty.

expresses that the normal component of the rotafid? , integrated on a surface A, is directly proporgibn
with the flow of mass through this surface.

For a spinning sphere, the vec is solely present in one direction, anldX (2 expresses the distribution
of £2 on the surfacé. Hence, one can write:

lox@ d o anemi 2.1)

A

Lecture B : a word on the flux theory approach

In order to interpret this equation in a conveniesmty, the theorem of Stokes is used and applietthé¢o

gyrotation £2 . This theorem says that the loop integral of atoreequals the normal component of the
differential operator of this vector.

Lecture C : a word on the application of the Stokéa®orem and on loop integrals

b0.d=[oxo (2.2)
A
Hence, the transfer law of gravitation rotatiggrotation results in:
¢ o.doanGmic (2.3)

This means that the movement of an object througithar gravitation field causes a second fieldledal
gyrotation. In other words, the (large) symmetriavifation field can be disturbed by a (small) nmayi
symmetric gravitation field, resulting in the pasation of the symmetric transversal gravitatiaddiinto an

asymmetric field, called gyrotation (analogy to metism). The gyrotation works perpendicularly ootoer

moving masses. By this, the polarised (= gyrotatftald expresses that the gravitation field istlpamade

of a force field, which is perpendicular to the \gration force field, but which annihilate itself ho

polarisation has been induced.

3. Gyrotation of a moving mass in an external gravational field.
It is known from the analogy with magnetism thahaving mass in a gravitation reference frame vallise

a circular gyrotation field (fig. 3.1). Another nsawhich moves in this gyrotation field will be dated by a
force, and this force works also the other way adoas shown in fig. 3.2.

The gyrotation field, caused by the motiormdfis given by (3.1) using (2.3). The equipotentgais circles:
2MR.Q 0 4G m/ ¢ (3.1)

Perhaps the direction of the gravitation fieldrigportant. With electromagnetism in a wire, the dian of
the (large) electric field is automatically the wWraone in fig 3.1., perpendicularly to the velocd the

electrons.
> Ve ﬂ AN
[ oy o 2 \p
! X !
fig. 3.1 k m ) > fig. 3.2
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In this example, it is very clear how (absolutealpaelocity has to be defined. It is compared it steady
gravitation field where the mass flow lays in.
This application can also be extrapolated in trengde below: the gyrotation of a rotating sphere.

4. Gyrotation of rotating bodies in a gravitationalfield.

Consider a rotating body like a sphere. We wilcakdte the gyrotation at a
certain distance from it, and inside. We consitiergphere being enveloped
by a gravitation field, generated by the sphemdfitand at this condition,

we can apply the analogy with the electric curierdiosed loop.

The approach for this calculation is similar to dme of the magnetic field

ted b tic dipole.
generated by a magnetic dipole x PR

Each magnetic dipole, created by a closed loopnahfinitesimal rotating
mass flow is integrated to the whole sphéReference: Richard Feynmann: Lectures on Physics)

The results are given by equations inside the gptied outside the sphere:

gx«\\\l‘ll'})AA F|g42

NN SO

e 477G 2 1 rirew

~~~~~ o W - Qimﬂiz'o w =r'--R’ _rre) (4.2)
DAY BV <N c 5 3 5

S PSRN <

\\‘ Ve 4G PR (@ rlwer)

driiiovbrriiiid QD 2 |2 (4.2)
...... i 5% |3 5

(Reference: Eugen Negut, www.freephysics.org) Téeidg shows equipotentials of.

For homogeny rigid masses we can write :

Q

) - 4.3)
ext 5r3¢?

2

Gk, 3]

When we use this way of thinking, we should keemind that the sphere is supposed to be immersad in
steady reference gravitation field, namely the gaéion field of the sphere itself .

5. Angular collapse into prograde orbits. Precessioof orbital spinning objects.

Concerning the orbits of masses, when the centaakr(the sun) rotates, there are found two majectst

The angular collapse of orbits into prograde equé&td orbits.

In analogy with magnetism, it seems acceptablettieafield lines of the gyrotatio€, for the space outside
of the mass itself, have equipotential lines aswshin fig. 5.1. For every point of the space, aaloc
gyrotation can be found.
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SoVp =TI Wy is the orbit velocity of the ma$®  , it gets an acceleratior@, O V  x 2 -deducted from
(1.1)- wherea p is pointed in a direction, perpendicular on thaipgtentials line. One finds the tangential
componenBy and the radial compone@; out of (4.2).

The acceleratiof pt always sends the orbit ofi, toward the equator plane . And som  has a
retrograde orbit (negative ), a p will change sign in order to make turn the orhitiay from the equator.

Finally, this orbit will turn such that the sign a#, and therefor@ p: becomes again positiver 1T02),
(prograde orbit), and the orbit will perform a pesesion with decreased oscillation around the equato

The componend p is responsible for a slight orbit diameter decesasincrease, depending on the sign of

.

The precession of orbital spinning objects.

Detail

Fig. 5.2 :A second effect occur if the small mass is also spinn

If the masam, is also spinning, with a speeds, one gets: the momentuM; of My, created b2, results
from the forces acting on the rotating particl®nfr(1.1)-:

a0 V2 X 02, where we writd/z as Vz =Wy X X for any particle ofm,.

with X the equivalent momentum radius for the sphere.
Therefore also for any particle i p: Mz;O 2wy X? 2,c0s0.

This means: excepted in the case of an opposigédiantdirection ofc, and @, the gyrotation ofTy will
always influence the rotatio®y, by generating a precession [op.

Lecture D : a word on planetary systems
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6. Structure and formation of prograde disc Galaxis.

For contracting spherical galaxies with a spinnaggtre, two different evolutions can be found. Goe
objects with an initial tangential velocity (in @ and another for objects without orbit (zerdtial
velocity).

Objects with an orbit

Objects with an orbit will undergo an angular cpfia into prograde orbits due to the first effecs@dtion 5.
Ejection out of the galaxy is also possible dutinig collapse motion for
retrograde orbits, becaus®y is pointing away from the masm
(opposite forces as in fig.5.1 in that case).

The angular collapse starts from the first sphédoae near the centra
zone, where the gyrotation is strong and the cséaguick. Every star
orbit will undergo an absorbed oscillation arouhd equator of the mas:
m , due to the acceleratiody . This oscillation brings stars close
together. It becomes quickly a group of stars,v@nea part of the future disc, and the stars twinto be
more and more in phase. It can become a distoisedndth a sinuous aspect, and finally a disc.

The final tangential velocitys q4isc depends from the start positi@h , ', and the initial tangential velocity
Vgo. At the same final radius, several stars with digarslocities may join.

Distant stars outside the disc will oscillate “ifidéely”, or will be partly captured by the discigavitation.
Remark: perfectly plane retrograde orbits, whiclstex] “since the beginning” at the equator levelhaf
galaxy before the start of the orbit collapse psscean theoretically subsist until a very closeoenter or a
collision with any prograde object deflects it.

Objects without an orbit

But when a numerical simulation is made of the etioh for objects without an orbital motion, thesué is a
wide oscillation about the rotation axis of theaggfs centre, which is perpendicular to the disc.

It is expected that some stars closer to the dibde oscillating- can be partially captured by gtsvitation
forces.

In the following few lines, one discovers the coexiy of the motion. It appears that the analytical
description of the evolution is not successful amre. Only a numerical approach gives clarity.

In fig. 5.1 the law for gravitational contracti @) 0 -Gm/r 2 (6.1)
This radial displacement creates a gyrotation acagbn due to (1.1), deviating the
object in a retrograde way

0 VX0 (6.2)

in the z-direction, wherd2 is given by (4.2).

When the object does not fall on the rotating aebut misses it, it comes in a region

where now a prograde deviation is created. Thecolydl oscillate as follows around

the star: when falling towards the star, a retrdgrdeviation is created, when quitting
Fig. 6.1 the star, a prograde deviation is created.

Stellar clusters’ trajectories

We could wonder if stellar clustease obeying this law instead of their presumed eaging orbits towards
the centre of the galaxy. Since those stars arsidered as the oldest ones of the galaxy, it ikkelyl that
converging would occur. Instead, they will moreelik oscillate as objects without an orbit, as exyd
higher, but, apparently, in such a way that the efithe forces avoids convergence to the galaxgidre.

Lecture E : a word on the formation of disc galaxe
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Calculation of the constant velocity of the starsoand the bulge of plane galaxies

Let's take the spherical galaxy again with a rotamtre (fig. 6.2). The distribution of the massush, that a
star only feels the gravitation of the centre. Wasider equal masses, ldnass of the centre, named “the
bulge”) in various concentric hollow spheres acamgdo some function of R
(it must not be linear). We take the total bulgehescentre mass because that
part does not collapse into a disk, and so, itthd®e considered as part of the
rotary centre of the galaxy. Possibly, the orbit ba disturbed by the

passage of other stars, but in general one cathaagnly the centre fhas

an influence according to:

M, m _mv}
F,=G 1;2 and F,= RR (6.3) (6.4)
GCM
fig. 6.2 So, F,=F, = v,= R 0 (6.5)

When the angular collapse of the stars is donafiogea disc around the bulge, the following effecturs:
the mass which before took the volufdd3) Tt R®, will now be
MM M compressed in a voluni® R2 h whereh is the height of the disc,
°0 that is a fraction of the diameter of the initiphere (fig. 6.3).
%
Hn..’ And at the distancR, a star feels more gravitation than the one
fig. 6.3 generated by the mah4,.

To a distanck.R, the star will be submitted to the influence of

aboutn.M,, wherek andn are supposed to be linear functions passing ttraego in the centre of the
bulge.

Strong simplified, this gives for the total massading to the distande:

, _GnM,
| — (6.6)
* kR,
Therefore, one can conclude that : V2 = constant

Concerning the centre, zone zero, one cannot sah.net's not forget that a part of the angular otam
has been transmitted to the disc, and that theecenhot a point but a zone.

For zone one, we can say that the function ofdheek of gravitomagnetism must be somewhere between
the one of the initial sphere and the zone 2.

Example : calculation of the stars’ velocity of tHdilky Way

These findings are completely compatible with the
measured values.

The diagram shows a typical example, which shows th
velocities of stars for our Milky Way.

250 km/s|

Using equation (6.6) for our Milky Way, with the

reasonable estimate of a bulge diameter of 10@0® Ii

years having a mass of 20 billion of solar mas$68%6(

of the total galaxy), and admitting tHat= Nwe get a I

quite correct orbital velocity of 240 km/s (fig 4. 0 g kpc R
fig. 6.4
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Dark matter and missing mass are not viable

The problem of the 'missing mass' or ‘dark matteat have never been
found and that had to bring an explanation fordfaes’ velocity
constancy is better solved with our theory: theeigy constancy is
entirely due to the formation of the plane galaxthaut a need of
invisible masses.

7. Unlimited maximum spin velocity of compact stars

When a supernova explodes, this happens partiadlyiraspecific zones. The purpose here is to fiadwhy
this happens so.

Let us consider the fast rotary star, on which flvees onp are calculated (fig. 7.1). We don’t want to
polemic on the correct shape for the supernova,sapgose that it is still a homogeny sphere. Ifrtfass
distribution is different, we will approximate iy/la sphere.

For each poinp, the gyrotation can be found by puttihg= Rin (4.2). And taken in account the velocity of
p in this field, the poinp will undergo a gyrotation force which is pointitmvards the centre of the sphere.
Replacing also the mass hy= TIR}0 4/3we get (4.2) transformed as follows:

(7.1)

Q, O
R SR R?

G m ( 3R(we R)]
a)_
The gyrotation accelerations are given by the falhy equations:
al XwR, = wRcoxx 2 and a0 XwRx = wRcosx Q24

To calculate the gravitation at poif the sphere can be seen as a point mass. Takiagciount the
centrifugal force, the gyrotation and the gravidatione can find the total acceleration :

Gm(1_3Sin2 0’) 3 G mcosa

a, 0 R cosall- - - (7.2)
SKc R
3Gmdc’ cos’ asing G msina

-a,,, 00+ x e (7.3)

The gyrotation term is therefore a supplementampmression force that will stop the neutron stamfro
exploding. For elevated values a#?, the last term of (7.2) is negligible, and will im@in below a critical
value of R a global compression, regardlesg@fThis limit is given by the Critical CompressiomdRus:

Gm(1—3sin2 a)
=1- 5
SRKc

or R =Rcs < Rc (1 -3 sida) (7.4)

whereRc is the Equatorial Critical Compression RadiusRaotary Spheres :

Rc=Gm/5¢ (7.5)

Rc is 1/10" of the Schwarzschild radilSs valid for non-rotary black holes ! This means thitck holes
can explode when they are fast spinning, and tretyenon-exploding spinning star must be a bladk.ho
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The fig. 7.2 shows the gyrotation and the centafufprces at the surface of a spherical star. Tdmaes
deduction can be made for the lines of gyrotatiwside the star. Fig. 7.3 shows the gyrotation liaed
forces at the inner side of the star. We see imatelyi that (7.4) has to be corrected : at the eguthe

gyrotation forces of the inner and the outer matexie opposite. So, (7.4) is valid farZ 0.

Fig. 7.2 Fig. 7.3

From (7.4) also results that the shape of fasttingtastars stretches toward &ysonellipse and even a
toroid:

if o= 35°16’ the Critical Compression Radius becomes indeenl Zontraction will indeed increase the
spin and change the shape to a “tire” or toroictllaole, like some numeric calculations seem tacete.
(Ansorg et al., 2003, A&A, Astro-Ph.).

8. Origin of the shape of mass losses in supernovae

When a rotary supernova ejects mass, the forcebean
described as in section 6 for objects without daitobut
with an high initial velocity from the surface dfet star. Due
to (1.1) , at the equator the ejected mass is thlia a
prograde ring, which expansion slows down by gedidin
and will in the end collapse when contraction stagain,
but by maintaining the prograde rings as orbits.

Supernova 1987A Rings

Hubble Space Telescope

When the mass leave under angle, a prograde ring is ! Fieid Planetary Camera 2
obtained, parallel to the equator, but outsidehefaéquator’s
plane. This ring expands in a spiral, away fromdtae, because of its initial velocity. The expansslows
down, and will get an angular collapse by the gatioth working on the prograde motion.

The probable origin of the angle

has been given in section 7: the

zones of the sphere near the

poles (35°16’ to 144°44’ and Fig-8-h

-35°16’ to -144°44’) are the

“weakest”. Indeed, these zones X

have a gyrotation pointing SN 1987A n Carinae
perpendicularly on the surface of

the sphere, so that the gyrotation i
acceleration points tangentiall SN 1987A: a local mass loss took place on the equaid probably close to

at this surface, so that nc the _35° 16’ angle. The zone 35°16’ to 144°44’ edptb possibly much
: . earlier, and became a toroid-like shaped rotaryr sta

compensation with the Cari i | b lete shell babbwalhe 35° 16’ |

centripetal force is possible. Thi n Carinae : mass loss by complete shells, probabbvealihe angle,

zone near the equator (0°) has r forming two lobes with a central ring

gyrotation force which could
hold the mass together in compensation of the ipet#é force.

The observation complies perfectly with this theioed deduction. The supernovae explode into synmimet

lobes, with a central disc. Observation will hagererify that these lobes start nearly at 35°, mestsfrom
the equator.
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9. Dynamo motion of the sun.

It is observed that the spots on the sun havepadisment from nearby the poles to the equators Etkies
about 11 years. This effect can be explained byyetation forces.

Equation (7.1) gives the gyrotation field at theelleof the sun. Equations (7.2) and (7.3) can hessed as
a new set of components to the surface of theastemgential component and a radial one.

. R Gm
a,,, U a)zs1n2a(7+ e J (9.1)
a,,, O & cos® a(R - (S;c”: J—GR—I:I (9.2)

When looking at the tangential component, mainlg tentrifugal but also the
gyrotation forces push the surface mass to thetequbut considering the radial
component, the closer to the equator the more ¥hetagion forces push the mass

one in the northern hemisphere, one in the southern

The differential spin of the sun is not explainedthis. For some reason, the spin
velocity at the equator is faster than near thegol

10. Binary stars with accretion disc.

Fast rotating star analysis : creation of burstsjrbulent accretion disks.

In section 7 we have seen that rotary stars havéetidency to evolve toward
a toroid-shaped star. Let’s take such a star withaeretion disk.

Near the rotary star we have the following. Thereiion ring is prograde at
the start of its formation. But the prograde motimesults into a radial
attraction of the ring towards the rotary stardeling

a O Vpr X 2 (fig. 10.4 , particles A, B, C)

When the matter of the accretion ring approachegdtial way, it deviates in

i
-

B
A" C” B’

side view Fig. 10.4 top view

retrograde direction, according (for particle Ada@’): ar 0 Va X 2 (fig. 10.4 top view).
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With fast rotating heavy masses this accelerasoaniormous. Then, when the particles go by retdegreay,

again an acceleration is exerted on the partidl@mother directioree [ Vg X 2 (particles A", C”).

As a consequence these particles are projected fa@raythe poles.

At the level of the equator, the mass is sent biagkards the accretion disc (particles B, B’). Weent an
accretion ring whose closest fraction to the rosday is almost standing still, with local progradtices.

If a particle, due to collisions, gets inside theotd to the level of the equator, it can be trappg the gyrotation
in a retrograde orbit (particle A™), or if progragdabsorbed. This effect can result in a tempaceoswding, after
which the accumulation should disappear again duthé limited space and because of the local gioota
forces. The observed spin-up and spin-down efiaetgpossibly explained by these trapped particles.

When these phenomena are observed, high energysXara related to it. It seems not likely that éhsrays
would be gravitational waves. But there is anofessible origin for these X-rays. One should nogéo that
the velocity of the bursts is extremely high, amdb@ably faster than light for some particles. Btita relativity
theory and the ether theories would say that higgrgies are involved. Considering that matter rapped
light”, and for ether theories, that the particie forced through a slow ether, the stability tefse particles
could be harmed seriously. If so, the light carapsdrom the trap, and scatter as X-rays.

Bursts of collapsing stars.

When a rotating star collapses, this happens ierg short time,
and it will result in a burst. What is its procéss

The conservation of momentum causes a quick ineref#s spin E? 0
when a collapse occurs. And an increase of spiocitgl results in
an fast increase of gyrotation forces : Fig. 10.5

The law (1.5) : OxgoO -002/0t

is responsible for a huge circular gravitation éoms the accretion ring. The attraction occurs iciraular way
instead of a radial one.

The consequence is a strong contraction of theetionrring, resulting in shrinking, and so a suddspulsion of
accretion matter, away from the star at the equatdrat the poles, as described in the formeraecti

A burst occurs both at the poles and at the lef/tHeaccretion ring (see fig. 10.4 and fig. 10.5).

Calculation method for the accretion disc of a binary pulsar.
Consider fig. 10.4 in order to analyse the absormpgirocess. Matter is absorbed according to equétio.1),

Fig. 10.6 Fig. 10.7

and will be attracted by gravitation and gyrotatiorces near the rotary star. This matter goesrpdey and
some of it will flow over the poles, which is thejected as beams. Some prograde matter at theoedpas|

can be absorbed by the rotary star. But some ntestay near the rotary star as a cloud, wisicubject to
the gyrotation pressure forces. A disc around oii@ry staiis being created according to this gyrotation press
The density of the ring will increase, and will apgach the rotary star. But because of the limitéckhess of
the ring and it's increasing pressure, it will asgnll toward the outside. The masses that areg@dtom the
companion will then knock the widened ring (fig..@)0
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The equilibrium equations can be produced agais titme for a ring of gasses. However, the veloeéctor of
the inner part of the disc near the rotary staemeines whether the disc material will be absortregjected.
Prograde matter can be attracted, but retrogradiénafalling matter is repulsed.

11. Repulsion by moving masses.

Repulsion of masses is deducted from drawing 1fadti¢le B), but also directly from the theory: whewo
flows of massesim/dtmove in the same way in the same direction, thpeetive fields attract each other. For

F Fig. 11.1

flows of masses having an opposite velocity, thedpective gyrotation fields will be repulsive idtclear that
the velocity of the two mass flows should be seerelation to another mass, in (local) rest, amgdanough to
get gyrotation energy created, as explained iri@edt

Spinning masses do the samyg
')
\7
Fig. 11.2

Here however, the spinning masses themselves dreateference gravitation field needed to getgymetation
effects produced.

12. Chaos explained by gyrotation.

The theory can explain what happens when two aaetss each
other. Gravitation and gyrotation give an noticeakfffect of a

chaotic interference. Let's assume that the orbpitthus of the small
planet is larger than the one of the large plavten passing by, a
short but considerable attraction moves the smihgt into a

smaller orbit.

At the same time, gyrotation works \8a [ Vg X £ on the planet

in the following way (fig. 12.1): the sun’s and tharge planet’'s Fig. 12.1
gyrotation act on this radial velocity of the plabg slowing down (The orbits are represented as ellipses)
it's orbital velocity. The result is a slower odlitvelocity in a

smaller orbit, which is in disagreement with théunal law of gravitation fashioned orbits :

v = (GM/r)*2 (12.1)

Thus, in order to solve the conflict, nature setiissmall planet away to a larger orbit. Again,aggtion works
on the radial velocity, this time by increasing thbital velocity, which contradicts again (12.%Je come so to
an oscillation, which can persist if the followipgssages of the large planet come in phase witbsititation.

One could say that only gravitation could alreagpl&n chaotic orbits too. No, it is not: if no gyation would
exist, the law (12.1) would send the planet badksroriginal orbit with a fast decreasing osdiikan. Gyrotation
reinforces and maintains the oscillation much nedfieiently, and allows even screwing oscillations.
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13. Thelink between Relativity Theory and Gyrotation Theory.

Two flows of massemn moving in the same way in the same directionaetitWhether one observer follows the
movement or not, the effect must remain the sanenwle apply the relativity principle.

The two points of view are compared hereunder.

Gyrotation Gravitation

dFd

AR

=

Q dF

m m o Fg 121 d|[

The following notations are used:
m = dm/dt and m = dndl
For thegyrotationpart, the work can be found from the basic formuiasections 1 until 3 :

FOOm and2mr.QO0 Tm

where F = dF/dl andt = 4t G/
So, E=2Gh/r . Now m=mv

Hence, the work is :

F.dr =2 GnPV3(r ¢ dr (13.1)
For thegravitation part, the gravitation dih acting ondl is integrated, which gives :
E=2Gn?/r

The work is : F.dr =2 Gmér dr (13.2)

Let's assume two observers look at the system imement: an observer at (local) rest and one in mewve
with velocity V.

An observer at rest will say: the system in movetmeh exercise a work equal to the gravitationtibé system
at rest, increased by the work exerted by the g¥imt of the system in motion.

A moving observer will say: the system will exemvark equal to the gravitation (of the moving sys}e
Because of the principle of relativity, the two ebsers are right. One can write therefore:

2 G (ﬂst )2

) 2
st +ZG(QV)51V = ZG(ﬂst)y
r rc’ r
where (M,)s{’ €.9. represents the moving mass, seen by the\stdsserver.
We can assume (due to the relativity principle}:tha

(ﬂst)v = (ﬂv)st . Hence, (ﬂst)st = (um, )st V1= "2/‘5’2

An important consequence of this is: the “relativieffect” of gravitation, or better, the time dglof light is
expressed by gyrotation. This could be expected fiee analogy with the electromagnetism.

+0 (13.3)
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In other words: when the gravitation and the gytiotaare taken into account, the frame can be c¢hfrsely,
while guaranteeing a “relativistic” result.

The fact that the neutron stars don't explode aahifs explanation through the forces of gyrotatibut can

also be seen as a “mass increase” due to thevistimtieffect. The mass increase of the relatitttgory is
however arequivalent pseudo masdsie to the gyrotation forces which act locallyemery point.

14. Discussion : implications of therelationship between Relativity and Gyr otation.

The discussion about the paragraph 11 relateset@dhsequences for the relativity theory. This gamgh is
treated separately ifRelativity theory analysed”in order to not harm the objective of this papdich is to
show how the gyrotation works and what it offerstfe study of the dynamics of objects.

Relativity theory analysed

15. Conclusions.

Gyrotation, defined as the transmitted angular mw@ by gravitation in motion, is a plausible smntfor a
whole set of unexplained problems of the univeliséorms a whole with gravitation, in the shapeaofector
field wave theory, that becomes extremely simplatbyclose similarity to the electromagnetism. Aincthis
gyrotation, the time retardation of light is lockied

An advantage of the theory is also that it is Eliah, and that predictions are deductible of lamsl@gous to
those of Maxwell.
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Lectures on “A coherent dual vector field theory for gravitation”.

The purpose of these lecturesis to get more familiarized with gyrotation concepts and with its applications.

Lecture A: aword on the Maxwell analogy

Concerning our starting point, the Maxwell theory, it is known that the (induced) magnetic field of the
electromagnetism is created by moving charges. We can even say, the only reason for the existence of the
(induced) magnetic field is the velocity of charges, which are moving in areference frame which hasto be a
field.

We shall seelater that the definition of item “velocity” is very important, and this will be approached in a
different way than in the relativity theory, without harming nor contradicting the relativity theory.

We know also that the magnetic field has an action which is perpendicular on the velocity vector of the charged
particle, and that the Maxwell laws are complying with the Lorentz invariance, so it is“relativistic” and takes
care of the time delay of light.

The magnetic field has to be seen as atransversal interference (or the transversal distortion) of a moving
charge's electric field in areference electric field. For an electric wire, this has been experienced. When the
interference has been generated, this magnetic field will only influence other moving charges.

It is attractive to say that also the gravitation is also influenced by moving masses, giving also a second field,
which is analogue to the magnetism.
And then, the Maxwell equations become very simple, because the charge is then replaced by the mass
(Coulomb law to Newton law) and the gravito-magnetic field becomes the transmitted movement by gravitation,
having the dimension s*.

Back to “ A coherent dual vector field theory for gravitation”.

Lecture B: aword on the flux theory approach

The basic induction formula of gyrotation can a so be understood the following way: Imagine a rotating sphere
with spin w. We know from several observations (disk galaxies, planetary system) that the angular movement of
the rotating centre is transmitted to the surrounding objects. So, what else but rotating gravitation field would
transmit it?

If we analyze My in the system of fig. B1, and if one can say that a certain effect is produced by gravitation in
motion, a certain function h(w) , generated by the rotation of this mass My, must be directly proportional to the
flow dmy/dit.

But we don't want to define the kinetic rotation of the rotary massindeed, but the gyrotation to a certain distance
of this rotary mass, generated by its gravitation field. Let’s show how this works.

w
m, mp
Fig. B1 i i
Let's take a spherical mass (in fact, the shape doesn't have any waW
importance) that of course creates afield of gravitation, and that
spins with rotation velocity W (seefig. B2). A my y

The study of an entity according to a flow can be made like a flux
(of energy). To apply thistheory, one can therefore define a
surface A of the spinning massin a stationary reference frame that
will form half section of the sphere. We isolate the half circle A
through which the whole mass of the sphere go in one cycle Fig. B2

("day"). A mass flow dmy/dt will move through this section.

Oct. 2003 1 p27 update 01/06/2004


http://www.wbabin.net/physics/tdm1.pdf
http://www.wbabin.net/physics/tdm1.pdf

© 2003 Thierry De Mees

The distribution of the velocities in the sphere generates a global transmitted angular movement by the
gravitation, called gyrotation W (direction of rotation axis).

And for this gyrotation W, thelaw F =m (v~ W) on amoving body is then transformed into F=m (v~ W)
for all bodies which are to a certain distance from my. So, W acts locally on My, after being “transported” from
M. So we can replace the certain function h(w) by another one, f(\W).

Here aswell f(W) of this sphereis directly proportional to the flow of mass through the surface A.
The rotation W and the gyrotation W have the same dimension, but are for the rest different entities: W has a
report with amassiin rotation, and WWwith arotating gravitation field.

We can see that the total distribution of Win that section A is related to dm/di.

We can easily see that : W = 0.

= dm
Hence we can say (flux theory): @(TW/1X) dA TS (B.1)
A

This solution is the simplified axi-symmetric solution for rotating spheres. So, we see that the flux which
describes the transmission of the gravitation movement is given by W, / §x.

The general form for TW, / fix isgiven by N~ W, with N = [11‘4 : 11‘); ,%4 ]

X V4

In general, one can say when applying the flux theory: the normal component of the differential operator of W,
integrated on asurface A, isdirectly proportional with the debit of mass through this surface. For fig. B2 one can
write:
N dm
@N " W,dA | —— (B.2)
A dt

This equation is similar to (2.2), where the factor 4p G /c? isneeded to obtain afull agreement.

Back to “ A coherent dual vector field theory for gravitation”.

Lecture C: aword on the application of the Stokes theorem and on loop integrals

Equation (2.2) can be interpreted as follows. (We use the theorem of Stokes for the gyrotation W)

The Stokes theorem transforms a two-dimensional curl distribution into a one-dimensional line vector. Thisis

extremely effective if we want to study thelaw F=m (v x W). Most of the effects which are explained in
this paper make use of this law.

Gauss and Stokes have proved the general validity of the idea of avector, surrounding aflux, valid for a vector
in general, and this theorem has been applied with success on fluxes of energy.
There is no argument for not applying it (or at least to check the validity) on all sorts of vector fluxes.

One can say therefore:

The closed loop integral that W forms around the boundary of the surface A is directly proportional to the flow
of mass through this surface.
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w W

® 4 X _» ®

fig. C.1 fig. C.2

Equation (8) isvalid for fig. C.1 aswell asfig C.2, and also for any closed loop.

It can appear strange to consider Wthat locally. Let's not forget that we wanted to study W very locally, just as
gravitation, dawned by point in the space, on all particles that would be present in the universe.

We will choose the representation by fluxes in the world of gravitation, and find:

Law of Gyrotation : OW.d=t dm/dt (C1)

In this equation, t isaconstant, equal to 4p G Ic? , asthe Maxwell analogy demands it.
The previous equation can also be written as:

OW.d =t @ v,dA (C.2)
A

With r the density of the mass, and V,, the normal component of the velacity trough the considered surface.

Very important to notice is that the gravitation field remains the same, with or without movement of the masses.
Only the (induced) magnetic field has to do with velocity of masses.

Back to “ A coherent dual vector field theory for gravitation”.

Lecture D: aword on the planetary systems

Small spinning mass near alarge spinning mass : a closer look to the orbits.

In the drawing below, we show alarge spinning object which hasin orbit a small object.

Which behaviour can the system have, depending on the orbit of the small object and the spins of the two
objects?
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The First Effect

The small mass, name it a planet, is rotating around a star. Thisis of
course due to the gravitation force, in equilibrium with the centrifugal
force. But in the gyrotation field of the star, the planet will feel another
force, perpendicular to the gyrotation field.

Thisforce can be split in one force F. pointing to the centre of the star, and
one, F, perpendicular to the first, tending to move the planet downwards.

When the planet arrives after a half revolution at the other side, also the
forces will be inverted:

F. is still pointing to the centre of the star, and F; tends this time to move the planet upwards. Thiswill bring the
planet away from the plane through the equator of the star.

But when the orbit direction of the planet is retrograde (the orbit spin of the planet and the spin of star are
opposite), the orbit derives away ! The star seems gjecting the planet !

What happens with this planet ? We check it out. The planet will move towards different oriented gyrotation
fields of the star, but the orbit diameter will stay unchanged, as before.

. \ \\
And after awhile, it becomes a planet with an orbit in the other direction, in order to get forces which tend to the
plane which is perpendicular to the spin of the star !

Thefirst effect: In both cases, F. will create a new equilibrium with the gravitation force, but F; tend to move the

planet in a plane, perpendicular to W. All the orbits of the planets tend to go in the same direction of the star’s
spin, prograde.

The Second Effect

But what about the influence of the planet’s rotation? The planet can be seen as a multitude of rotating mass
dipoles. Each dipole will feel the force F = m (v x W) and will create a momentum.
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After awhile, the planet arrives at the plane through the equator of the star. The direction of the forces change,
but the momentum keeps the same direction.

When the planet arrives at the other side of the orbit, the forces will turn differently again, as shown on the
second drawing. Again, the same momentum as before is acting on the planet: it wants to put the rotation in the
opposite direction than the direction of the spin of the star, as shown in the third drawing.

We check this out with afew other situations:

When the rotation axis is oriented in a different direction:

We conclude that in this plane, the spin of the planet tends to put the its rotation parallel to the spin of the star,
but in opposite direction. At the other hand, it is clear that in the two first examples, where the spin is almost
parallel and in the same direction, the momentum tries to redress the rotation to an inversed spin, althoughiitisa
very small momentum compared with the momentum of the planet. The rotation becomes labile.

Only the last drawing shown gives a stable situation.

Back to “ A coherent dual vector field theory for gravitation”.

Lecture E : aword on the formation of disk galaxies

From a sphere to a disk.

When we see at shapes of disk galaxies, how beautifully flat they are, it is strange that a rotating galaxy centre
would be the reason of it. It is acceptable that the rotation of this centre is somehow transmitted to surrounding
objects, but the flat shape is quite a surprise. However, the gyrotation forces explains perfectly this behaviour.
The surrounding orbits obey to a downwards pressure if it is above the equator, and an upwards pressureiif itis
under the equator. Retrograde orbits are not allowed. Let’s follow the formation of such a galaxy.

In order to fix ideas, we can imagine asmall 'big bang' of a gigantic object permitting to give birth in a galaxy.
We will follow the stars that remain in the action field of the system’s gravitation.

The explosion is hon symmetrical, causing the rotation of some parts. When the galaxy retract due to gravitation,
the central zone can have a global angular momentum, whose spin velocity increases with its retraction.

The phenomenon that we will describe starts at the centre of the galaxy: following the First Effect (see Lecture
D), the orbit of every star orbit cannot be retrograde, but is prograde, and will move toward the equator plan the

Oct. 2003 5 p31 update 01/06/2004


http://www.wbabin.net/physics/tdm1.pdf

© 2003 Thierry De Mees

of the rotary centre of the galaxy (angular collapse). The spherical galaxy turnsinto an ellipsoid galaxy and
finally to a disk.

Greatly exaggerated, it could look like the fig. E.1.

Taking into account the First Effect, all starswill end up having the
orbit in the same sense that the sense of the rotation of the centre,
depending on the amplitude of the gyrotation. Every star will have
an absorbed oscillation, but it can become a group of starsin phase,
or even a part of the disk. It can become a disk with a sinuous

aspect.

And in thisway, the gyrotation widensits field in agreement with
the conservation law of the angular momentum.

The centreis obviously not a point but an amalgam of stars that has
own rotations in various directions. Farther on the disk, only a gravitmagnetism force of the centre and of the first
part of the disk exists. Closer to the centre the stars have chaotic movements, what the First Effect does not
cover.

From a disk to a spiral disk.

The pressure on the stars exerted by the gyrotation flattens the disk and increases its density so much that several
stars will get in fusion. Several high density zones will create empty zones el sawhere. Finally, some structured
shapes, such as spirals or matrices, will begin to be shaped.

Fig. E.2

Since the creation of the galaxy, along time has passed. The mystery of the (apparently too) low number of
windings of spiralsin spiral galaxiesis explained by the time needed for the angular collapse and the formation
of the spirals.

Back to “ A coherent dual vector field theory for gravitation”.
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For a better understanding, pleaseread first : “ A coherent dual vector field theory for gravitation”.

Discussion: the Dual Gravitation Field versusthe Relativity Theory

What is the extend of the Dual Gravitation Field Theory (Gravitomagnetism)?

The gyrotation theory is atheory at Newton's and Kepler's “level”. By thisis meant that when Newton and
Kepler observed the sky, they could not discover more than the radial effect of gravitation. Now, we can observe
supernova and binaries. With the gyrotation theory, the transversal part of gravitation is confirmed in the
Maxwell analogue equations. The theory corresponds fairly well with observation, solving the “missing mass’
problem and many other questions.

The gyrotation theory is not pretending to solve the cal culation method for time, length, the gravitation factor G,
etc. in other systems. It hasto be seen as the extension of the basic Newton's law, nothing more. But the theory is
necessary to fully understand gravitation motions.

When we now reach this level of understanding, we can indeed wonder if time, length, the gravitation factor G,
etc. vary in place and in time, and by which parameters.

For example, the problem "time" is more a problem of measurement than a problem of fundaments only. Earlier,
scientists took the earth's day or the earth's year as atime unit. When you see arotary star with ablack spot on it,
somewhere in space, you could take the frequency of the black spot as atime unit too.

Nowadays we have taken alight signal from an atomic vibration as unit, especially to measure very short events.
This choice has a consequence, as it has been searched after since Einstein : this time unit is only valid for light
(and "trapped light") at a certain place (and even only at a certain moment). The challenge isto find away to
compare systems at different places and times and to predict (calculate) what light does, what atoms do in those
systems, and how the basic parameters might change.

But again, gyrotation theory does not pretend having much more than the "Newton and Kepler level" of
Gravitation understanding, such as relativistic properties, nor prediction possibilities in terms of fundamental
units. It does calculate what happens locally in a system with local time, distance, mass, speed of light and G.
And it can maybe help us getting a better view on the relationship between systems at different places and time.
By comparing cal culations and observation, we should be able to clarify the fundamental links between the
dimensional units.

The centenary of the relativity theory.

No one puts Einstein's geniality in doubt. The introduction of the relativity principle dominated the twentieth
century completely. In a period where the cosmic observations were quite limited, the theory of the relativity had
predicted events that appeared to be correct, like the bending of light by gravity, and the advance of Mercury’s
perihelion.

The big number of cosmic observations made so far has been giving so much substance to eventua theories
enabling to provetheir validity, that it appears quite contradictory that so few solutions have being brought when
it comes to the general relativity theory, while thermodynamics and quantum mechanics are getting many
successes in the description of physics.

Let’s debate on the relativity theory according to the rediscovery of the gyrotation W (the field of Heaviside),
which explains the influence of an object’ s velocity in its field of gravitation in an analogous way as the
magnetism in the el ectromagnetism.

The possibility of mathematical deduction of this field, its clear and unambiguous physical meaning, and its
anal ogy with the induced magnetic field, makesit area addition to gravitation theory, sinceit is directly derived
from the gravitation field's movement.

This field complies with @W.d=4pGc?.dm/dt )

where dm/dt is the mass flux surrounded by the loop integral in the left side of the equation.
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The Heaviside gyrotation field enables a precise description of many cosmic events, such as the formation of a
plane galaxy, the shape of the supernova explosions, strengths keeping the fast rotating stars together, the torus
shape of rotating black holes, etc.

In the paper, “ A coherent dual vector field theory for gravitation” , we examined two parallel mass fluxes with
equal velocity in the same direction. One could conclude that the work of a moving system seen by an observer

at rest equals W.(1+V?3/c?), and the work of the moving system seen by a moving observer equals W.

When we claimed the application of the equivalence principle we got the equation

ZG(mzst)st + ZG(mzv)st V2 _ ZG(mzst)v
r rc - r
The last term is zero because the velocity is zero in that case.
Taking into account the relativity equivalence one could say that amass at rest seen by a moving observer equals

amoving mass seen by an observer at rest, (Mg)y = (IMy)« .

+0 ()

This gives finally the requested equation (Mg)g= (M,)s(1-V/c?). 3)

When de gyrotation is taken into account, the factor dl—vzl Cz) is thus the difference between the gravitation of
the moving system seen by a moving observer, and the gyrotation of the moving system seen by an observer at

rest. To reduce the formula to one observer, one has only to apply the relativity principle (Mg)y = (M)« -

But can one do such manoeuvres in physics with impunity?

LorentZ stransformation, Michelson-Morley's experience, and Einstein’ srelativity theory.

Lorentz noticed an invariance on the Maxwell equations, by using the factor dl—vzl CZ).

On the other hand, the experience of Michelson-Morley had to determine the speed of the ether, and theoretically
foresaw the use of this same factor O(1-v%/c?) to this effect.

It istherefore normal that this factor seemed essential to Eingtein, which allowed him to prove the equation E =
mc? and on the other hand to postulate that the speed of light is constant in all directions (for the observer).

The major advantage of the theory of relativity was that it did not necessitate to take into account the absolute
speed of the ether. The experience of Michelson-Morley didn't succeed, which made of the invariance of Lorentz
theideal basis for a solution.

Thisiswhat happened after the experience of Michelson-Morley : sinceit didn't result into anything, an inverse
correction had to be made, resulting in the interference of the two light beams becoming zero after their
separation and their re-grouping, as was required by the experience. It was in line with the assumption that the
speed of light would be constant and identical in all directions. It legitimated the equation E = mc2, which also
necessitated the correction of the relativistic mass for al relative speeds (below C).

The general relativity, which has as main actor the mass, forced Einstein to make a choice. Either to abandon the
principle of relativity, because the masses fix the free movements in an absolute way (instead of arelative one),
either to give to the invariance of Lorentz a“totalitarian” character: to consider the universe as deformed as
gravitation "distorts" it, and to distort in precisely the same way the coordinates that describe this universe.

Discussion of the experience of Michelson-Morley

When at the test of Michelson-Morley the light is partialy reflected and partially passed by the mirror, it is sent
away by 90°. By the rotation of the earth a gyrotation force will work on the light, and bend it (depending from
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the case, i.e. downwards). When the second mirror again reflects the light, the gyrotation works exactly in
inverse direction (e.g. upwards). However, Michelson and Morley assumed that the light is sent in a certain
direction, because of the moving ether, in order to get an interference (which corresponds to the contraction of
Lorentz).

If the ether of the earth has a speed zero, interference becomes indeed zero.

Galaxies with a spinning centre.
Earlier, we have studied disc galaxies.

We have seen that the stars of galaxies balance either widely around the axis of rotation of the central black hole,
either around its equator. It depends on the fact whether the star has an orbit or not.

The orbit of the stars accelerates or slows down according to its change of ope, like a harmonic oscillator. A
field that transmits the kinetic energy therefore exists: the gyrotation field.

The speed must then be defined according to the strongest gravitation fields nearby, and in principle one gets for
each object simultaneously a set of speeds, relative to each gravitomagnetism-field of the universe.

If the strongest gravitomagnetism-fields nearby are taken away, the equation (2) seems to be correct, and to lead to
Lorentz’ formula.

Worlds

In the special relativity theory, Einstein gave the example of two trains which move with a relative speed. Apart
from those two trains nothing has been taken into account. Einstein created a "world". This means that the
specia relativity theory is only applicable for two trains with a relative movement, without any other object.
When Einstein describes situations with a room falling freely in a gravitation field and with an accelerating
room, Einstein again creates worlds. Nothing exists except this room and forces on that room. When one makes
the equation (2), one has again created a world, because nothing existed outside the experience.

But universe is not alab. In reality we should always state that, i.e. for the left side or the right side of the
equation (2) there exists a sufficiently large mass at finite distance, whose gravitation field reaches the test
laboratory. Otherwise no “local absolute speed” can be defined. And only when no speed can be defined, we
could make use of the relativity theory, and therefore get the equation (2) as avalid option.

Experiment on ‘local absolute speed’

Consider the experience of parallel mass streams, but with opposite velocities (+v en —v). Depending on the
immobile observer -compared to the mass streams-, or an observer moving with one of the streams, the results
become totally different when using the gyrotation theory. But when one sees the observer as alarge mass, the
logic with the gyrotation theory comes back.

But if we would do the experiment of chapter 12 in “ A coherent dual vector field theory for gravitation” with
mass streams at respective velocities —v and +v (placed at infinity from other masses), we may not replace those
velocities by respectively 0 and 2v, because of the symmetry principle in nature. Theoretically, the results would
be totally different when applying the theory blindly.

Concerning the ether (the hypothetical carrier of light and gravitomagnetism waves), one has to acknowledge that it
does not move in relation to the observer. Let’ s leave unexplained if the ether is a separate entity, or if itis

formed by ateamwork of the gravitomagnetism and the el ectromagnetism themselves.

If one applies the gyrotation theory, one should state: the velocity of the ether (whatever it might be) isrelated to
the sum of all the gravitomagnetism waves on the considered point. And its velocity is zero in relation to the object
which measuresits velocity. Only this way of seeing the ether is compatible with a constant speed of light.

Thus, the velocity of an object must be seen in relation to all the existing gravitation and gyrotation fields on that
object. Only then, avalid reference frame can be chosen, namely the strongest gravitation field(s) of the system.
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I sthe relativity theory wrong?

When we limit its applications strictly to what is was meant originally, it is not wrong. The principles which are
deducted from the retardation of light are of course valid. And when calculations are made for events that are
related to light, this can lead to the Lorentz transformation as well. The relativity theory is applicable for light
(electromagnetic waves) and gravitomagnetism waves. Perhaps even not for electromagnetic and gravitomagnetism
fields. It describes accurately what a wave does according to the observer. It was seen earlier that the relativity
theory applies the gyrotation, but that it is cal culated backwards to the point of view of the observer.

However there are many scientists who found imperfections to the theory of special relativity, or found
improvements for three-dimensional applications. These researches will help astronomers interpreting
observations.

Indeed, the theory causes problems. When Einstein demonstrates the way how he calculates the relativity
equation X2 - ct? = x'% ¢'?, he caculatesthe light motion in the +X direction and combines it with the
light motion in the —X direction. He combines X — Ct and X + Ct into one equation, X2 - 2. How in physics
can we combine two opposite motions at the same time? One plausible way is the following : alight beam which
is subject to atransversal Doppler effect of its wave, whose wave-cycle goesfirst in the +X directions and than
in the —X direction, resulting in X — Ct and X + ct. But fundamental physics' knowledge stops here.

At the other hand, the relativity theory is not valid to explain how masses really behave. This explainsthe limited
successes in thisdomain. All the successes of the relativity theory are exclusively related to how the observer
sees the light, coming from an event somewhere in space.

I stherelativity theory compatible with the gravitomagnetism theory?

Y es, to a certain extend. Or better: they are both useful, but they describe different things. The relativity theory is
only applicable in arestricted world, where the carrier of light is bounded with the observer, and without any
fixed reference frame (such asit is valid for light). Moreover it only expresses how the data of light sources of a
moving event can be mathematically transformed back for a stationary observer, but not what really happens
with the objects.

Indeed, if one assume that there is only gravitation (and not gyrotation) of a stationary observer towards the
stationary frame, one must say (to apply the relativity theory):

if one wants to have a moving frame examined by a stationary observer, one should do the following: ook at the
moving frame with a moving observer (thus simply the gravitation law) and adjust the point of view of the
moving observer to the point of view of the stationary observer (deduction of the gyrotation law).

Calculated the other way around (opposite to the gravitation + gyrotation laws) one can therefore express the
moving frame (examined by a stationary observer) into a stationary frame which is corrected for its vel ocity.
The application of the relativity theory did indeed arise the term of the gyrotation, but caught in an expression,
just asif an observer would examine an egg and only see the shell, whereas in fact the yolk and the blank in the
egg are present but hidden. And this happens really with light, because light adapts itself to each carrier of light,
in other words, the ether of the masses where the light is coming through until the ether of the observer.

This means that we have two valid approaches. oneis the gravitomagnetism, valid for the description of dynamics,
for any velocity, even faster than light, and another which isthe relativity theory, only fully valid for the
“perception” of electromagnetic and gravitomagnetism waves.

Inertial mass and gravitational mass

At the study of rapidly rotating stars we came at the conclusion that the gyrotation is responsible for the non-
exploding of compact stars. The gyrotation on a moving mass gives as a result aforce, which the relativity
theory interprets wrongly as a mass.

We should define gravitational mass and gyrotational “pseudo-mass’ as totally different entities. Inertial mass
should be defined as the mass which responds to forces such as gravitation, gyrotation and other forces acting on
the mass. Gravitation mass is the mass which induces centrifugal forces on satellite masses in such way that it
allows the formation of closed eliptic orbits.
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When the relativity theory is applied on moving masses, the mass and the gyrotation forces are mixed into a
whole. This allows only with difficulty to conclude something about the laws of our universe.

Conclusions.

Since several decades, one has tried to use the relativity theory as well for the mass dynamics as for the
description of light and fields. Gravitomagnetism however is doing the job consistently and fully for the
description of mass dynamics. It is not in contradiction with the genera relativity theory for what it was meant
for, but it completes the Newton gravitation theory and is utmost effective for the description of the dynamics of
Masses.
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Back to the paper
“ A coherent dual vector field theory for gravitation”
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Saturn and Its
Dynamic Rings

What is Gravitomagnetism all about? How does it work?
A marvelous experimental object is formed by the rings of the planet Saturn. The rings are made of

tiny rings, as the grooves of an old long playing vinyl. Some rings are made of solids, others of very
fine material, maybe gasses.

Both kinds of rings are analyzed with the novel gravity theory and the discovery how a large flat
disc became alarge set of tiny rings, is amazing!
Enter the wonderful world of the Saturn rings!
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Why does Saturn have many tiny rings ?
or

Cassini-Huygens Mission: New evidence for Gravitomagnetism with Dual Vector Field

T.DeMees - thierrydemees@pandora.be
Abstract

This publication is based on the fundamentals of the dynamics of masses interacting by gravitation, given by the Maxwell
analogy for gravitation or the Heaviside field. In our paper “ A coherent dual vector field theory for gravitation” © oct 2003,
we have developed a model.

This dynamics model allowed us to quantify by vector way the transfer of angular movement point by point, and to bring a
simple, precise and detailed explanation to alarge number of cosmic phenomena.

With this model the flatness of our solar system and our Milky way has been explained as being caused by an angular
collapse of the orbits, creating so a density increase of the disc. The constant velocity of the stars has been calculated, and
the halo explained. The “missing mass’ (dark matter) problem has been solved without harming the Keplerian motion law.
The theory also explains the deviation of mass like in the diablo shape of rotary supernova having mass losses, and it
defines the angle of masslosses at 0° and above 35°16'.

Some quantitative calculations describe in detail the relativistic attraction forces maintaining entire the fast rotating stars,
the tendency of distortion toward atorus-like shape, and the description of the attraction fields outside of arotary black hole.
Qualitative considerations on the binary pulsars show the process of cannibalization, with the repulsion of the mass at the
poles and to the equator, and this could also explain the origin of the spin-up and the spin-down process. The bursts of
collapsing rotary stars are explained & well. The conditions for the repulsion of masses are also explained, caused by
important velocity differences between masses. Orbit ‘chaos’ is better explained as well. Finally, the demonstration is
made that gyrotation is related to the Relativity Theory.

The detailed photographs of the Saturn rings made by the Cassini-Huygens mission gives us new evidence for the validity
of Gravitomagnetism. It explains the presence of the flat rings around Saturn, the presence of thin parallel rings,
the shape of the edges of the F-ring and the reason why such rings are present at the border of large ring zones.

Keywords. gravitation— star: rotary — disc galaxy — repulsion — relativity — gyrotation — Saturn — methods : analytical
Photographs : ESA / NASA
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1. Introduction.

1.1. The Maxwell Analogy for gravitation

Heaviside O., 1893, transposed the Electromagnetism equations of Maxwell into the Gravitation of Newton, creating so
adual field: gravitation and what we propose to call gyrotation, where the last field is nothing more than an additional
field caused by the velocity of the considered object against the existing gravitation fields.

The formulas (1.1) to (1.5) form a coherent set of equations, similar to the Maxwell equations. Electrical charge isthen
substituted by mass, magnetic field by gyrotation, and the respective constants as well are substituted (the gravitation
acceleration is written as g, the “gyrotation field” as W, and the universal gravitation constant G as Gl= 4 z).
We use sign U instead of = because the right hand of the equation induces the left hand. This sign will be used when
we want to insist on the induction property in the equation.

FUm(@+v W) (1)
N.gur/z (1.2)
2N WU jlz+ g/t (1.3)

where | isthe flow of mass through a surface.

It is also expected divwe NW=0 (1.4)
and N'gu -TW/Tt (1.5)

All applications of the electromagnetism can from then on be applied on the gravitomagnetismwith caution. Also it is
possible to speak of gravitomagnetism waves, where

cc=1/(zt) (1.6)

1.2. Law of gravitational motion transfer - Equations.

In this theory the hypothesis is developed that the angular motion is transmitted by gravitation. We can indeed consider
each motion in space as a curved motion.

Considering a rotary central mass My spinning at a rotation velocity W and a mass N in orbit, the rotation transmitted
by gravitation by My to Mp (dimension [rad/s]) is named gyrotation W from My to M.

Equation (1.3) can also be written in the integral form. Hence, one can write:

@N "~ W), dA U 4p Grn/c? (L.7)
A
In order to interpret this equation in a convenient way, the theorem of Stokes is used, and applied to the gyrotation W.
Ow.d = @N "~ W), dA (18)
A

Hence, the transfer law of gravitation rotation (gyrotation) resultsin:

Ow.d 0 4p Gm/c? (1.9)
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1.3. Gyrotation of rotating bodiesin a gravitational field.

For a sphere, we found:

Fig. 1.1
Wi U ipzﬂ{w (L xr? - ixRZ) - M] (1.10)
C 5 3 5
. 4pGrRf w (W r
Wext U Erg, 2 3 " al 2 ) ] (1.11)
For homogeny rigid masses we can write :

(Reference: Eugen Negut,

www.freephysics.org) Weyt U GL(FZ X[W - w ] (1.12)
The drawing shows equipo- 5r’c r

tentialsof —W.

2. Saturn’srings.
2.1. Basic data

Some basic data concerning Saturn will allow usto cal culate the gyrotation at any point of space.

diameter at its equator : 120.536 kilometres
mass: 5,69 E+26 kg
rotation period : 10,233 hours
Saturn’srings:
Distance* Width Thickness Optical Mass
Name (km) (km) (km) Depth @  Albedo
D 66,000 - 73,150 7,150 ? 0.01 ? ?
C 74,500 - 92,000 17,500 ? 005-0.35 11x10* 0.12-0.30
Maxwell Gap 87,500 270
B 92,000 - 117,500 25,500 01-1 0.8-25 28x 10 0.5-06
Cassini Div 117,500 - 122,200 4,700 ? 0.05-0.15 5.7 x 107 0.2-04
A 122,200 - 136,800 14,600 01-1 0.4-0.5 6.2 x 104 0.4-0.6
Encke gap 133,570 325
Keeler gap 136,530 35
F 140,210 30- 500 ? 0.01-1 ? 0.6
G 164,000 - 172,000 8,000 100 - 1000 10° 10%° ?
E 180,000 - 480,000 300,000 1,000 10° ? ?

* The distance is measured from the planet centre to the start and to the end of thering.

2.2. Formation of rings.

Every orbital masswill get a pressure towards Saturn’s equator plane. We consider a prograde orbit (fig.2.1).
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If Vp = I' Wy is the orbit velocity of the mass My , it gets an
acceleration: @p U Vp~ W, where @y is pointed in a direction,
perpendicular on the equipotential path. One finds the tangential
component @yt and the radial component apy out of (1.11).

.: The acceleration ap; always sends the orbit of M, toward the
K plane of the equator of M in a prograde orbit. The component apy

g L is responsible for an small orbit diameter decrease and a small
S~ -7 Fig. 2.1 increase of velocity, due to the law of conservation of energy :
v = (GM/r) 12 2.1)

2.3. Formation of gaps between the rings

The gyrotation pressure caused by apt will tend to flatten the rings until almost zero.
This is more or less possible as far as the material is exclusively made of solids. With
gasses, we will have adifferent situation, explained in next section.

At the beginning, the gyrotation’s angular collapse is causing a high density at every
place of the ring because Saturn’s gyrotation pressure pushes the ring to be as thin as
possible. At first, the density is more or less uniform, slightly increasing or decreasing
at larger or shorter distance from Saturn, depending from the original local density of
the cloud around Saturn, before the collapse. After the collapse, the gyrotation forces
will keep the ring very thin closer to Saturn, and less thin at larger distances.

The following phenomena will occur now, caused by gravitation : the high local
density of the ring will force a conglomeration of masses.

Fig. 22 Saturn'sAring

We get a ring whose section is shown in fig. 2.3 having its own gyrotation fields. The gyrotation from Saturn is not
taken in account here, because it gives a quasi uniform extra amost vertical field. In fig. 2.4, we show the gyrotation
forces working on thering, and afield which is perpendicular to it, representing gravitation.

g
w

Fig. 2.3 ( : )

W Near the edges of the upper side of the ring, a gyrotation force is acting due to the

velocity of the edge’s part and its mass, given by equation (1.1).
FWx FW FWy The gyrotation force'has got two components, and the vertical 'one, FWY (fig. 2.4)
tries to reduce the thickness of the ring, and exactly the same is happening at the

T T down side of thering, at the same place X, where an upwards FWy acts.

Fig2.4 At the edge however, a greater compression is created by the component Fyyyx ,

which increases the density of the edge. The mass flow density increases as well,
and gyrotation increases, helping the gravitation forces. Indeed, the ring is made of blocks, and gyrotation forces make
these blocks really move. Every motion however will have consequences for the energy conservation law between
gravitation and centrifugal forces, expressed by (2.1).
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The blocks that move away from Saturn will get an orbit which slows down and the blocks at the other edge of the ring
will get a faster orbit velocity. Very probably, the blocks at each edge will get a turbulent double circular motion and
consequently endure many collisions (fig. 2.5.a), while the rest of the ring tries to remain in the correct orbit without
turbulences. The edges become more compact but turbulent, and probably the blocks become smaller and more
numerous because of the many collisions. In section 2.4 , it will become more obvious how we come to this turbulent
double circular motion, when we will handle the process with gasses.

Even a small change of the edge’s outline, or a small gap between the edge region and the rest of the ring will alow the

W w
N——

Fucl (2 F “Fon
ttt

Fig 2.5.a Fig2.5.b

g —

gyrotation forces to change it’s shape (fig. 2.5.b) and get opposite gyrotation forces Fy at the split point. Slowly but
surely, the edge’ s shape becomes circular due to the new orientation of the gyrotation forces.

Turbulent motions decrease and a more stable tiny ring is created out from the edge, helped by both gravitation and the
novel gyrotation forces.

When this part has been separated (and the same happened at the other edge of the ring) we get a new shape of the
gyrotation equipotentials’ paths, as shownin fig. 2.6.

W

@« | DO

Fig. 2.6
The separations reduces the width of the remaining ring.

But still, the same process is able to split off another mass of the new formed edges. In this example, the next separated
mass will be all nearly as big as the first one. In redlity, the size of the new ring is somewhat different : the influence of
the first separated tiny ring reduce slightly the compression power of W at the new edges of the large ring. Every new
separated massis then successively slightly smaller than the previous one.

The result is a succession of separations of ring-shaped masses, which become smaller and smaller the more we reach
the centre of the original ring.

The larger the separated mass, the larger the gap near it, what means that the average density remains uniform as it was
before the separations.

2.4. Ring F : rotating gasses.

The shape of a part of thering F is strange: its lookslike drops or clumps; it was thought that it was a succession of tiny
moons (fig. 2.6). In fact, we will show below that it is a beautiful demonstration of the gyrotation forces.

Let’s start from the assumption that this part of the ring is a gas cloud, or made out of fine particles.
The gyrotation acceleration on a particle of the cloud is pointed perpendicularly on the gyrotation :
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N

Fig. 2.7

Fig. 26 Ring F
avU v’ Wy (fig. 2.7).

The acceleration ayy creates a new equilibrium with the centrifugal force besides the pure gravitation, and flattens the
cloud. Gasses however do not remain at rest. When a particle is moving in the direction as shown in fig. 2.9.a (a

Fig. 2.9.a Fig. 29.b

detailed view of fig. 2.7), the displacement towards Saturn will result in a higher orbit speed due to equation (2.1).

At the other hand, an acceleration ay U V~ Wp which is now pointing against the orbit velocity vector, is tending to

slow this orbit velocity down. And this will bring the particle again in a higher orbit, farther from Saturn, due to the
conservation of energy (potential and kinetic). The result is aleft turning screw movement.

A particle however shown in fig. 2.9.b will get aforce pointing in the direction of the orbit velocity, increasing it, and
this will bring it in a lower orbit due to equation (2.1). And again, the rotation continues, this time as a right-hand
turning screw movement. An important difference compared with the case of fig. 2.9.a is that the forces are smaller

because of the smaller angle betweenV and W

Fig. 2.9.c Wp Fig. 29.d

Aswe can seein fig. 2.9.c and 2.9.d, the given velocities will
create an inverse rotation compared to the former cases.
When ay is increasing the orbit velocity, this happens in a
higher orbit, and when it decelerates the orbit velocity, this
happensin alower orbit.

We conclude that the spiral rotation is double : a mainly left-
rotating screw for the upper part of the cloud becoming then
larger (fig.2.9.a, then fig 2.9.d), and mainly right-rotating
screw for its lower part becoming then also larger (fig.2.9.a,
then fig 2.9.d). Both actions are occurring at the same time,
and cause drop-like shapes or knotsin therings.

Fi.g. 2.10 Knots, part of  Fig. 2.11 Rippling ringis,
Encke Gap part of Encke Gap
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Concerning the gyrotation of the gas ring itself, it is only causing a radial or an
increasing or decreasing orbital movement (fig. 2.9.e), and does not influence the
described phenomena.

Finally, we should insist on the reason why these ribbed rings are more evidently i Wp
present at the edges of the rings. The reason has been explained in section 2.3 : the ~ Fig. 29.€
turbulence of the original edges is much higher than in the other parts of the ring,

causing smaller particles by collisions and by the more adequate orientations of the
gyrotation forces.

3. Conclusion

The gyrotation, defined as the transmitted angular movement by gravitation in motion, is a plausible explanation for the
formation of the Saturn thin disc, the tiny rings, and the drop-like or ribbed rings. It explains many cosmic phenomena
described in : “A coherent dual vector field theory for gravitation” De Mees, T., 2003 aswell.
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On the dynamics of Saturn's spirally wound F-ring elge.

Described by using
the Maxwell Analogy for gravitation.

T. De Mees - thierrydm @ pandora.be

Abstract

The F-ring of Saturn shows a spirally wound eddeaJe deduced its qualitative behaviour in secZidnof “New

Evidence for the Dual Vector Field Theory for Gtatibn (Cassini-Huygens Missidn) These spirals form
regular buds with an amplitude and a wavelengtte dim of this paper is to show the relationshipreen the
physical dimensions of the buds and the orbitabaig} of the F-ring's edge.

Keywords Saturn — gravitation — gyrotation — F-ring.
Method Analytical.

1. The Maxwell Analogy for gravitation: equations and symbols.

For the basics of the theory, | refer toA ¢oherent double vector field theory for Gravitati. The most relevant
parts are summarized hereafter.

The laws can be expressed in equations (1.1) ((h6d below.

The electric charge is then substituted by masspthgnetic field bygyrotation and the respective constants are

also substituted. The gravitation acceleration i#ten asg , the so-calledgyrotation field as £2, and the

universal gravitation constant out G* = 477, whereG is the universal gravitation constant. We use &ign
instead of = because the right-hand side of thatimns causes the left-hand side. This signwill be used when
we want insist on the induction property in the atpn. F is the resulting forcey the relative velocity of the

massmnwith densityQin the gravitational field. Anglis the mass flow through a fictitious surface.

FOom(g+tvxQ) (1.2) divjO -dpl ot (1.4)
0.9 0p/¢ 12 gve=0.0=0 (L.5)
ccOxQ0 jl{+ dglot 1.3

1< J 43 Oxg O -dRIot (1.6)

It is possible to speak of gyrogravitation wavethwiansmission spedi

=1/({r1) (1.7) wherein r=4nG/c
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2. The F-ring.
2.1 Visual properties of the F-ring.

The F-ring is much larger in shape then the mahgrathin rings. The inside structure is also fiaed foggy. It is
made of gasses, which are shaped as spirally waegdlar buds.

A recent photograph by the Cassini-Huygens Misstoows them clearly.
Let us call the wavelengih and the radius of the tiny riffg: (see fig. 2.1).

S
LZZ\‘/ n

Fig. 2.1 a. F-ring : detafESA / NASA) Fig. 2.1 b. F-ring : deta{ESA / NASA)

2.2 Defining the gyrotation field of Saturn and #waveling of the global ring.

Consider a rotating sphere, enveloped by its gatioit field, and at this condition, we can applg #malogy with
the electric current in closed loop, integratedrdfie spherglReference: Richard Feynmann: Lecture on Physics)

The result for the equatorial gyrotatid2 at a distancé from the centre of the sphere with radiRss given by
the equation (seeA‘coherent dual vector field theory for gravitatiamguation (4.3) wheréve r =0) :

_GmR’

0=
5r°c?

2.1)

where @ is the angular rotation velocity of SaturR its radius andr the orbital radius of the F-ring. This
gyrotation field points exacty opposite to the fiota vector of Saturn.

This gyrotation field generates a force on the mg\particles in the F-ring.

In my paper Cassini-Huygens Mission: New evidence for the Ga#ieinal Theory with Dual Vector Field,
section 2.4 , is explained how we come to smaltsssive rings. In the beginning, there was a clawaind
Saturn, which rotated around the planet. Thesevithaal orbits swivelled all to the equator, due Saturn's
gyrotation field, and they formed a huge, flat disk

Just for information, note that irSWivelling Time of Spherical Galaxies Towards DEsMaxie$ | explained the
proces of swiveling, and | calculated the swiveliimge for a disk galaxy. Adapted for the Saturm&k dthis gives:
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3
r=_°<|r (2.2)
WR\ G m

The swiveling timeT is fully related to Saturn's dynamics and the gimsiof the cloud's particle. The equation
(2.2) is an average for the totality of the paeticlaying at a distandefrom Saturn's centre. At a time, half of
the particles have reached equator for the firsetiThey will then perform an extinguishing harntomotion
around the equator. After a time 8T , all the particles at the distantehavereached the equator for the first
time.

2.3 The creation of spirals in the gas ring.

The original global disk has a global gyrotatiogldi which collide with the circumferential path thie section's
surface. For the detailed explanation, selew Evidence for the Dual Vector Field Theory faia@Gtation
(Cassini-Huygens Missiohat section 2. The most relevant parts are sunredrereafter.

Moons (larger objects) captured some matter ofrthgsinside its orbit, creating gaps.

At first, the rings at the edges, near the gapeveplit off from the global ring. 0
These outer tiny rings are larger, because theagladyrotation field is then the -
largest. With each split-off, this global gyrotatifield becomes smaller.

The orbital velocity of the ring generates a ciréarntial gyrotation field as well,
as shown in fig. 2.2.

The spirally wound waves in the F-ring are generatgthe following effect. At the Fig. 2.2
upper side of the equator, the gyrotation field &asnall equatorial component, pointing outwardsnfiSaturn's
origin, as shown, exaggerated, in fig. 2.3.a arg8lb2.Each particle of the ring has (almost) the esarbital
velocity: the edge that is closer to Saturn, laya zone of higher orbital velocity, and the otedge, away from
Saturn, lays in a zone of lower orbital velocity.

But the gas particles are in constant motion. Aloam gas velocity , pointed as shown in the fig. 2.3.a and 2.3.b

will be deviated as shown. The analogous happetfstié fig. 2.3.c and 2.3.d.

Fig. 2.3.a Fig. 2.3.b Fig. 2.3.c F¢.d

Remark that when random gas veloocitys pointed towards Saturn, the orbital velocityl wicrease since it
comes into a higher orbit, such as shown in fig@.&2and 2.2.c. The orbital velocities decreasegnZ.2.b and
2.2.d, resulting in a smaller deviation.

Thus, random gas velocities pointed towards Saslow down the ring's orbital speed, random gas cités
pointed away from Saturn increase the ring's drbfiaed.

The result is that we get two large spirally woumdtions in fig. 2.2.b and 2.2.d , and two more ring spirally
wound motions in fig. 2.2.a and 2.2.c. The spigasa contrary motion two by two.
Due to these motions, four outcomes remain possible

1) The four motions are totally symmetdausing a turbulence in the gas ring.
2) & 3) One of the motions, right or left spiraldeminant because of an original asymmetry in ithg. r
4) A double ring is created : one is a $gfiral at the northern side, and one is a rigitabpt the

southern side. The both ring's equatorial zonecisramon region.
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We expect that 1) is the starting situation, arad tne of the other situations is following afteatt For gas rings,
the latter outcome should be more likely.
2.4 Further qualitative dynamics' study of the deutwisted F-ring

Let us study the global motion of the gasses inRfreng more in detail. In fig. 2.4 , the F-ringsbown as the
section of a tore, with different orbital radji

Fig. 2.4 : section of the F-ring, schematic vid\e orbital radii , orbital
velocities' gradient, gyrotations, the pressureligrat and the global motion
inside the cloud are shown.

A section is shown with velocitieg , perpendicular to the paper and pointing away fthenreader. Due to the
finite size of the section, the orbital velocitiefiow the rule:

|G m
vV, = T (2.3) and V{2V, > V3>V, >V, becauser; <r, <r, <r, <rI
i

Saturn's gyrotatiof2s will induce an acceleration to the left for theale section, and tend to extend the left side
of the section to the left, where the velocities igher. This will flatten the tore.

Due to the orbital velocity of the F-ring, a cirau(rather elliptical) gyrotatiod2r is created as well. Using (1.1) ,
where the gravitational term, which is pointingttee section's centre can be omitted, it is cleat for the
corresponding pressures, we get :

P> P, > P;> Py > Ps
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sincea; are the corresponding accelerations accordirig (1. a,=v,Xx _QF (2.4)

In superposition of the effect, shown in fig. 2.®%e get another effect: the left pressures willuicel a motion as
shown in fig. 2.4 by the double arrows.
This motion is an acceleration which can be deducech (2.4). Therefore we need the value of theitakb

velocity which follows from (2.3), and the gyrotai (- .
In “A coherent double vector field theory for Gravitati, section 13, it follows that :

_4n6 2n1pG v,
27mr, Q2 = e m,v, (2.5) or Q, = # (2.6)
C
V2
whereVr can bevi for example. The acceleration becomes: a,. , =2 77pG 1y —12 (2.7)
’ c

Indeed, the value of the gyrotatidg slightly varies from place to place, dependiranfrthe choice o¥i . At the
left side of fig. 2.4 it is larger than at the rigfide.

In (2.7) , pis the density of the cloud, supposed to be homeder simplicity, which depends also from its
temperature. This parameter is not within the sadhis paper.

Although this acceleration might appear very sm#ik actual velocity of the double spiral becameyve
significant after many years. It is acceptabledsume that at this moment, the maximum possiblamics have
been reached in order to maintain the spirally vdocioud together by their own gravitation forces.

In the section hereafter, we try to find the relaship between the buds' shape and the veloaitid®iF-ring.

2.5 Relationship between the buds shape and toeitiet in the F-ring.

The acceleration of (2.7) will result in a doubggral, one in the northern part, one in the southeith mutually
inversed rotations. At the surface of the cloufiniée curved velocity will be reached, creatingassoentripetal
force, which will be in balance with the gravitata force.

Let us callvr, o the elliptical velocity of the spiral motion, the plane of the section in fig. 2.4 , which hastb
created by (2.7). For a specific poftat the extremity of the cloud, this velocity mbstin balance as follows:

2

v
do Dy o250 2.8)
ry ry

The left hand is the integration of the gravitatfwd of a infinite plain cylinder for a poirl®? at its surface. Since
this integral is hard to find, | will use an artifa

The infinite plain cylinder can be approached tsuecession of spheres, while guarantying the sauene and
thus masses. Since the gravitation field of a splseeasy to find (point mass equivalence), thelrésthen easy
to find and fairly correct.

Ty

Fig. 2.5 : approximation of a long cylinder by spe
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To guaranty a same volume, it is needed that : —r; = | (2.9)

3

It can be found, that using the artifact of figs 2the following integral is found for the leftimof (2.8).

myg

4 © 1
G|d =376 o1y 1+2; (2.10)

= - 2\3/2
’ [1 + (1’ 4) J
3

The series converge very quickly, so that the exjaice of the tore and the infinite plain cylinbecomes
acceptable.
Solving the figures part, and using the right hah¢2.8) , this gives :

Vio=257Tr,,Gp (2.11)

This is the maximum value of the elliptical velgoitf the double spiral motion in the section of f&g4.

There is also another phenomena to consider. Tieetti needed for a particle to describe a full spiyale, must
be equal to the time needed (by the same partwleiifill a complete orbital wavelength (see fig 2.1).

2 L
Hence, = ry - % or, with (2.11) : Vo =041L.\Gp ‘ (2.12)

Yr.o Yio

The parameteW t,¢ is the orbital velocity of the double spiral naotj with exception of the dragging orbital
velocity.
Indeed, it is possible that the whole spiral F-i;mgot only screwing through the vacuum, but soglartially

dragged as a whole and that o is only a part of the total average orbital eéhp (V3 for example).

Vaag = V3 ~Veo (2.13)

The dragging effect can be observed, and both Yamdl (2.12) can be verified if the density of theing is
known.

2.6 Creation of an elliptic halo's at the inner edgf the F-ring.

Although we came to the equations (2.11) , (2.1%) €.13) as a steady state, indeed these vebditie still
under the influence of equation (2.7). Some paielill be lifted farther away from the F-ring, apelcause of the

increase of F and the decrease gf, the acceleratio@r,o will decrease quickly as well. It is then probatilat a
double halo would be created at the left side efRfring in fig. 2.4 (inner edge of the ring) whiisha cloud that
continuously is pumping gasses from the right sidie left side, and filling the gap next to (I&tim) the F-ring.
At the equator, the gasses have no specific rotatiocity and can thus be attracted again by thed:

There exists a phenomena that avoids the adopfitimese gasses by the next tiny ring at the lefthef F-ring,
which will be explained in a later paper.
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3. Discussion and conclusion.

Deduced from the qualitative gyrotation analysis, @@me to a double spirally wound F-ring, one i tiorthern
part, one in the southern part, with mutually irsest rotations.

The equations (2.11) , (2.12) and (2.13) deschbea¢lationship between the double spiral dynamicbthe buds'
geometry of the F-ring. Some of these parameteespablic yet, but some parameters should be known
somewhere at NASA/ESA.

Remark that these equations are independent framrr8aparameters, because we calculated the leduifi at
the edge of the F-ring's cloud itself, assumingaximal possible elliptical velocityr,o . Thus, these equations
are purely classical physics.

When all the parameters of (2.11) , (2.12) and 3R.dre known, we have again an indirect proof (tp m
frustration) of the Gyrogravitation Theory (= theakdvell Analogy for Gravitation) which has been sesfgd by
Heaviside at the end of the M8entury. Indeed, gravitation only cannot fully &ip the double spirally wound
parts of the F-ring.

In this paper, the most important equation, whishfully related to the gyrotation fields, is givéy (2.7).
However, it will probably be hard to detect thi®perty visually because the initial dynamics hashead to the
actual steady state dynamics, which doesn't shmsatteleration any more.
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The Ultimate

Probation Tests
for Gyrotation

Replacing an old-fashion theory into a new one sona&s is like David fighting against Goliath.
The two following papers go about the ultimatedespon which the old General Relativity Theory
was based : the unexplained remaining perihelimamace of Mercury, the bending of the light
grazing the Sun, the changing clock rates, and ke lifetime of very fast mesons.

Clocks are not always following the Special Rel&iwWheory, and the General Relativity Theory is
fairly close, but does not totally comply with Giiavnagnetism.

Surprisingly, Mercury's unexplained perihelion aglv@ occurs as follows: our Milky Way exercises
a gravitomagnetic field upon our Sun and on ita,ttlie Sun's gyrotation works in upon Mercury.
The bending of the light grazing the Sun compliéth Bravitomagnetism when one realizes that
the light beam's Gravitomagnetism will perceivenaditter approaching at the speed of light.

Also the lifetime of very fast mesons simply follefrom a physical gyrotational compression.
Discover now the obviously successful approachraivEomagnetism!
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Did Einstein cheat ?

or
How Einstein solved the advance of Mercury’s perinen
and the gyrotational bending of light.

Described by :
Gravitomagnetism.
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Abstract

Since one century, Gravitation has been in thel giefinstein's Relativity Theory. Although durirdecades,
dozens of scientists have provided evidences feritorrectness of this theory. And often succdiysfout
without finding a sympathetic ear. Here we willatiser what is wrong with the theory, and what bsirglot of
scientists -in spite of that- to not dump it. Wdlwiot only discover that the Relativity Theory Binstein is a
tricked variant of the authentic Gravitation Thedoyt we will also be able to form an idea abouttemd why
Einstein did thisDid Einstein cheat®s no attack on the person of Einstein, or omvitsking method. For that the
reasons are too few. But it is a beautiful examiplehese times, of a too long idolatry of a theqgugt like it was
the time before Galileo in astronomy and the tirafole Vesalius in medicine. Most remarkable is thatcorrect
Gravitation Theory is an older theory than the Rely Theory itself. InDid Einstein cheatboth theories are
examined and compared, put in their historical aoiéntific context, and applied on some essentmisical
phenomena: the progress of the perihelion of Mgrand the bending of the light close to the sun.

Key words :Mercury's perihelion advance, bending of lightagtomagnetism, relativity theory.
Method :analytical.
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1. Introduction: two competitive models.

1905: the birth of a new vision

Almost hundred years ago, a milestone was putarhtbtory of science: the special Relativity Theargse from
Einstein’s brain around 1905, as a result of a rmalb perceptions which could simply not be exain

The first basic idea which has put the scientifarid on its head was the concepelativity of the speéd This
basic idea was able to explain the Lorentz coritracthat appeared to follow from the Michelson-Muyrl
experience. Out of that the Special Relativity Tiyesrose. A number of scientists was soon wonteridea. The
next logical step was of courseceleration Immediately the next problem arose: are gradtatinass and
gravitation acceleration different from inertial ssaand inertial acceleration? If both could be &iathe way
lay open for the development of thefativity of the acceleratidn But by applying the concept “relativity of the
acceleration” on gravitation, Einstein reached fihding that an object falling to a planet, remdilyaenough
seems weightless. How could this be united withféleé that masses have a weight?

The philosophical solution came shortly with thidtight experiments” of Einstein: if one cannot disar the
difference between on the one hand someone whdsstam the ground in the gravitation field and irs tivay
experiences a weight, and on the other hand somadhe space in a lift going upwards, both sitoagi must be
identical. The equivalence of acceleration and twiewas shown that way. An elementary mass whidaligg
under the influence of gravitation (and in fact meeweightless) moves according to “weightlessnasss1,
usually called “world lines”. Those “weightlessnéisges” can describe curved coordinates, and perioage can
state that the universe is curved as well. Withaiddeof a maths expert, Marcel Grossman, Einstamdeveloped
a mathematical model in which a gravitation unieenss created, and in which coordinates becaméxeadt and
straight like in a traditional coordinate systemf bould be chosen freely, according the curvedigiiessness
lines”. The logic of this mathematical model liesthe extension of the concept relativity of conade systems.

What is considered as brilliant to the theory ig@wer that the starting point is generalised lauy\concise, in
the form of Einstein's field equations. These eiguatare appropriate on matter, provided that snistof the
field equations are chosen with care, includingaheice of the integration constants. It also sektoeconcord
well with the earlier knowledge of the universe jethwas rather limited compared to today.

However, we suspect Einstein to have developed theamatical model that describes only a small pathe
known universe, particularly a part of our solasteyn that is extrapolated to the complete univévieeeover, the
fragment which in appearance is correct for ouarssystem is tricked. Soon we see why.

In the viewpoint of mathematicians there is no fgobdeveloping a magnificent mathematical theorgictv is
concise, very general and beautiful, even if itésfied to be complex solving it in detail. Iféan then be applied
on a physical concept, their satisfaction is inéilyi large. One mathematical equation can then rbecthe
fundament of a universe of which only one fractwars physically observed. Though, that theory offee the
possibility of setting up the most fabulous spetiotes, based on each possible solution of thatleisgt of
mathematical equations.

1893: the consolidation of an old concept

Twelve years before the Special Relativity Theoay she daylight, more than a century ago, knowledfje
electromagnetism had reached a summit when Oliveavisidé™, an autodidact, transformed the laws of
electromagnetism in a few compact equations, thier(@ly) so-called laws of Maxwell.

But as well as this less remarked contribution eftiside, also the work concerning the analogouswéi
Equations for Gravitation became almost forgottdaaviside settled in 1893 that the Newton law @afvgation
looked remarkably much like the force law for efectharges. Would it be possible that the granitaticts the
same way as electromagnetism does? Does thereserigthing likemagnetic gravitatio Heaviside could not
prove it, because around 1900 the knowledge ofuoiverse was strongly limited. But he suggested tinass
worked similarly as charges do, and that two caristaxist for Gravitation, analogously to electrgmetism, in
such way that the universal gravitation constamt tie speed of light remain linked. The result waset of
identical equations -in shape- to these of Maxvalth as we will discover in next chapter. The leimgle which
Einstein had faced, namely to calculate the unéxpdapart of the Mercury's perihelion advance of @&
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seconds per century, did fade the proponents ofifariside theory. One could not get this deviatialtulated
by means of the Maxwell Analogy, because with theviledge of that time, only 1/12f it could be foun@!
Einstein himself made an attempt using the Maxwslalogy for gravitation by means of an unnoticed
publicatior, but discovered the problem probably later on. Relativity Theory seemed to be the only
expedient to a solution.

Has the last word been said?

In the dispute which arose between the traditiGtédntists who consider Maxwell’s Equations as uhlienate
theory to explain gravitational phenomena, andpiteponents of the universal Relativity Theory faia@tation
there are two elements to look at. First, the g@ice of cosmic phenomena is achieved by mainsotiécted
electromagnetic waves such as light and X-rays.s@hare nicely described by the Relativity Theorpjclv
generalises the bending of these rays to the bgrafithe space. This tends at the first sight sokibnefit of the
Relativity Theory. The second element is that tHifei@nce between both theories is so small, thatMaxwell
equations are considered by the “Relativists” agoad approach of the “correct” Relativity Theory.oid

accurately, the terms with factagS (called “Newtonian solution”) anef (called “Post- Newtonian solution of the
second order”) are seen as"adtder approach of the relativistic series develepin

For the engineer however, the Relativity TheorjEofstein is not practical this way: the theory drixplaining
how we seethings after distortion by gravitation rather thahat happensn reality. It is to a great extent also
philosophical and very general. In the limit, weultbstate that the Relativity Theory is @ptics Theorywhich
takes into account gravitation. And even if thedRelty Theory would come further that the desddptof light
behaviour, it is at the cost of an enormous efibtalculations.

As last item we state that the Relativity Theorg peoved remarkably little, and what is proved, aera the only
basis which makes the theory stands or falls: tivamce of Mercury’s perihelion which is not complgt
explained by the traditional laws of Newton. Wheplging the Relativity Theory, the observed dewatof 43
arc seconds accords perfectly with the calculat#der And also the bending of the light of stararrtbe sun is
perfectly explained by the Relativity Theory. Wieatld then possibly be wrong with the Relativityebhy?

Oleg Jefimenko has another look on the problems Bhientist and professor at the University of \A&gginia
has developed the suggestion of Heaviide a coherent Gravitation Theory. Oliver Heavisiteote down
analogous Maxwell Equations for Gravitation as éhfig electromagnetism, and examined these furthdeed,
the Maxwell Equations form a correct descriptioretgfctromagnetic waves. Why wouldn't we test tiscept as
a model for gravitation?

Oleg Jefimenko® many years of specialisation in the field of elestagnetism did revive the old suggestion of
Heaviside, and in this way his vision was analyisedetail. He demonstrated that not only the RelgtiTheory
was able to describe the consequences of the ipied of light, and therefore the delay which appeThe
phenomena can be described likewise, if not bdigmeans of the Maxwell Equations. Jefimenko psotreat
the analogous laws of Maxwell, as an extension effdn’s laws, provide a complete coherent theory of
gravitational dynamics. But his description of theory is for the rest mainly restricted to a numtsetheoretical
laboratory applications.

However, very interesting is the study concernimgtgnded relativistic clocks. Jefimenko shows Hbeed the
relativistic property of clocks depends on the cogifion and the mechanism of the clock, and thiativéstic
clocks such as (perhaps) the atom is rather intatlehan a rule. This means therefore that clocks be
relativistic or not, by concept. In the third chapive will have a word concerning these clocks.

In my work*“A coherent double vector field theory for Gravitati’”? of 2003, | have demonstrated a long range of
applications on the cosmos, based on the Maxwelhfigns for Gravitation. We come back to it soon.

In the second chapter we will discover the Maxweelliations for Gravitation. This theory is then digsd in the
third chapter within the framework of Jefimenkofisdings. He was able to describe gravitation aseary which
incorporates the laws of dynamics into a whole, twitdbody had accomplished so far.

The fourth chapter describes what by James A. Gnasrdiscovered. The unexpected observation wheckwill
make, discredits the exactness of the Relativitgdrh significantly, and opens a number of questitarks.
Finally we will make an amazing observation by gpy the Maxwell equations correctly on the progre$
Mercurius’ perihelion and on the bending of thestaght grazing the sun.
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2. TheMaxwell analogy for gravitation: a short overview.

Electromagnetism is very well known, and the matwlies about it have excluded each misleading,césibe
thanks to the large energies that accompany thekis.f Oliver Heaviside suggested the Maxwell agwléor
gravitation. Several scientists have examinedtti@sry in depth, of whom the most important is Qlefimenko,
which has obtained breathtaking conclusions witfare to the gravitation theory.

The deduction follows from the gravitation law ofWton, taking into account the transversal forchikvresult
from the relative speed of masses. The laws caxpeessed in equations (2.1) up to (2.6) below.

Equations (2.1) till (2.6) below form a coherentga of equations, similar to the Maxwell equatiofise electric
charge is then substituted by mass, the magnedld foy gyrotation and the respective constants are also

substituted (the gravitation acceleration is wniteesg , the so-calledyyrotation fieldas £2, and the universal

gravitation constant out €6 = 411 {, whereG is the "universal" gravitation constant. We ugmsi instead
of = because the right-hand side of the equatianses the left-hand side. This sign will be used when we
want insist on the induction property in the ecuatF is the resulting forcey the speed of mag® with density

0.

FOm(g+vxQ) (2.1)
O.g0p/¢ (2.2)
c2OxQRojl/i+0dglat (2.3)

wherej is the mass flow through a fictitious surface. Térend g/0 t is added for same the reasons such as
Maxwell did: the compliance of formula (2.3) withet equation

divio -dp/ot (2.4)
It is also expected that: dvQ=002=0 (2.5)
and Oxg 0O -0R/0t (2.6)

All applications of electromagnetism can then bpliag with prudence on thgyrogravitation Also it is possible
to speak of gyrogravitation waves with transmissipaedC.

cc=1/({r1) (2.7
wherein r= 4nG/c

The laws of Maxwell are not always interpreted eotly and entirely. In the following chapter we eae the
laws of Maxwell, developed by Oleg Jefimenko, wdtime surprising results.

3. TheMaxwell analogy for gravitation examined by Oleg Jefimenko.

The generalisation of the Maxwell analogy

The Maxwell equations suggest that it is possiliaioing an induction between an electric field anchagnetic
field and the other way round. Oleg Jefimenko adtyepoints out that always must be kept in mindttbnly a
moving charged particle, such as the electron,ez@mtually be the cause of such an induction atdirield by
itself. This allows to stay with our both feet dmetground, and not to formulate wild speculatioritheut
reflection, by manipulating the Maxwell equationsly charges can arouse these fields. Dependinigeofact if
the speed or rather the acceleration is constamgral magnetic or electric fields can be generaféd same
happens with masses. Gravitation fields act analsigao electric fields and gyrotation fields acabgously to
magnetic fields. Both fields are aroused by statipnsteadily moving, or accelerating masses.
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The Maxwell analogy forms a coherent gravitatioedty

Just as with the Maxwell equations, the energies;el, pulse moments and angular moments are lgntire
coherent and consistent with each other, and mytdativable by pure mathematical manipulation.sTiwas not
possible with the Newton laws.

Relativistic and non-relativistic clocks

Jefimenko describes a number of relativistic cloaksch will run more slowly when they are in motioRor

example the negatively charged ring, moving on vgfieedV in the X direction, in which a positive charge
oscillates, as represented in fig. 3.1.a. Also3id-b. and c. are relativistic.

--- v v y
—> —>
o
i P
_— /
- O+ <« +>0 + ) — X
| A
.0 -0 7
fig. 3.1.a fig. 3.1.b fig.1.c

Three clocks with a period T 5Tl — W22,

These three clocks have a peridd= Ty (1 —V?/c®)™? and are therefore relativistic. But the clocksigf 3.2.a.
and fig. 3.2.b. are not. The positive charge in 8@.a. oscillates near negative charges whiclplaeed parallel
with theX-axis. In fig. 3.2.b. there are two negative chdtges between which the positive charge oscillates

y
+ A’ A
O
6t o & o
I /! _
v v A
z
fig. 3.2.a fig. 3.2.b
Clock with a period T = (1 — ¥/c?), Clock with a period T = J(1 — /)4,

The clock in fig. 3.2.a has a perioll = Ty (1 —V?/c?)®* what is not the correct relativistic delay, ahd tlock
in fig. 3.2.b has the non-relativistic periok = To (1 —V?/c?)3.

The clock type is determinative for its time del®pnsequently, if an atomic clock behaves (perhapsh as the
Relativity Theory wants it, this has to do with thieucture of that atom, but this is not universathlid for all
clocks.

In the next chapter we must put a still more extta@ry question mark concerning the General Retgti
Theory: a coefficient problem.
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4. The Maxwell analogy for gravitation examined by James A. Green.

The Relativity Theory for Gravitation and the Malvemalogy are almost identical

Not only specialists in universities or docents abde fulfilling new contributions. This is illustted in this
chapter. James A. Green has made, with self studymber of analyses concerning the Relativity Theas an
engineer he has been interested in the viabilith@bries too, not only in the theoretical considiens of it. What
he discovered is very astonishing. He started tighgeneral mathematical expression of the RetatiMieory,
and cut it off after the second order (Post-Nevanrapproximation of "2 order; the usual abbreviation is: PN2).
Higher orders are not significant. By working dutse expressions and fill in Einstein’s equatitiespbtains:

cc=4/({r) (4.1)
or, written in usual symbols from electromagnetisth:= 4 / (€ i)
Green further shows that th& Brder Post-Newtonian solution of the Relativityebhy (this is a time - and place-

dependent differential equation) has in fact a akebwn solution: the extended time-dependent Makwel
equations, expressed in potential fields:

[ o= pl 4.2)
[(PA=T] (4.3)
Q2 =0xA (4.4)
g=-UO¢ -0A/dt (4.5)

The coordinates of these potential fields are ttaken locally in time and place. The oper&tois a four-
coordinate vector made from the three-coordinatgatprl] in a placex, Y, Z, and gets as fourth coordinate the

negative partial time derivatived- /0 t. For masses with low speeds and in the casatdsary situations the
above equations are valid, because the time déldnedield does not have be taken into account.

Green actually found these equations out of thetgin's field equations, but in whi@f apparently should be
replaced byl ( T)'l at a certain step, in order to get an equivalefd®ih theories (written in usual symbols
from electromagnetismc¢® =4 (£ 1)™).

The speed of light does not originate fronec4 (€ u)*

At further development of the equations (4.2) @I5) and when infilling in (4.1), Green finds anpossibility.
The next expression is, as a matter of fact, found:

4div) =-0p/ot (4.6)
what is contradictory with the continuity equati@®¥).
Because of this, we can perfectly say that the €aérRelativity Theory is not consistent with itsefnd the
inconsistence is not just an insignificant appradion error, neither finds its cause in cutting-aifjher orders of

a serial expansion. The difference is much moneifsgnt!

A second proof is also introduced by Green. Theehter gauge (that is believed to be at the bass®lotions, in
accordance with the cosmos) for the Relativity Ties given by equation:

c? divA =-0d @/at 4.7)
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This equation also brings Green right to (4.6).

Normally of course, we expect the expression (fo7dlefine the speed of light in the Maxwell equasioThe
Relativity Theory can possibly give a very genenadl interesting general picture of how light gaegs work in
the universe, but it is definitely not exact.

5. General Rélativity Theory: a dubious calibration?

Earlier, we have forgotten to explain a step. Thaegal Relativity Theory needs control points. #tficontrol

area is that at non-relativistic speeds, the theedyces itself to the Newton theory, as far asalke about our
planetary system. A second control area would lmeen the Lorentz gauge. But above, we saw thatdhentz

gauge is no correct basis to build a theory upan ithentirely correct. However the correctnestheftheory is
examined at two measurable phenomena in our sgdégra; the Mercury’s perihelion advance and thedbrgnof

star light grazing the sun. First, we describeéhamntrol points, and try in the next chapter talfan explanation
and a solution to the problem.

The Mercury’s perihelion advance.

It is perhaps not occasional that Mercury’s pertireadvance is for Einsteithe reference to justify the General
Relativity Theory. Indeed, the issue remains wheHiastein simply has compared the result of tleoti to the
measured values, or inversely has harmonized #eryhwith these figures. In the last case we caalspf a
calibration. The Newtonian control calculation bétastronomic values of the perihelion advance peaformed

by Leverrier in 1859, and was reassessed and iragroy Newcomb in 1895. The interpretable advandes o
Mercury’s perihelion are due to:

1. the progress of the equinox, which explains 5025 century;
2. the perturbation by the planets for total of 5Z2Jer century.

Unexplainably compared with the overall astronoobservation is a surplus of 43” per century.

Einsteir! finds, using the Relativity Theory, a advance sga® in the form:
__24mn’a’ (5.1)
T2c¢c?(1-€)

with a the half large axis of the elliptic orbit of théapet, T the period, an@ the eccentricity of the elliptic orbit.

These values can be found by astronomic observatiwh Einstein obtains thed= 43" . And with this result a
first proof is provided (bad tongs claim: the ficstlibration realised) for the General Relativityebry.

But in order to define a curve accurately, ond sieds at least a third calibration point. We fihe third
calibration point in the bending of the star liginhzing the sun.

The bending of star light grazing the sun.

4] When a light ray grazes the sun it is supposecttbemt because of
the attraction between both masses. The deviatigieavas given
by Einstein in 1911 beingh =0,875'R,/r what was exactly the

. same value as with the Newton calculation, and wkias wrong.
fig.5.1 After a number of failed attempts between 1911 ae8d4 for
measuring the bending (one pretends that there wereesults
known) Einstein brought out the general RelatiVityeory in 1915, which gave as a result for the arigé double
value of the Newton onefk =1,75"R,/r. Observation is difficult because of the strongrays, but at a total

sun eclipse one finds a value close to the restivivalue & . With radio waves, measuring can be done durihg al
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the year, and the value is confirmed near the spols$!. However, it is observed that there is a slightiatéon
from value & the more the rays are closer to the equator, \aletfee Relativity Theory does not explain this.

Furthermore, no consistent results are found.
Discussion

We see therefore that the wrong Lorentz gauge tieless finds a correct solution for Mercury’s pelion and
for the bending by the sun. It is as if two

calibration point (3) curves, with the same calibration asymptote
Theory 1 (the theory of Newton) and the same two
calibration points (Mercury’s perihelion
calibration point (2) > Theory 2 P ( ys P

advance and the bending of light) have arisen.
Although several theories can be quite similar,
only one theory will deserve more credit than
the others. The question is only: which one?
Therefore we preferably must try to find what
is most logical one: the Maxwell Analogy or
the General Relativity Theory. But we can only céje theory if indeed the other theory explainsrgéng. How

far do the explanations via the Maxwell Analogynigrius? Will we be able to check this theory withreno
reference areas and reference points?

calibration zone (1) fig.5.2

6. Comparison with the Maxwell Analogy.

The advance of Mercury’s perihelion and the Milksp\V

In order to make a simple comparison concerning gtteance of Mercury's perihelion we can write (5.1)
differently. In equation (5.1) the solution (or tbalibration) of Einstein was written down. Now,dliptic orbits
always applies

T2= 4n’a’ (Kepler), (6.1)
G M
sothat 5= 6GM (6.2)
a c?(1-e)

The local revolution speed for elliptic orbits @ihd out of
v2 = G M{(2/d) — (1)} (6.3)
wherer is the distance from the focus (in which the saes)lto the considered place on the ellipse.

Now, in order to simplify, let us assume ti@tis negligible. Then the revolution speed is almmststant and is
found from (6.3) by putting =1 .

Hence J0=6v?/c? (6.4)

This entity O is an extra deviation on Newton’s gravitationeThtal amount is therefore (1&). When we apply
this on the gravitation forcle we get :

F=G MM,+6G M M’ v2 (6.5)
r? cr?

This is therefore the result of the Relativity Them whichV is the orbit revolution speed of Mercury.

© 28 Dec. 2004 — 2010 8 Update 15 Oct. 2010

p61



thierrydemees@pandora.be

Let us now examine which outcome is obtained wlth Maxwell analogy. Based on the theory of Heaweisid
Jefimenko found that a mass which moves in relatioan observer, experiences an extra force. (JA&mEseen
tries to explain the phenomenon by a time delagraivity waves, which is a wrong approach for staiy
systems.) A moving mass induces a field, analogotsithe magnetic field in electromagnetism. Heides
however incorrectly considers this induced fieldunction of the observer.

The vision of Heaviside and of Jefimenko must beremied indeed. In my work [7] | have explained how
important it is to define the Local Absolute Velyciwhen we want to apply the Maxwell analogy e@ret on
moving objects, the gravitation field which is treference has to be known, and then becotihesippropriate
reference for that speed. It is not a mattedefinition of the observelike in the Relativity Theory or in the
Heaviside/Jefimenko approach, but a matterdefinition of the “local stationary gravitation fid”. Only
gravitation fields can be regarded as “locally intmite’ references.

For Mercury we must take into account the locati@tary gravitation in which Mercury is immersedherl
“immobile” gravitation of the sun can be a refererfteld with which the gravitation field of Mercurg in
“interference”, creating this way a field, simitara magnetic field, calleglyrotation field

This is only possibly if the sun itself moves istaaight line, rotates, or is caught in an orbie dan verify?! that
the spin of the sun is virtually insignificant fdris phenomenon. A rotation speed of 26 days omits is not
sufficient to be perceptible in secondary effedtse sun has however got another motion. In my @tk have
calculated, starting from the Maxwell Analogy, tlditstars of our Milky Way revolute with a speedroughly
speaking 240 km/s. This was based on a galactiersysf which the central bulge was valued on 10%eftotal
mass of the galaxy, and with a bulge diameter @d&nof 10000 light years. In literature we findosgly

divergent values for this bulge mass, what makesxact calculation difficult. At present one valube speed/;
of the sun between 220 and 250 km/s, what clgeetyour quick calculation.

Although the Milky Way’s gravitation field might een weak, nevertheless the weak field can play ficgritly
large role to oblige the sun making a revolutioouzd the centre of our galaxy in 220 millions ytiae.

From the work of Jefimenko follows the property;, fmiform moving spherical masses in a local gegion field,
that an extra force is exerted on any mass, perpdady on the
movement direction. If we isolate a random thingriof the sphere in a

plane, perpendicularly on the rotation veatar the uniform motiorV in a
gravitation field will be associated with an extaice F on masdn' that
is perpendicular odv andV , and is equal to

mm’
-F=G V 6.6
2 r 2 c 2 ( )
Moreover the mas#n will work as a dipole due to the rotation vectar
and will exercise a

supplementary force upon
massm'equal to
m mwR?
-F=G—M—— v (6.7)
5r3c?

(see equation (4.2) in [7] for the basics of thieudation)

In fig. 6.2 , the sun with mad¥l and radiusR is considered at an

average distance of Mercury, which has mad®1, and resides at a

certain instant under angt& in relation to an axis going through the

centre of the galaxy. We approach again the dlijtibit by a
fig.6.2 circular one.

All these forces are attractions: the law of Newtdne force

originating from the uniform movemem , and the one of the spi®w of the sun. Under the angt&, Mercury
experiences therefore the following forces by the s
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2
_MM@R, cosa 6.8)
r3(.:'2 1

-F:Gm'\z/l+G n;'vzlvzcoécHG
a r 2rcc” !

The first term corresponds to the law of Newton.ndiced earlier, the last term can be neglectgdofgtion),
because of the slow spin of the sun. The seconulieiever interests us particularly.

When we know that Mercury revolve with an averageeslV, equal to 47,9 km/s, and the sun with a estimated

speedvs equal to 235 km/s in the galaxy, what means thairessed iV, , we can write thav; > = 24 V»2 The
second term of (6.8) can therefore be written as:

_ 2
F_=12G :nz_'(\:/lz y*cosa (6.9)

When we integrate this over from—T1/2 to +TT1/2 we get half of the total impact. Doubling thisukgives the
total effect over the whole circumference (it does annihilate with the first half circumferencechase the speed

vector changes sign). Dividing the resultd§f gives us the average over the whole circumference

— mM
F=06ma Y (6.10)

this brings us to: o=6w?/c?

This result, obtained by using the Maxwell Analogygexactly the value which was obtained usingRleéativity
Theory.

Of course we have choséh exactly equal to 235 km/s, in order to obtain aéivaed result. In fact we probably
should choose the real speédsomewhat lower, consider the eccentricity of Meytuorbit, and also correct the

result for & with some arc seconds because of the perturbhgiche other planets. They indeed also exert the
three described forces on Mercury, of whose theefoelated to the orbit speed is the most impoxastafter the
Newton force. Of course, Leverrier originally couldly take into account the Newton forces. We dbgwinto
details, but now the first step has been set.

The bending of star grazing the sun.

When light grazes the sun we find again severalef@with the

Al Maxwell analogy, but partly other forces then thet.8). Since
the rest mass of light rays is zero we magt consider the
gravitation force of Newton!

fig.6.3 Only a mass at sped@imust be taken into account, and this will
arouse a gyrotation force. Jefimenko calculategetation of a

mass flow with radiug@l and density0 at a distancé , measured perpendicularly to the mass flow, eqngti3-
2.2)% . This is in total equivalence of the magnetiddfief a long charged beam at velocity:

0=-G2npa’y

6.11
22 (6.11)
For light we seC=V , and the mass per length umit= 770 az
02=-G %m (6.12)
r-c
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Using (2.1) in which we s@=0, we find the force per length unit :

F=-G 2r_n/|//
e r2 (6.13)

Of course its validity remains for each lengthhdf tight ray.

The force caused by spe¥d, actually the orbit revolution speed of the smrur galaxy, is given by the second
term in (6.8). The angle is the angle between the light beam and the Millgy's equator.

As last force we get the one of (6.7), whereofdize depends on the spin of the sun, and of cafrde latitude

@ along which the light ray passes. The sun hasafigta differential spin which varies according to the latitude:
the poles rotate 30% more slowly than the equdtave assume that, with respect to the sun, thedwpd the

passing star light is the constatitone may not take into account the spege€0Sa of fig.6.2. in this term.

The last term of (6.14) comes from (6.7) whé&te= I andV = C . The angled is the angle between the light
beam and the sun's equator.

The total force becomes this way:

-F =GZmM+G M vzco§aco§¢+Gm—Mw¢ cosp cos
pa.pe r2 2r2¢2 1 5rc

(6.14)

The bending of light over the poles is thereforaatly the double of the calculation according toMdm, as
expected, but moreover there is an extra bendiogrdimg to the position of the earth relative te un and to the
Milky Way, and an extra bending which varies acaugdto the latitude on the sun along which the tliggy
passes. The last term is positive (attraction beg)dit the left side of the sun and negative (®pualbending) at
its right side, because of the spin direction efshn.

7. Hasthe Relativity Theory era been fertile sofar?

Nearly a century ago, one of two competitive themfias been put aside: the exact theory had toffuor the
profit of the wrong one! How could this come ughat point?

Three elements to which the theory had to satisfyevknown: the Newton limit, the bending of lightdathe
progress of Mercury’s perihelion. And moreover theory had to offer a solution for the paradoxtaf torentz
invariance. To this invariance was even given asjg@ dimension (Lorentz contraction) subsequetatlthe test
of Michelson-Morley.

The Relativity Theory was able to bring togethéttadse elements to an apparently correct theoeyy \éertainly
also Einstein must have known that with the Maxwelblogy, the progress of Mercury’s perihelion abuabt be
explained. This for the simple reason that almashing was yet revealed of our galaxy. And on thieephand,
the step to the Relativity Principle became stiiremeasy because of the (wrong) principle of Hédwithat the
observer, and not the gravitation field, had ts&en ashereference for all calculations.

Thus, Einstein’s Relativity Theory arose, wherepaltameters were united, and which was moreoveregon a
form that virtually deleted all tracks of the Maxivénalogy: a curved space with an adapted kindhaths.

But something was nevertheless overlooked: thedspekght that is obtained by confronting in ateém way the
Analogue Maxwell Theory and the Relativity Theosywrong. That ultimate discovery makes fail theaeity
Theory.
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However, it is astonishing that that discovery afnés A. Green, as well as the many publicationsttoér non-
conventional scientists, seemingly are ignored ey pproponents of the Relativity Theory, who consgitthe
establishment. Why would this be this way? Firkg theory has been expressed in a very conciseasay
differential equation. It is also very general, after the appropriate calibration it allows eachtmematically
correct solution as a possible real situation, eéiighas not yet been discovered with our obstovainstruments.
This frees the path in a fabulous way for prediddiowhat is of capital importance for science. Tifan reason
for ignoring the Maxwell Analogy is probably alsoat on world scale, a complete army of scientists lbeen
proliferated out of the “Relativistic schools”, ast such as new religions ever arose and develdpade
extended they are replaceable with difficulty.

Shortly after the First World War yet importantidns have been calculated with the theory.

For instance, non-rotating black holes and wornthalere predicted long before there was any indinadf their
existence. Now one admits their existence, althoogh-rotating black holes have never been found et
wormholes. However, rotating black holes were olEgrmeanwhile, which are not described by the theor
unless by introducing an extension of it.

In that sense the Relativity Theory has enormousiytributed by being its time far ahead. It alsovekd the
universe in an original and new manner: a curvedenge, where nor the time, nor the distance, nemtass have
absolute values, but are different for each obseamd moreover it would be no illusion but be dike that in
reality. Also cosmology progressed, by thoughtsceoning the shape and the (in)finity of the unieers

But over the course of time this conduct is becanairhandicap for the Relativity Theory: calculaidrecome the
longer the more complex. And it is uncertain thaéce is really curved, that mass and time reallyeiase that
way with the speed, and that lengths really redbeé way. Oleg Jefimenko, James A. Green, and nodimgrs
demonstrate adequately that also by means of #uititmal physics all phenomena, and much more, bmn
explained. How could it possible be else after wiratdiscovered here!

We saw already some facts which Jefimenko and Gnaea demonstrated. Jefimenko also illustratechffimity
between both theories, and extended the Maxwellogyafor not-static and non-linear cases. Greemglbby
means of the traditional working method, with thexXvell equations, several phenomena at atomic .stale
demonstrated in [7fhat the speed of stars in disc galaxies satisfiedaws of Kepler, and thatark masss a
myth. Furthermore, why some rapidly rotating stzaenot burst entirely, why the mass expels of supexr and
must adopt stipulated profiles. The tore-like shaerotating black holes was uncovered and washéurt
discussed, and the reason for the many tiny Saituga proved irfCassini-Huygens Missiorf!.

8. Conclusion: Did Einstein cheat?

We proved the validity of both the progress of pleeihelion of Mercury and of the bending of lightse the sun
with the Maxwell Analogy. Now the question remaoyen: did Einstein know that he made an error biniheg
its theory? Did Einstein cheaf® posterioriit seems indeed strange that Einstein succeededjisgly without
much magic, to write down some simple looking emuest, though by means of a strange and complidsfeslof
maths for that time, and moreover little common.

On the other hand Einstein must have known thaMéeury problem was not soluble by means of thexmal

Analogy with the observations and the measuringaknat that time. An appropriate calibration of Relativity
Theory therefore has been done (Einstein's fielchegns are indeed deducted from the equation -ddnestein-
Hilbert action- for a "space", extended with theu&iipn -named Lagrangian- for the definition of mas that

space. Also Einstein defined a required fadtask 1=16MG c™ Finally, Cartan extended the theory for
rotating objects.) It is at last between 1911 af@d41that Einstein must have known that the bendihtight
grazing the sun rather had the double valuthefone according to Newton. Did Einstein intuitvéall on the
good looking equations at that period? Was the typ& of maths necessary to increase the detachimehe
Maxwell Analogy and to conceal the calibrations?

Probably we should not judge Einstein too quick®though it might be possible that, thanks to some
calculations, Einstein got on that “good” trackaitonverging manner, consciously cheating isatidither thing.
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The main reasons for the new track which Einsteadenwas the need to incorporate the contractidengjth
(and thus of time) as a part of the theory, andithyeossibility of building further on the Maxwell nalogy
because of the Mercury problem. The glory thatthe®ry of Einstein obtained was, among others,khao the
sudden revelation, after more than ten years adritively and intuitively work, of a theory in a rhamatically
new appearance, original and general, and one whaxde extrapolations to cosmology possible.

And we can expect that both competitive theoridkstill continue existing in parallel, possiblyrfdecades.
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On the Origin of the Lifetime Dilatation of High Velocity M esons

Described by using Gravitomagnetism.

T.DeMees - thierrydemees @ pandora.be

Abstract

We analyze here the influence of gravitomagnetiponuast moving particles and we find a physicathagmism

for the lifetime dilation of mesons at very highlagties. One of the later arguments in favor of tBpecial
Relativity Theory (SRT) was the discovery of atlifiee dilation of high velocity mesons. Howeverhis also
been found that the observed lifetime dilation didmrrespond to SRT predictions. Moreover, SRTtheei
General Relativity Theory (GRT) ever explained agrtysical mechanism. When using gravitomagnetism, it
becomes clear that not a time delay, but an sdlidgtive gravitomagnetic compression componentsponsible

for a delayed decay of the meson. We also find tblativistic mass doesn't exist, but that only dginavitational
field gets accumulated to high values when theatlsjspeed is close to the speed of light.

Key words : gravitation, gravitomagnetism, gyrotation, mesibetime, Heaviside, Maxwell analogy.
Method :analytical.

1. Pro memore: The Heaviside (M axwell) Analogy for gravitation (or gravitomagnetism).

Heaviside O., 1893, transposed the Electromagnettpmtions of Maxwell into the Gravitation of Newfo
creating so a dual field : gravitation and whatpeepose to calyjyrotation(which is the gravitational equivalence
of magnetism), where the last field is nothing mitv@n an additional field caused by the velocityhef
considered object against the existing gravitatields.

The formulas (1.1) to (1.5) form a coherent se¢qiations, similar to the Maxwell equatiéh<Electrical charge
is then substituted by mass, magnetic field by gron, and the respective constants as well astisuted (the

gravitation acceleration is written @s, the ‘gyrotationfield” as £2, and the universal gravitation constéstas

G'= 471{). We use sigii] instead o= because the right hand of the equation inducetefthband. This sign
will be used when we want to insist on the induttiwoperty in the equation.

Fom@+vxQ) (1.1) Itis also expected :
dvQ=002=0 (1.4)
.9 opl/l 1.2)
g 0 -0R10t (1.5)
cxQ [Jjl{+ dglot (1.3)
and c=1/({1) (1.6)

wherej is the flow of mass through a surface.
) g wherein 7= 4 G/c?

All applications of the electromagnetism can frdrart on be applied on the gravitatiomagnetism watltion.
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2. Gravitomagnetic induction.

2.1. Gyrotational induction and Lorentz-like forfoe gravitation.

A particle “A” travels at high velocity nearby the Earth. Itdaiy the Earth's
gravitational field and creates a gravitomagnegtdf(the gyrotationfield) that
is circular about its body.

Another massB” at high speed and with a path that is here partdl “A” can
become influenced by that gravitomagnetic fiele (¢iyrotation).

It then undergoes a Lorentz-like foféethat make the masses undergo an
additional attraction force given by

This Lorentz-like force works as follows: both reas feel the other magnetic
field, that generates a for€eupon the particle.

Fig. 2.1 :two particles attract ~ The gyrotational force is given byF /7 m, (vxQ2) (2.1)

due to their velocity. o )
and thegyrotationfield 2 is found by:

$bo.doancm, /¢ (2.2)

which is a transcription of (1.3) into integralslid for constant values of the gravitation fief

The equation (2.1) can in this case simply be emias £ 0 2 Gv dm,/(dy r ¢’) becausd? is constant
over each circular patATU I . Hereinr is the distance between the masSgsandm, , I = |A — B|. The

distancedy is the infinitesimal length of particld along they—axis for this process.

The combination of the equations (2.1) and (2.2¢githen for a local plage:
dF/dy 0 2 G dn,/dy . dm /dy . v’/(r ¢°) (2.3)

This kind of gravitomagnetic induction happens Ewthe Sun and the planets and is responsibtaddtatness
of our solar system. It also explains the flatnefsslisc galaxies and the constancy of the stafscitg in disc
galaxies without any need for “dark mass”. See aésion2.3 for further explanations.

2.2. Gyrotational self-induction of rectilinear tgzarticles and its global cylindrical pressure.

A mass that travel in a gravitation field createnagnetic-like field, calledyyrotationfield, as shown in fig. 2.1.
This field is circular and it is also present irsidnd at the surface of the object. The glahabtationfield is
produced by the sum of all the particles of theeohjbut that field also acts
on each single particle of that object. This reattgans that each of the
particles undergo a Lorentz-like force that is eagticular on both the path
that the object follows and tlggrotationfield (see fig. 2.2).

In other words, there is a Lorentz-like force tlmmmpresses the object
cylindrically over the whole object and that hetps object not to disintegrate
at high velocities.

Fig. 2.2 :a particle is compressed The gyrotational acceleration is given by :
due to its velocity.

a=dF/dm/J (v xQ2) (2.4)
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and thegyrotationfield £2 is found by:
¢o.doancem/c 25)

which is a transcription of (1.3) into integralslid for constant values of the gravitation fief

The equation (2.5) can in this case simply be emittss 2 0 2 G v dn/(dy r ¢©) because? is constant
over each circular paBTtr . Hereinr is the variable diameter of the cross section asm on the placg/ . The
distancedy is the infinitesimal length of the mass along Yhexis for this process.

The combination of the equations (2.4) and (2.8¢githen at a pladeof the mass the acceleration (compression)
a(r) :
a(r) = dF/dm0d 2 G dwdy .V/(r ¢ (2.6)

The local pressurp(r) at the variable pladeis then given by :
p(N=dF/dA O G (dwdy)® . V/(rtr® &) 2.7)
For a sphere with densig: p(N O MG ripVIcc=3Gm Vi(4rc?) (2.8)

The equation (2.8) is valid for not too fast pdetic because it didn't take in account the time ydefathe
gravitation field between the object's mass andutface. Let us see below what this means.

2.3. How does a high speed gravitation field ldk&?

Oleg Jefimenko proved that the velocity increaseaoparticle results in the flattening of the gratidnal
spectrum. This flattens the gravitational fieldrgendicularly to the path of motion. The gravitatbzones in the
direction of the motion of the particle, are desieg with the velocity.

r The original equation of Oliver Heaviside that heote down at
T 6 - the end of the 19th century showed already the ridgrecy of
v the angle @ (see fig. 2.3) with the retarded value of the
g gravitation field for a fast moving mass.
_ 2/ ,.2
Fig. 2.3 :a particle's gravitation field is =6 m (1 y / ¢ ) 29
) . g(r, ) 32 (2.9)
heterogeneous due to its velocity. 1.2(1 _ (,,Z/cl)sin2 g)

Equation (2.9) gives the value of the local grdidta for a certain masm at a velocityV. Thus, for very high
speeds, we have put equation (2.5) in a more gefoena, as follows :

$o.doancgrie (2.10)

In fact, (2.10) is physically speaking more corrég@n (2.5) because not the mass, but the interatitween
moving gravitation fields is responsible for theation of the gyrotation field.
By using (2.9) we can easily recalculate equatib8)(in the case of a sphere:

3gvir  3Gm y? (l—Vz/cz)

plr,6)0 =
(r8) 4c? 4rc2(1—(V2/c2)sin2¢9)

2 (2.11)
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On top of that, we also should include a retaraatbthe field along the path of the object. Théeobwill be
further than its gravitation or gyrotation field uld suggest.

2.3. Gyrotational self-induction of rectilinear wefast particles and its delayed global cylindrigaiessure.

For very high speeds, such as cosmic mesons, repobarly the speed of light, the compression afpiacer |,
assuming the meson as a homogeneous sphere, iistyi(@.11) where the divider of the quotient beesmlose

to zero, especially for angles nea#2. Due to the global exponent of -1/2 ,

the pressure becomes close to infinite. Away fi@i® , the pressure becomes
rapidly very low.

This signifies that the gravitational field can amulto become infinite a2
when the velocity of light is reached.

The meson is compressed by a very high cylindpoassure all around it, that
hinders the meson from decaying, unless the vglddts been reduced to
lower values.

Besides, due to the position of the delayed fieldshind the meson's
progression path, the compression will be somewtwtical instead of
cylindrical, making the decay more difficult at tHeack side of the
progression path. Due to the high speed, the desayot occur ahead of the
progression path either, because that would regquireven higher velocity of the decay residues.

Fig. 2.4 :a particle's gyrotation
field and therefore its compression
is heterogeneous due to its velocity.

This proves that the lifetime delay of the mesophgsically made possible by a compression ratiem & change
of the time dimension.

3. Discussion and conclusion: doesréativistic mass exist?

When a particle in the CERN accelerator is acctdranagnetic fields are used. These magneticsfiedoth only

“push” the particles at not more than the speeligbt. Moreover, the magnetic fields are put underangle to

the particle's path. Thus, the particles never reath the speed of light because the magneticsfieldder an

angle to the particles' path, are always themsdieésv the speed of light.

And just as in equation (2.9) for gravitomagnetissharged particles in CERN never can be accelerayed

magnetic fields up to the speed of light becausthefquasi fullyTU2—orientation of the electrical field at that
speed.

But does that mean that the particle's mass iasing by velocity? No, it isn't. The consequenta bigh
velocity is the self-inductive cylindrical compréss upon the particles, as explained above. Réséitvmass
doesn't exist.

We can show this by the following. Equation (2.8pws that not the mass but the gravitation fieldotsally

increasing, especially for the angle arodma.
But can the global value @fin equation (2.9) reach infinity at speeds that@ose to the speed of light?

To know that, the easiest way is to argue as faldfwe consider the highest value for (2.9) bytipg sing = 1,
we get :
2
776G m
[&(r,6)a6< (34)
0

S22 1-0Y e

and this confirms that at the speed of light, tlebagl gravitation field is theoretically able tcah infinity, due to
the accumulation of the gravitation waves at thpeesl, the same as what happens with the sound vednaes
plane, just before it passes the sound barrier.
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Remember however that the direction of that infingtavitational field is oriented at the angle@f=TV2 and
that at other angles (thus all other directiorts},dravitation field is decreasing quickly !
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On the geometry of rotary stars and black holes

T. De Mees - thierrydemees@pandora.be

Abstract

Encouraged by the great number of explained cosmic phenomena by using the Maxwell Analogy for Gravitation'"®” (or
the “Heaviside field”) instead of the General Relativity Theory, we study closer the fast rotary stars that we have
studied earlier'”. We find the detailed reason for the double-lobes explosions of supernova, and for the equator
explosions. A part of the star is insensible to fast rotation, and at the contrary is more attracting the faster it spins. We
find for spherical stars important velocity-independent angles, defining partly their final torus-like shape.

We found this by recognizing that moving masses generate a second field, analogue to magnetism, that we call
gyrotation(7).

Keywords. Maxwell analogy — gravitation — star: rotary — black hole — torus — gyrotation — methods : analytical
Photographs : ESA / NASA
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The first and second chapter are summaries of chapters 1 to 4 of reference 7.

1. Introduction : the Maxwell analogy for gravitation, summarized.

The Maxwell Analogy for gravitation can be put in the compact equations, given by Heaviside!®.

The formulas (1.1) to (1.5) form a coherent set of equations, similar to the Maxwell equations. Electrical charge is then
substituted by mass, magnetic field by gyrotation, and the respective constants as well are substituted (the gravitation

acceleration is written as @ , the so-called “gyrotation field” as 2, and the universal gravitation constant as G =
(47 @'1. We use sign < instead of = because the right hand of the equation induces the left hand. This sign < will be
used when we want to insist on the induction property in the equation. F is the induced force, V the velocity of mass m

with density p. Operator X is used as a cross product of vectors. Vectors are written in bold.

Fem(gt+vxQ) (1.1)
Vgepl/l (1.2)
AVxQej/+dgldt (1.3)

where j is the flow of mass through a surface. The term dg/d¢ is added for the same reasons as Maxwell did: the
compliance of the formula (1.3) with the equation

divje=-dp/adt
divQ=VQ=0
Vxg & -0Q/dt

(1.4)
(1.5)

It is also expected

and

All applications of the electromagnetism can from then on be applied on gravitomagnetism with caution. Also it is
possible to speak of gravitomagnetism waves.

2. Gyrotation of spherical rotating bodies in a gravitational field.

For a spinning sphere, the results for gyrotation are given by equations inside the sphere (2.1) and outside the sphere
(2.2):

L A

SO L G888 3 Qimﬁ—“#zGQ[m(L,ﬁ__l Rz)_Mj @2.1)
g AN 1 AN c 5 3 5
IIIL:: o X s

ISEVERE) SRS —4nGpR( @  r(@er

NN AT T I VAN Qext = 3 2'0 - (2 ) (2.2)
...... RGN * M 57 ¢ 3 r

AAAAAA r 1T 4 4 A & e = ﬁg'2'1

(Reference: adapted from Eugen Negut, www.freephysics.org) The drawing shows equipotentials of — 2.

wherein e means the scalar product of vectors. For homogeny rigid masses we can write :

2
Qu _?Gﬁnicz@ [m _ Mrzcu) ] 23)
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At the surface of the sphere itself, we find, by putting ¥ = R in (4.2) and by replacing the mass by m = 71',R3p 4/3 the

following equation:
Qr <=_5GT’”—[03—3RR“)°R] (2.4)
C

When we use this way of thinking, we should keep in mind that the sphere is supposed to be immersed in a steady
reference gravitation field, namely the gravitation field of the sphere itself .

3. Explosion-free zones and general shape of fast spinning stars.

The Critical Compression Radius for Rotary Spheres

When a supernova explodes, this happens only partially and in specific
zones, forming so a magnificent symmetric shape. The purpose here is to
find out why this happens so. Only the surface situation is analysed here.
The accelerations due to gyrotation come from (1.1).

ay=x W42 = OR cosa £, (3.1)

and a,=x W& = WR cosa L2 (3.2)
fig. 3.1
To calculate the gravitation at point p, the sphere can be seen as a point
mass. Taking in account the centrifugal force, the gyrotation (we use (2.4) for that) and the gravitation, one can find the
total acceleration :

. 2
ay =R & cosa[l— Gm (1 - 325111 a)]_G m Czos o (3.3)
S Rc R
. 2 .
-y = 0+ 3 Gm O)ZSISHOECOS o GmRszma 64
c

The gyrotation term is therefore a supplementary compression force that will stop the star from exploding. For elevated
values of @ , the last term of (3.3) is negligible, and will maintain below a critical value of R a global compression,

regardless of @ This limit is given by the Critical Compression Radius, which is found by setting the non-gravitation
terms in dy, s equal to zero:

or R=Rca< Re(1-3sin’a) (3.5)
where R is the Equatorial Critical Compression Radius for Rotary Spheres :

Rc=Gm/5c (3.6)

The fig. 3.2 shows the gyrotation and the centrifugal forces at the surface and the outside of a spherical star, and fig. 3.3
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shows the gyrotation lines and forces at the inner side of the star. This can be found with (2.1) and (2.2).

Surface compression of fast rotating stars.

For spheres with R < R, a global surface compression takes place for each angle & wherefore —0c < &< O, and
wherefore

ac = arc sin (3% (1= R/R¢)') (3.7)

Remark that always ¢ < 35°16°, and it’s value depends from the sphere’s radius. Hence, explosions are exclusively
expected under — O and above O .

4 angle Alpha

fig.3.4.

A
arcsin{3~{-1/2)-{1-u)~{1F2)) %‘
t t 1 1 t t t t t -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In fig.3.4 , the graph shows the relationship (3.7) between R/R¢ and O for ay, s = 0 (we disregard the gravitation
acceleration). When R/R¢ = 1, only the equator is potentially protected against explosion. The smaller R, the larger the

protection area (—Q¢ < (X' < Of) is where global compression occur.

4 a(z),tot/(R w2)

+7h

eydjy ajbuy

T {1-(1-3-(sin{x})~2})-cos(x)
[ (1-(1-3-(sin(#))"~2)-2)-cos(x)
(1-(1-3-(sin{x})"2)-4)-cos{x}
(1-(1-3-(sin{x})~2)-8)-cos{x}

{1-(1-3-(sin{x))~2)-32)-cos{x) fig.3.5.a

Another view is given in fig.3.5.a , where the spin-dependent factor of dy, sor /(R o ) in (3.3), by using (3.6) and by
setting X =@, has been calculated for several values of R/R¢ (respectively 1, V5, Vi ,..., 52). Compression occur
when the values are negative. We conclude that the smaller R/R ¢, the wider the compression-area becomes.
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4 aly)tot/(3 Rew?) But even with very small values of R, only the range

—35°16’ to 35°16’ is a candidate to be explosion-
free. Above 35°16° and under —35°16°, gyrotation
is not able to provide any protection against outbursts.
The most looseness area is obtained around 60°,
becoming more explicit with decreasing values of
R/Rc.

To a certain extend, fig.3.5.a shows the deformations

at the surface of the rotating star with a non-rigid
plasma.

20

cyd|y ajbuy ¥

In fig.3.5.b , where & is shown in [rad], we have
drawn the values of (3.4), simplified to @y, 101 /(3 Rc

o ). Also here, we get the important angle 35°16” ,
and this time it is the maximum compression angle.

-sin{x)-{cos{x))"2

The internal compression acceleration by gyrotation
Let us simplify the model for rigid and homogeny masses, and look inside the sphere at the accelerations. Using (2.1)

and (3.1), and replacing pby 3 m /(4 p R?) we find:

Ax, tor =T o cosa{l— %?— [rz (6-3 sinza) -5 RZJ} - %ﬁ (3.8)

3Gm P sina COSZOC+ Gmsina
5R ¢ (1/P)R’

- dy = 0+ (3.9)

and we see immediately that condition (3.5) has to be amended : at the equator, Qy,im becomes in fact zero at
r=(5/(6-3 sin’ OJE))I/2 R, which results in ¥ = 9/10" R at g min=0°, and at other values of ¢% , the zero

equipotential gradually evolutes to 7 = R at =g jax = 19°28°.

Consequently, the centrifugal force will be able to act effectively around the equator area and provoke explosions of
about 1/10™ of the star’s radius.

. . . . 2

These very important equatorial ring-shaped mass losses are possible even when R, — o< Gm/5¢” and thus, even
when there is a global compression at the equator area. We need a further analysis of this zone in next section when we
shall take in account the centrifugal acceleration as well.

From (3.5) also results that the shape of fast rotating stars stretches toward a toroid with a missing equator: if o 2

35°16’ the Critical Compression Radius becomes indeed zero. Radial contraction of the star will indeed increase the
spin and change the shape to a kind of “tire” or toroid black hole.

In the next section, we will have a closer look at the internal conditions for absolute compression.

The equatorial explosion area

By analysing the zero-force equipotential inside the sphere at a certain radius # , we can work out the angle in
relation to this radius 7 at which the total acceleration is zero.

The compression condition for 7 in dy s is found when the left hand of (3.8) is negative, or:

» . R (+5RJR)

3.11
~ RC/R (6 -3 sin"0) G40
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In order to simplify, we have considered the gravitation force as being insignificant, which is true for fast rotating stars.

In fig.3.6, we show the graph of (3.11) for R = % Rc, R =% Rc, R = Y4 R, and for very small R/Rc. The
boundary of the sphere is shown as well. The x-axis is ¢ and the y-axis is 7/R. In the case of R = %2 R¢, only a very
small region wherefore —17°43” < ogy <17°43’ is affected by an explosion zone, based on the spherical intersection

point with the explosion area. About 4% of the equator radius can be blown out. We call Ry the remaining equatorial
radius.

And when we take the limit to very small values of R, the following graph is found: an explosion zone around the

h /R

_//’1’?25

L 0.975 17043, /
21°56' B

25°217

L0.95 fig.3.6
Flsqrt((1+2073)f(4-{2-sin(x)-sin(x)))) ?
sqri(11/{6-(2-sin{x)-sin{x)))) %
|_sqrt{21/¢4-3-(2-sin{x)}-sin{x)}}) z
sqrt(501/(300-(2-sin(x)-sin(x)))) <
=
o
0.9 1 1 | | | | I 1 1 | | | L

2 4 [ 8 10 12 14 16 18 20 22 24 26

equator of the sphere until about @y ;uex=25°27" with a blow-out opportunity of 9% of the radius (fig.3.6).

At this stage we are able to stress the global shape of fast rotating stars and to define the location of the possible
outbursts.

The shape of fast rotating stars
Until now, we have found a number of criteria that are valid for fast rotating spheres:

1) When R < R, there exist a zone where no explosion can occur (considering gravitation as negligible).

2) The smaller R/R¢ , the bigger the zone between the equator and the maximal compression angle & , where
no outbursts can occur. The maximal possible explosion-free zone is —35°16° to 35°16°.

3) The equator is not explosion-free: when R < R, there exists a ring-shaped zone inside the sphere where an
explosion may occur, pushing an equator belt outwards.

4) The smaller R/R¢ , the larger the exploded zone around the equator, and the maximal explosion angle is about
+ O 1max=25°27", while about 9% of the equator can be blown out.

5) The area around 60° , having a top value (&, dy 10r) depending from R/Rc, is the most looseness area.

The maximum compression area of @, ;o; goes until &= 35°16°.

e

-
£

.
N
N
N

ro & non-compression area
A

$—— > compression area

fig.3.7 : exploded rotary black hole
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Using these criteria, the general geometry of a fast rotating star can be drawn, and the exploded star can be defined in
general lines. A torus, limited by the angle 0/c , beyond which no matter is present, and limited as well by the angle
O\ max » which lays between @ and the equator. At the equator, the radius is restricted to Ry < R that can be found by
setting &= 0 in (3.11) (see fig.3.7).

The internal radius of the torus-like star is zero or almost zero after the explosion, according to the known criteria.

Validation of the theory

The theory can not yet be verified very precisely because the values of m, G, @ and R are not known for distant
supernova and quasars.

However, observation of exploding stars shows the presence of an
explosion at the equator and one at a zone above a certain angle,
measured from the equator.

We claim the compliance between the theory and observation in
its general aspect. In the next chapter however, we will see what
happens with the remnants.

When the matter explodes, the theory predicts that the star’s
gyrotation obliges it to move in a prograde direction. The global

fig. 3.9
k

SN 19874 n Carinae

SN 1987A: a local mass loss took place on the equator and at the angle O .
The zone near the poles exploded possibly much earlier, so it became a
toroid-like shaped rotary star.

1 Carinae : mass loss by complete shells, above O¢ , forming two lobes with
a central ring.

motion will be spirally outwards. Finding evidence by observation is difficult for this property as well, because a high
astronomic precision is necessary.

But in general lines, both observations agree perfectly with the theory with simple analytic calculus, which is a great
improvement against the General Relativity Theory.

4. General remnants’ shape of exploded fast spinning stars.

In the former chapter, we could see how the gravitation equations of spinning stars could explain their general
geometry, and could define the explosion-free zones. In this chapter, we look more closely at the remnants.

Spherical spinning stars.

If a spinning sphere begins exploding, matter is leaving the surface tangentially. Gyrotation equipotentials are as shown
in fig.4.1. The gyrotation acceleration will be oriented towards the equator and will generate a deviation of the matter in
a widening prograde spiral. In the figure, fine dotted lines show the boundaries of the spirally escaping matter, which
knock at the equator level. The plain line curved arrows are the paths of exploding matter.

Jul. 2005 7 p78 release 30/07/2005



Thierry De Mees - Leeuwerikenlei 23 - 2650 Edegem thierrydm@pandora.be

The typical shape of such an explosion is shown in fig.4.2. The
remnants are restricted to almost a cylinder. The equatorial region
could possibly explode but not necessarily, depending on the
rotation velocity. Besides, the star is not necessarily a black hole in
order to get such a remnants shape.

We clearly see two cylindrical lobes, with in the middle a huge
spherical halo around the spherical star. At the equator level, a line
is visible (here, under a slight angle with the equator), which splits
the halo in two hemispheres. This is the contact plane of knocking
remnants of the northern and the southern hemisphere.

Fig. 4.2

Spinning black hole torus.

The sphere explodes, and becomes hereafter a butterfly-
shaped black hole torus.The gyrotation equipotentials of
exploded black holes are expected to have a butterfly shape
(fig.4.3, dotted lines). When new matter is blown out

tangentially, and this happens above the limit O¢ (fig.4.3,
curved plain line), the gyrotation acceleration will be oriented
away from the equator, and deviate the matter in a widening
prograde spiral, due to (1.1). In fig.4.3, we have represented a
flattened sphere and two sections of the black hole torus.The
black hole arose indeed after a strong reduction of the
diameter of the original sphere and after a flattening of the
poles in an ellipsoid shape, with a strong increase of the

spinning velocity as a consequence. g figd.3 i et

A typical example for these remnants is given by the
supernova SN 19874 (fig.3.8), while 7 Carinae doesn’t show it as clearly, but has probably also gotten an identical
process.

5. Conclusions.

The Maxwell Analogy for Gravitation gives a clear picture of what we can expect as the conditions for a rotary black
hole with non-exploding regions.
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When R < R, there exist zones where no explosion can occur (if gravitation is negligible). The smaller R/R¢ , the
larger the area between the equator and the maximal compression angle ¢ , where no outbursts can occur. The
maximal possible explosion-free zone is —35°16” to 35°16°.

The equator is not explosion-free: when R < R, there exist a zone where an explosion may occur. The smaller R/R¢ ,
the larger the exploded zone around the equator, and the maximal explosion angle is about Qy;, max—20°, while about
9% of the equator can be blown out.

The shape of fast spinning stars that did explode due to the spin velocity, ends-up to a torus-like black hole with a
missing equator-zone.

The remnants of spinning spheres will form two lobes of prograde spirally matter, but unlikely an equatorial explosion.
At the other hand will the northern and the southern remnants knock at the equator level, and form a halo between the
two lobes.

For fast spinning black holes which exploded before, new burst-outs will form two lobes of prograde spirally matter,
and will follow a path outwards, without passing over the equator.
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The Behavior of
Rotating Stars an
Black Holes

| wrote four papers up to now concerning fast spignstars and black holes. With
Gravitomagnetism, it appears that fast spinningssdee compressed at their surface in order to not
explode completely and to form hourglass superndvaalled it “diabolo”, like the game with a
rope). This comes in the first paper.

The Kepler-Newton orbital speeds about fast spmrstars are not respected but are faster, as
explained in the second paper. The reason theretores in the fourth paper : fast spinning stars
and black holes have an apparent mass that idéaeats real mass, due to their extra gyrotation
force.

But another aspect about fast spinning stars aadkbholes is the event horizon issue. There
appears to be two kind of event horizons, whichoaty on a part of the stars. Many black holes are
never totally black!

Explore now the strange world of fast spinningstar
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On the orbital velocities nearby rotary stars and black holes

T. De Mees - thierrydemees@pandora.be

Abstract

Observation of some huge spinning black holes in the centre of galaxies, and surrounded by orbiting stars, shows that
stars close-by the black hole orbit at much higher speeds than normally expected, whereas the velocity of stars at higher
distances suddenly falls down to normal values.

In a former paper “On the shape of rotary stars and black holes” I found the analytic expressions for the forces on rotary
stars and black holes, due to the gyrotation forces. These forces are generated by the second field of gravitation, based
on the Maxwell Analogy for Gravitation®%"® (or historically more correctly: the Heaviside® Analogy for Gravitation).
In earlier papers, | showed the great workability of this analytical method, at the condition that the “local absolute
velocity” is defined in relation to a major gravitational field instead of the “observer system” as with GRT. I found so
the detailed explanation for the double-lobes explosions of supernova, and for the equator explosions.

Here, I deduct the velocity distribution of orbital objects nearby or farther away from rotary stars or black holes.

Keywords. Maxwell Analogy — gravitation — star: rotary — black hole — torus — gravitomagnetism — methods : analytical
Photographs : ESA / NASA
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1. Introduction : the Maxwell analogy for gravitation (gravitomagnetism).

The Maxwell Analogy for gravitation can be put in compact equations, originally given by Heaviside® >, Electrical
charge is then substituted by mass, magnetic field by gyrotation, and the respective constants as well are substituted (the

gravitation acceleration is written as g , the so-called “gyrotation field” as €, and the universal gravitation constant as
G = (411 ()" 1 use sign O instead of = because the right hand of the equation induces the left hand. This sign 0 will
be used when we want to insist on the induction property in the equation. F is the induced force, V the velocity of mass

m with density 0. Operator X is used as a cross product of vectors. Vectors are written in bold.
All applications of the electromagnetism can from then on be applied on gravitomagnetism with caution. Also it is
possible to speak of gravitomagnetism waves. Please read my earlier papers for a better comprehension® 79,

2. Gyrotation of spherical rotating bodies in a gravitational field.

For a spinning sphere with rotation velocity w, the results for gyrotation are given by equations inside the sphere (2.1)
and outside the sphere (2.2) ©:

- - int 2

QY pt] QuD W{w(zf—‘mj—’("“)} @)
. (4
J

1 t
“““ SO e 5r3c? 3 r’

SN AR EL AN -41G R (w r(wer
\\\ SR Q.0 P o _r ) 2.2)

fig. 2.1

(Reference: adapted from Eugen Negut, www.freephysics.org) The drawing shows equipotentials of — Q.

wherein * means the scalar product of vectors. For homogeny rigid masses the following equation can be written :

0 -G mR* (w_3r(a)-r)]

(2.3)

ext 5r3c? r’

When this way of thinking is used, it should be kept in mind that the sphere is supposed to be immersed in a steady
reference gravitation field, namely the gravitation field of the sphere itself.

3. Orbital velocity nearby fast spinning stars.
Total orbital acceleration in the equatorial plane.

Let us call the circular orbital velocity v. By the action of gyrotation, I proved® that the orbits must lay in the equator
plane of the rotary star. The accelerations due to gyrotation are then given by the Analogue Lorentz Law®. On top of
this gyrotation term, the gravitation term (Newton) must be added.

G
a UvQ - r;n (3.1)
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Using (2.3), I find at the level of the equatorial plane:

-GmR*

Q, 0 Tariel w (3.2)

and combined with (3.1) this gives:

_GmR’wv G m

a_ [
x 5r3c? rl (3.3)
Now, using the geometrical law
2
| 4
a [0 — 3.4
x r (3.4)

(3.3) and (3.4) must be equal to in order to get an equilibrium.

Total orbital velocity in the equatorial plane for spherical and toric fast spinning stars.

The equations (3.3) and (3.4) bring me to the quadratic equation in v

v’ GmR’w Gm _
+ =0 (3.5)

1 4
3 2 2
r Src r

which can be solved to v :

(3.6)

vV, = .| —— 3.7)

and wherein I have defined @ as the “specific angular density” of the spherical star (dimension of time [s]):

_R'w

sphere — 10 cz (3.8)

At last, I rewrite equation (3.6), just to get a more beautiful equation, by defining the “angular spread” sg (dimension
of inverse velocity [s/m]) as :

§o—

6
— 3.9)
r

So, (3.6) becomes:
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— — 2 2
V=V, =V 1+ (Vi 8o) Vi s, (3.10)

orbit

This general equation describes the orbit velocity for any small object orbiting about the equator of a large mass,
whether that large mass is rotating or not. Remark that the generalized orbital velocity is only dependent from the
Kepler velocity and the angular spread.

Discussion

There also exist a second solution of the quadratic equation (3.5). This solution however is physically not probable,
because this would lead to a retrograde orbit. I have shown earlier® that only prograde orbits are stable.

From (3.6), (3.7) and (3.8), it follows that the orbit velocity is inversely proportional to the second power of the orbit
radius 7 , but, for slow spinning stars and for large values of  , the orbit velocity becomes proportional to the inverse
square root of 7 . Even so, the orbit velocity is directly proportional to the spinning star's mass m , but for slow spinning
stars, it becomes proportional with the square root of m .

Remark that 8 is independent from the star's mass. Equation (3.8) can also be expressed in relation to the inertial
moment of the sphere, so that the name “specific angular density” becomes more obvious: 8 is the angular momentum
divided by four times the total energy of the rotary star.

1 w
- z m R 2 |:| 9 = sphere

sphere 4 mcz (3.11)

sphere

Although (3.6) is only valid for spinning spheres, the inertial moment of a torus, with a small inner radius compared with
the outer radius, is not more than 5 to 10% larger than the inertial moment of a sphere. So, (3.8), which only depends of
the stars geometry is reasonably correct for any star in general.

Hence, equation (3.6) can be taken as a good first approach of the orbit velocity of objects near fast spinning stars in
general.
For a torus such as a spinning black hole, specific angular density 8 becomes:

—_ Itorusw
= fows (3.12)

4mc?

torus

Due to the form of equation (3.6), it is clear that the orbital velocity nearby spinning stars is always larger than the
Kepler velocity. Moreover, the decrease of this velocity is approximately directly proportional to 1/7* for smaller r, and
tends to a velocity which becomes Keplerian for larger 7.

The equations (3.6) until (3.12) allow astronomers to deduct G m and R* w in relation to the orbit radius r by observing
of the orbits nearby and farther away from the spinning star or black hole.

Validation of the calculus

Figure 3.1 shows the orbital velocities in relation to the orbit radius 7, for a rotary star with a certain mass and shape and
for increasing spin velocities w . The lowest (blue) curve is Keplerian (w = 0); the faster the large mass spins, the
higher the curve.
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Fig. 3.1
With increasing specific gyrotation period 6 and thus spin velocity w, for a same orbit radius » , the velocity rapidly
becomes enormous. But at higher distances r , the curve follows quite well the Kepler velocity. Whereas for w = 0
(Kepler), the orbiting objects at quite large distances r are situated in the smooth part of the curve, the same objects
would instead obtain huge velocities when the spin velocity w is significantly higher. And when looking at orbiting
objects at larger distances, the velocity suddenly falls down to nearly the Kepler velocity.
Observation of some huge spinning black holes in the centre of galaxies and surrounded by orbiting stars shows such a

behaviour. Stars close-by the black hole effectively do orbit at much higher speeds than expected (based on the Kepler
law), whereas the velocity of stars at higher distances suddenly falls down to the expected Kepler values.

4. Conclusion.
The duality of the orbital velocities nearby fast spinning black holes, which is observed in the centre of galaxies, is

perfectly described with the Maxwell Analogy for Gravitation. Nearby the spinning black holes, the orbital velocities
are very high, but farther away, the orbital velocities suddenly fall to Keplerian values.
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Mass- and light-horizons, black holes' radii,
the Schwartzschild metric and the Kerr metric

Improved calculus.

(using gravitomagnetism)

T.DeMees - thierrydm@pandora.be

Abstr act

Black holes generally are defined as stellar objedtich do not release any light. The Schwarzsdfaittus, derived
from GRT, defines the horizon radius for non-ratgtblack holes. The Kerr metric is supposed tongethe “event
horizon” of rotating black holes, and this metricderived from generally “acceptable” principlesieTimit for the
Kerr metric's horizon for non-rotating black holeshe Schwarzschild radius.

By analysing the horizon outcome for rotating and-notating black holes, using the Maxwell Analdgy Gravitation
(MAG)B478(or historically more correctly: the HeavistéléAnalogy for Gravitation, often called gravitomatjsm), |
find that the Kerr metric must be incomplete iratign to the definition of “event” horizons of rtiteg black holes. If
the Maxwell Analogy for Gravitation (gravitomagreati) is supposed to be “a good approach” of GRTmag assume
that it is a valid analysis tool for the star honzmetrics.

The Kerr metric only defines the horizons for lightit not the “mass-horizons”. | find both the Highorizons” and the
the “mass-horizons” based on MAG. Moreover, | dédibe equatorial radii of rotating black holes. Tatebable origin
of the minutes-lasting gamma bursts near blackshislainveiled as well. Finally, | deduct the spaloeity of black
holes with a 'Critical Compression Radius'.

The deductions are based on the findings of my igdjed Einstein cheat?’, “On the geometry of rotary stars and
black holes”and“On the orbital velocities nearby rotary stars abthck holes”.

Keywords. Maxwell Analogy — gravitation — rotary star — ¢tahole — Kerr Metric — torus — gyrotation — honzo

methods : analytical
Graphs. WZ-Grapher
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1. The orbital velocities nearby Rotary Stars and Black Holes.

Introduction: the meaning of mass-horizons.

The horizon can -unhappily- be defined as the atarpossible orbit of masses about the spinninglstarder to find
the horizon's radius in this chapter, | look after orbit which has an orbital velocity of the sp@é light. This horizon
| call the “mass-orbit horizon” or simply the “malserizon”. If the horizon's radius is greater thha star radius, we
can speak of a black hole of the mass-horizon-typat least of a “equator black hole” (or “partiddick-hole”) of the
mass-horizon-type. Indeed, the region of the polespinning stars do not respond to the same rendnts than the
equator, and thus is not emission-free.

Let us look at the bending of objects about stai drbits. Firstly, we have the Newtonian graviatforce.

Secondly, we have the attracting force due to piie af the star. Therefore, we first need to fihd second gravitation
field (“magnetic” part of gravitomagnetism, whatdll “gyrotation”).

From my papefA coherent double vector field theory for Gravitat’, we have the basic equation of the gyrotation

part 2 (“magnetic” part) of gravitomagnetism for spheres

. GmR* (. 3F&F)
Qe U - 532 (w_ = j (1.1)
or, in general:
. GI (. 3FwlF)
Q.u- w- 1.2
ext 2r3c2( r’ ] (42

. N 2 N
wherein we have replaced the inertial moment oktiteerel :ngz by a general inertia momentum

This equation follows from the integration of eqaat(1.5) below, for constant gravity, over the Wéhsphere. The set
of Maxwell equations for Gravitomagnetism is giugnthe equations (1.3) to (1.10) below.

FOom(g+vxQ) (1.3) .90 p/{ (@4 ccOx Q0 j/{+aglot (15)

wherej is the mass flow through a fictitious surface. Térend g/0 t is added for same the reasons such as Maxwell
did: the compliance of formula (2.3) with the eqoat:

divjd -dp/ot (1.6) It is also expected thativ 2=0. Q=0 (1.7)
and [Oxg 0O -0L/0t (1.8)
It is possible to speak of gyrogravitation wavethwiansmission spee]

=1/({r1) (1.9)  wherein r=4nG/c? (1.10).

Equations (1.3) till (1.10) below form a cohereahge of equations, similar to the Maxwell equatiofise electric
charge is then substituted by mass, the magnetidt ffiy gyrotation and the respective constants are also substituted

(the gravitation acceleration is written @s the so-callegyrotation fieldas 2, and the universal gravitation constant
out of G* = 411 {, whereG is the "universal” gravitation constant. We ugmsdll instead of = because the right-
hand side of the equations causes the left-hared $iois signl] will be used when we want insist on the induction
property in the equatiotk- is the resulting force/ the speed of mass' with density0.

Combined with (1.3)F =m' (g + v x Q) , this becomes for the equator plate<0) :
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Gmm' GmlIav Gmm Gmla
F = T+ 5 = — 3 (1.12)
r 2c¢’r r 2cr
whereinV is in this case the velocity of the light= C. The sign fof has been omitted because we consider quantities
here, no vectors.

Gm GIa

Instead of forces, | prefer to use accelerationpuitinga = F/m'. Hence : @ = 2 + 2er’

(1.12)

This acceleration forms a circular orbitdf = V2/r , whereinv is the orbital velocity of the objecWemit = V .

ﬁ_Gm+GIcu

2

r r 2¢r’ (19

By puttingVoi: = €, We can find the orbit radius where the orbibedtly should reach the speed of light. This dedurcti
is purely theoretical, because very probably taseowill lead to a disintegration of the orbitingtter into gamma
rays. For any orbit closer to the black hole, ndatemaorbits will still subsist.

By filling Vorbit = C in (1.12), we get:
zz—Gm+G“2° (1.14)
r 2cr

The positive solution of (1.14)

This equation is quadratic mif we multiply it byr2. And of the two solutions, we only keep the pesitbne:

2
G m G m GIw
r = + + 1.15
MH 9 2 \/(ZCZJ 2¢° (1.15)

Thus, the faster the star spins, the larger théemhbrizon-radius’ = I vy becomes. It is probable that (1.15) gives
the condition of disintegration of matter near msjmg star, due to the high energies involvednasses reaching the
speed of light, and it seems reasonable to takedount this possibility.

And for non-rotating black holes, the orbit rad{osatter horizon) becomes:

Gm _ R, ,
Iy =——> = if w=0 (1.16)
c 2
26 m
which is half the Schwarzschild radids; : R = 5 (2.17)
c

Equation (1.16) means that if an object is orbitiigalmost) the speed of light about a star withmspin, that star
must not be larger than half the diameter of a $chschild black hole.

In the following lines, | simplify (1.15) for fastpinning stars with masses of at least that ofstie Equation (1.15)

becomes after some manipulation:
roo = G m 1+ s+ 21cw
MH 2 cz sz (1.18)= (1.15)

The second term under the root sign is smaller tharhus, knowing that:
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x<<1l = \/1+X:1+;X (1.19)

it follows that:
r _Gm 1+ ITcw . Ica <1 L 20,8 (115
MH Cz Zsz or Zsz Elzog)):( )

The expression (1.20.b) is valid for all the knovatestial objects.

Since the definition of the Schwarzschild radius is

2G' m
Rs = 3 (1.17)
cC
the equation (1.20.a) can be re-written
R, I
Iy = + (1.21)= (1.15)
2 2mc

The equation (1.21) shows that the evolution ofrtfasss-horizon radius is nearly lineardn The faster the star spins,
the wider away from its center the mass-horizontdmecomes. This equation means that no mass wanivs' for that

radius, nor smaller radii. Moreover, when massteras close as the matter-horizon-radius I vy , the orbit speed
must reactC and matter must disintegrate.

The negative solution of (1.14)

Remark that the negative solution of the quadedigation (1.14) does not have yet a clear physieaning here. It
would be quite speculative to associate this egnatith the empty inner space of a torus black hwml this option
merits a closer study.

_Gm (ijz GIw
r= - +

2c? 2c? 2¢3 (1.22)

In my former papefOn the shape of black holes demonstrated, using MAG, the high probabilitytofus black
holes when they spin fast. These two mass-horizoukl signify the confirmation of my earlier findjn

Here, the equations describe the (quite unusualditons of an orbital velocity of matter at theesg of light. In the
discussion chapter, these issues will be furthptagéxed.

In the following lines, | simplify (1.22) for fastpinning stars with masses of at least that ofstie Equation (1.22)
becomes after some manipulation:

G m 2/Icw
r= 1- 1+
2c? G m’

(1.23)= (1.22)
The second term under the root sign is expectée far smaller than 1. Hence, knowing that:
x<<1l = \/1+x=1+;x (1.19)

it follows that for fast spinning stars, the secomalss-horizon becomes:
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I
2mc

Iypy- =~

(1.24)

It might be very possible that equation (1.24) hagphysical meaning. Remark that it is mass-indégen

The torus shape of fast spinning stars

In the papetOn the shape of rotary stars and black holdsieduct that fast spinning stars are torus-sha@ad this
also be deducted from the MAG mass-horizon?

Indeed, in the same paper, | come to the conclusiahwhen particles arrive in the torus' hole, ahéy stable motion
is a circular equatorial orbit which is retrogradethe torus' spin. When looking at (1.24) , thisra surprising minus
sign. And this is perfectly complying with a retrade orbit. When (1.21) and (1.24) are graphicadlgresented
(fig.1.1) , it becomes clear that the two mass#ums (red boundaries) differ only with the width lodlf the

Schwarzschild radius.

b

-lw/(2mc)

>
R/2+lwl(2mc)

Fig.1.1.The spinning star mass-horizons (red lines)

Thus, according to an earlier paper [8] , the state mass-horizon of fast spinning stars isddike, and it can be
expected that such spinning stars are torus-likeediswith a thickness much belofs/2.

This chapter gives the solution for the zone ne#nbyblack hole where matter tends to orbit atsgheed of light.
Before discussing the findings of this chapter mordepth, | first study the general problem of bending of light
nearby black holes.

2. Thebending of light into a circular orbit.

Introduction: the meaning of a light-horizon ane tierr Metric.

Another approach could be the study of the bendinlight by the spinning star. Schwarzschild foumte “event”
horizon for non-rotation black holes by applying TGRVith the Kerr metric, which gives the conditiomsarby black
holes, two horizons are found. Here, | look foribons via the Maxwell Analogy.

Although this chapter seems to be quite identicahé former one, there is an important differemtere, | speak of the

bending oflight in the gyrogravitation field, and not abaugtterin an orbit. And the result of circular light-bend is
called thdight-horizon
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For this purpose, we take the solution which weehfaund in Did Einstein cheat?!, equation (6.14), written in its
general form.

] 2
2mm’+Gmm’ y +Gmmez
2 2 ZVICOS a 22

r 2r'c S5c'r

-F, =G

b.a cos’ ¢ (2.1)

This equation describes the bending of light, tgkim account three forces and thus three termsdbas :1° the
pseudo-gravitational effect for light, which is twimes the value of the Newton gravitati@i;the gyrotation force due

to the orbit velocity of the star in its galaxy ¢ime present case: of the Milky Way, wheaies the angle between the
orbiting object at velocity1 and the axis between the center of the Milky wag the sun) an@° the star rotation (in

the present case: the sun) while the light pastescartain latitudegp . And | found this equation to be far more
accurate than the GRT derivation.

The finding in this derivation was that light istrzent by gravitational effects (because the restavof light is zero),
but only by the gyrotation field of the mass bedirthe light wave itself, traveling in the gravitati field of the star.

The equation (2.1) has been written for light tisegrazing the sun (or any massive object). Thistrbe changed into
an equation that is valid for any distance of tightlto the center of the celestial object anddaoy type of inertial

moment, not only for spherical objects. Below, thif be adapted by starting from the following cepts : the first

term of (2.1) remains valid, the second term wit be considered further and the third term willauapted as said
before.

What specifies the light-horizon of black holes?

In this case, of course, | do not consider the WiNKay's dragging velocity: , which | assume to be insignificant
nearby the black holes we want to study.

Besides staying at the equator level of the stéy, drconsider accelerations instead of forces. tBe, perpendicular
acceleration upon the light becomes, in analogh wduation (1.12), wherein only the Newtonian teaits a double
value :

26m GI1a
a= +

2

2.2
r 2cr’ @2)

Since this acceleration is a bending, thus, raatiakleration, and since we look at the light penfag a circular orbit,
the acceleratior@ is supposed to also comply with the centripetalelerationV2/r, which is a purely geometrical
formula. For light, we replace the speety C.

Hence: c? _2Gm+GIa)
r r’ 2¢r?

(2.3)

By making this equation quadratic in the radiusf the light-horizonr = r mn , we get the following solutions:

Gm |[(6Gm\ GIlw _Gm Tcw
=g T | T O Tw T 1+ 1+W (2.4.a) = (2.4.b)

The second term under the root sign is expectée far smaller than 1. Hence, knowing that:

x<<1 = \/1+X:1+;X (1.19)
we can write this as a positive and a negativetismiu
2G m ITcw Ia (2.5)= (2.4)
Iy, =—7s—| 1+ 7| and rpyy =- if Le az <<1 (2.6) (2.4)
c 8Gm 4mc 26 m (2.7)
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Remark thalrLH_ is independent from the mass. Hence, it is versside that (2.6) has no physical meaning, but it
might have the meaning of a retrograde orbit inliidehole of the torus.

Equation (2.5) also can be written as :

I
4dmc

ry,. =R+

s

(2.8)~ (2.4

wherein Rs is the Schwarzschild radius.
Equation (2.8) is thus describing the bendinggtitibeams in a circular orbit about black holes.

Horizons cannot be defined better than with thisa¢ign. In the discussion chapter, it will becorteacwhy this is so.

b

o

R, RS/2=
-lw/(4mc) < o
R+lw/(4mc)

\ 4

Fig.2.1. The spinning star mass-horizons (red Jiaesd its light-horizon (dark line).

As shown in fig.2.1, the external light-horizoniardeter is always smaller than the external maszdm diameter.

3. Deriving theradius of Pure Black Holes.

Evolution of the Pure Black Hole's radii.

If, as | found, (2.8) describes the horizon of kl&oles, there is a special case which even gogsnbethat result:
when the light-horizon coincides with the star équaa part of the star is invisible, even whenkiog from the poles
to the star, whereas this obscuration was notdke i the former horizons. | speak of “Pure BlHcdhkes” at the limit
where the equator of the star is obscured. Lighhaaescape, and the light horizon is the star tequblence, | can
describe partial black holes, whereof a part issible, even observed from the poles.

To manage this, we need to adapt the parameteguation (2.8) as follows :

For thin rings and thin toruses in genetal; A m R, whereR is the radius at the equatorial level of the siad the
factorA < 1
By puttingrl_H =R, | obtain a circular bending of light upon theuatpr of the star itself.

Since we look for the case whefew ~ C, equation (2.10) can then be replaced by:

__R, (3.1)

B =0 00)

whereinRs is again the Schwarzschild radius.
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We see immediately that, for a ring black hole, mitiee light horizon reaches the ring's radiusfitdkls ring's radius
must have reached about 24& the Schwarzschild radius (the Schwarzschildusdtands for the theoretical spherical
non-rotating black hole).

Note that the value for the spin rate of that FRlexk Hole equals tacv ~ C/ T , as defined earlier.

Remark that the concept of Pure Black Hole is dingoretical. If the spin velocity becomes clos¢hi speed of light,
disintegration of the matter particles is extreny@igbable.

The graphic evolutes as expected: the higher time g smaller the radius of the light circle bees. Equation (3.1)
is beautifully describing the required radius &t gguator level of rotating Pure Black Holes.

>

Fig.3.1The Pure Black Hole's light-horizon and mass-harizo

It is then clear that if | depict this graphicallyget fig.3.1. , wherein | show the light-horizflarge dark boundary) and
the mass-horizons (red boundaries) as well.

Spin velocity of Black Holes at the Critical Congs®n Radius.
In a former papé&, | have deducted the radius of continuous massoesaion at the equator level of spherical stars

(with negligible Newtonian-gravitation influencejhis deduction was based on the gyrotation fieldagiqns for a
sphere, and we use (1.2) in order to obtain a meneral equation. The minus sign signifies “attoact

o.n-¢I [a)_u(wuc)J

. 1.2
¢ 2rct 2 (.2)

r

Hereinr is the distance to the center of the sphlYis, the radius of the sphere atis the spin velocity.
The equatorial compressive gyrotation force is wilg the analogue Lorenz forc®, =« R 2, (3.2)
and the last term of (1.2) is zero in the directobthe spin axis, sd)y =0.

Hence, the acceleration due to gyrotation at theten plane is:

G1
2ric?

a=-w'R (3.3)

At the other hand, we have the following force® tientrifugal force and the gravitation force. Fast spinning stars,
the gravitation force can be neglected, and wetfiad, in general:

Gm GI
=—+WR|1-—— (3-4)
o =72 ( 2r3c2)
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which becomes zero at an equilibrium at the CongmasRadiug = R = Rc .

The angular velocity at which this occurs is givsn

_2 | GAm (3.5)
We=— |7
R\ R, -4R

wherein | have put = A m R2as a simplification. The dimensionless paramdteenerally has a value betwe8n

andl. Remark thaR must comply wittdR < Rs.
When that angular velocity has been reached, aadbthck hole became explosion-free, we call thelkblaole
“Perfect”.

Since in this case, the value of the angular vglois high, the Newtonian gravitation is much smalthan the
gyrotational one. By neglecting the Newtonian gi@tion, we find thad,  is zero, for thin ring-shaped pure black

holes, if:

R =AR, /4 (3.6)
a)C
<>
—
/@
\\
§ - ol R/2 g
R /4

Fig.3.2.The Perfect MAG Black Hole with spin veloaity, when the Critical Compression has been reached.

The non-explosion condition (3.5), valid for alhgishaped stars, defines the exterior radius ofittgeshaped spinning
star for a total continuous compression at the tegiah level. By comparing (3.6) with (3.1), théseno way by finding
a spinning black hole that is simultaneously Puré Berfect. Thus, black holes cannot be at the sangepure, and
explosion-free.

Indeed, the minimum requirements for the perfednrspg black hole, which cannot explode and whicm c
disintegrate orbiting matter, would then be giventhie combination of the metrics, given by fig.342.these metrics
can coexist mathematically.

4. Discussion: Three approaches, three important results.

Orbiting masses at the speed of light.

The first derivation (1.15) for finding horizonsstdted in the search of the orbit of matter travglat the speed of light
about the spinning star. The meaning of this dsbitowever not very clear. Could this be the horinb the star? Not
really, because this equation goes about matttradof light.

On the other hand, is seems to be correct that or@ tight can overpass this boundary, as far asemetffectively
disintegrate at that place.
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r ~R‘+Ia' (1.21)
ME 2 2me '

But when the matter disintegrates, and when itsfcam to gamma rays, these rays obey to other.riiles gamma
rays will be emitted and will —in most of the casemt be cached by the star. The disintegratioanobrbiting object
near such a star will indeed emit enormous gammstdduring seconds or minutes. Such gamma buestsheserved
and (1.21) is very probably the origin of theseesbations. Longer bursts are not likely, becaus#lypéisintegrated
masses become lighter, and will look up slowertsrli@ying at higher distances from the black hole.

Resuming, when one is purely speaking of the carieyent horizon”, which is the circular bendinglgfht, (1.15), or
(1.21) , is not exactly the expected solution.

In the first place, the Kerr metric is in contra@a with (1.15) concerning its horizon conceptcéigse of the doubtful
compliance of horizons with orbiting masses atgpheed of light. From (1.15) follows moreover that fion-rotating
stars the limit radius of the mass-horizon becomes:

K

w=0 = r=

(4.1)=(1.16)
Surprisingly, the Kerr metric is quasi identical(fo15) , apart from a constant factor 2 , whidbwas the Kerr metric
to obtain the Schwarzschild radius as a limitdor 0 . But this seems more to be an artifice.

The conclusion is that the Kerr metric simply hasto be considered as a matter horizon.

The bending of light and the Kerr metric.

More likely, the bending of light should be the mmt approach for defining the concept of “eventizan”. This
happens in (2.8):

Ia
4mc

rLH+ :R +

s

(2.8)

Herein, the Schwarzschild radius is obtained fer ltmit wherew = 0 . As explained before, it seems much more
logical to consider the circular bending of liglsttae correct definition of the event horizon.

The concept of the Kerr metric is in disagreemeit whe solution (2.4) , or (2.8) , but in agreemedth (1.15). The

mathematical expression (2.4) has a very simpleigensisting of a non-rotating term, and a tdimear in &, when
rotation occurs. Of course, the horizon exists @tlthe condition that its radius is larger thaa skar radius.

Comparing both types of horizons

Comparing graphically both equations (1.21) an#l)(8ives the picture (fig. 4.1).

The radius in the upper graphic (circular orbithe speed of light) raises very quickly with insiea spin velocity.
The lower graphic (circular bending of the lighthich is barely increasing, starts at the Schwéibecadius. So, for
black holes with a relatively slow rotation velggithe “light-horizon” is nearly constant at thatnse radius. The
“mass-horizon” graphic however moves immediatelyads higher radii.
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4 Radius

¥ ajud uids

Fig. 4.1.Comparing the radii of matter horizon (MH) and ligiorizon (LH).

A precise calculus shows that for an incoming dbjear a spinning black hole, the matter horizevagt follows after

the light horizon at a fixed distance I8§/2, whatever the spin rate is. This means that wemean see a disintegration
of matter (except by tidal forces) , because firstle limit of the light horizon has to be passelbhwever, since
spinning black holes are torus-like, matter digini¢ion at the matter horizon can be made visibltha side of the
poles of the star.

4. Conclusion.

There exist two types of horizons: the first onbased on the orbital velocities of matter, orlgitat the speed of light,
(called: mass-horizon) and the second is baseteohdnding of light towards a circular orbit (cdlléight-horizon).
Both are purely deducted from the Maxwell Analokgdry for Gravitation (gyrogravitation).

The mass-horizon type has two mathematical solstivhereof the negative signed one isn't totakyacibut which
might represent the inner hole of a torus blacle hdhis would totally comply with our former papbr.an earlier
papef?, | found indeed that fast spinning stars can allytexplode, and that they normally end up in $eshaped
black holes. This first type of horizon (mass-hongallows me to find a very plausible origin ohgaa bursts which
last for several seconds or minutes: the disintegraf mass at the speed of light (which becamesible to the eye)
into gamma rays, which suddenly become then visii#eause the light cannot be bent as much in ¢odemain
captured.

The Kerr metric is almost identical to the MAG ligorizon, in order to get the Schwarzschild ragias limit for
non-rotating black holes.

The MAG light-horizon defines the “event horizorf’ldack holes in its pure form, as the ultimateglar boundary of
visible light about the black hole.

Both horizon types can coexist, but at some venydad very high spin velocities, the light-horizalmscures the mass-
horizon, so that even gamma bursts might totallgd@ured by the spinning black hole, which migbidithese bursts
invisible, unless they can escape via the poleésefing (torus) black hole, as | explained in arlier pape¥.

Beyond these deductions, the radii of spinning rmadtspinning black holes are found, as a spectd oéthe light-
horizon.

Finally, the spin velocity of black holes with contous compression has been found.
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How Really Massive are the Super-Massive
Rotating Black Holes in the Milky Way's Bulge?

based on the Maxwell Analogy for Gravitation.

T. De Mees - thierrydemees @ pandora.be

Abstract

The centre of the Milky Way is populated with so-called super-massive black holes. In most of the papers and
books about black holes at the centre of galaxies, the mass is said to be gigantic.

In this paper, we will see how to calculate the mass of these super-massive black holes out of observational data,
by using the Maxwell Analogy for Gravitation, and we see how to make the difference between real physical mass
and apparent (fictive) mass.

We discover that so-called 'super-massive black holes' do not have huge masses at all but that they have an
apparent mass that can be thousands times the real mass. This suggests that the energy of such black-holes could
decrease very fast in relative terms.

Keywords: black hole — horizon — spinning star — super-massive — Maxwell
Method: analytic Notations: metric with comma

1. Basic gyro-gravitation physics for a rotating sphere.

Rotating objects have a velocity-dependent property that is the following. Imagine a sphere that is rotating with an
angular velocity @ . The gravitational field of the sphere is the steady reference field with a velocity that is locally
zero. But the rotation of the particles at a certain velocity, depending from its orbit's radius, will undergo a second
field that is entirely comparable with the magnetic field in electromagnetism. I call this field gyrotation, but
several other names exist in literature, such as co-gravitation field, gravito-magnetic field, etc. This orbital
velocity is locally an absolute velocity. In “A Coherent Dual Vector Field Theory for Gravitation™ , I explained
that this second field is generated by the motion of masses.

Fig. 1. If two particles inside a spherical object rotate at their corresponding circular
velocity, they will influence each-other by a gyrotational force.
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In fig 1, the mass m (a particle of the sphere) orbits at a velocity v in the gravitation field g of the sphere. This
motion generates a second field £2 that is perpendicular on the velocity vi . This second field will influence any
second mass m> that travels with a velocity v2 by generating a force F» that will cause a deviation of the mass mo .
This force is perpendicular to both the velocity v2 and the gyrotation field £2. Mutatis mutandis, the mass m2 will
also deviate any mass m; in a similar way.

The force F2 can be found by the vector expression :
Fr =ma (v2x ) (1.1)
which can be completed by adding the gravitational force :

Fror=m(g+v2x 0 (1.2)

When this scenario is repeated for all the particles of the sphere, the global gravitation is found and the global
second field (the gyrotational field) is found.

For a spinning sphere with rotation velocity @, the results for the gyrotation at a point p outside the sphere with
mass m is given by the equation (1.3) ©:

k\(\\‘l""’)‘;\.
SOOI VISSESS GmR*(  3r(wer)
NI Y Pl S g |-, (1.3)
----- 1 iR 5ric r
RE RN Ny -
00 iy L u— v oa \X
[ SOSER S o8
v .\\,’E\ ﬁ /... wherein ® means the scalar product of vectors.
SMDDDDAS NN (e
‘‘‘‘‘‘ r A T e N . . . .
PR B (Reference: adapted from E. Negut). The drawing shows equipotentials of — £2.
Fig. 1.2

For the level of the equatorial plane, the last term of (1.3) vanishes, and we get a simple expression that is
dependent of the inverse cube of the distance, and, compared with the pure gravitational field, dependent from the
square of the sphere's radius, from the inverse square of the light velocity, and from the sphere's angular velocity.

The result of the expression (1.3) can be put in (1.2) in order to find the total acceleration acting on a arbitrary
mass in motion.

For the equatorial plane, equation (1.2) can generally also be written as :

2
a:_Gm(H_Vza)R) (14)

r’ S5rc?
This equation shows that the second term can have some considerable relative importance, even if the mass is
small. Indeed, the second term can be much larger than 1, depending from the values of the variables. This means
that even if the mass is small, it is still possible to have the impression that we are coping with a massive object.

The equation (1.4) can be expressed more generally, when we consider / the inertial momentum of the central
object:
2

2 G m v, I w
Since Isphe,e =—mR , we get, more generally: = ——— 1+—2 2 (1.5)
5 r 2mrc

In the next chapter, we will analyse these parameters in detail.
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2. Gyrotational centripetal forces.

The orbit velocity is non-Keplerian nearby fast spinning stars.
When the orbital velocity of an object surrounding an invisible star (or black hole) appears to be non-Keplerian,
this central black hole is said to be super-massive. Therefore, let us use the velocity v2 , used in the former

equations as an orbital velocity of objects nearby the central black hole.

In “On the orbital velocities nearby rotary stars and black holes” I found the velocity of orbiting objects when
taking in account the gyrotation field of the central star.

|G m
In relation to the Keplerian orbital velocity ¥, = 4/—— , we found the following real orbit velocity :
r

2
v, = /Gm 1+Gm I(o2 +Gm Ia)2 1)
r r \(dmrc r 4mrc

Herein, [ is the inertial momentum of the sphere, or in general, of the central celestial object. The orbiting object
will experience a larger velocity than the Keplerian orbital velocity only, because of the spinning of the star.

G m

rZ

We define the notations 4, , ¥, and ¥, as follows : the gravitational acceleration as & s =~ , the

1w G m
angular spread as 8o = 4—2 and the Keplerian orbital velocity as ¥V, = 4,|— .
mrc r

Then, the equations (2.1) and (1.5) can be more simply written as :
2
v,=¥,\Jl+Vis, +V,s, and A= ag[l +2s, (V“/1+ vis, +vi SQ)} (2.2) (2.3)

In the case of a large Keplerian orbital velocity vk and of a considerable angular spread s (which has the
dimension of the inverse velocity [s/m]) , we get a total centripetal force that can be many times larger than the
gravitation force alone, but without therefore having a larger mass.

The main factor that will determine the gyrotation force (the second, large term in (2.3)) , is the angular velocity @
of the central star or black hole.

The apparent mass is caused by the non-Keplerian part of the orbital velocity.

Therefore, let us examine again the characteristics of rotary black holes. In “The Kerr-metric, Mass and Light-
Horizons, and Black Holes' Radii” I explained the shape and other characteristics of black holes.

When someone is not aware that the velocity vz is not Keplerian, he will say that the mass of the central black hole

can be found out of the Keplerian equation :
G m,
Vv, =, —2 (2.4)
r

But since we know better, we can say that the mass contains partly real mass and partly apparent mass, due to the
wrong idea that v> would be Keplerian.
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So, we get: 2.5)
The total mass (real and apparent) of the rotating star is given by the following expression :
_nr >
m + mapp = ? (2.6)
where the first term is the gravitational real mass and the second term the apparent mass.
The equation (2.6) can be written as following, when using (2.2) :
2 2 2 2
m vir Vk(1/1+vksg+vks9) r 2
R & =(V1+vish+v,s,) Q7w
m mG mG
2
. . . ap _ V3
Remember that the first part of the equation can be written as — =3 1 (2.7.b)
m v,
In the next section, we will analyse the equations (2.7) closer.
Analysis of equations (2.7) and simplification.
Three cases are considered.
Let us consider the case where vk s = 1 . Then the following approximations can be made :
¥/} 2
app (1 + \/E) (2.8.a) vV, = (\E + 1) | (2.8.b)

m

The apparent mass is already considerable here.

When we consider the case where vk s >> 1, the following approximations can be made, since

N1+ x =1+ x/2 .

m
=\, SQ[2+

2
) 1
m 3 (2.9.2) V,=2¥,8,+ 2o, (2.9.b)

2
2v, s, Il
The apparent mass is very important here. This is the case that will be studied further in this paper.

To a certain extend, for vk so >>> 1, it is even possible to reduce the equations to a more simplified version :

2 | 4
o= (2v,8,) (2.10.2) 222y, s, 2.10.0)
m Vk

And when vk s << 1, the following approximations can be made :
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m v:sk 1
I:"’ z(1+vksg+ "ZQJ (2.11.) v, =V, +V; sQ+EV,3‘sé (2.11.b)

Even here, the apparent mass can be of a noticeable importance, if vk so is not too small.

For vk so <<< 1, we can reduce the equations to a more simplified version :

o~ (14w, s,) (2.12.2) 2L =1+v, 5, (2.12.b)
m Vi

3. Study of the case vk so >>1.

When the case vk s >> 1 is considered, the first thing to do is to verify what the physical balance conditions are

that can comply with the several parameters of the expression vk s . We have to check the physical equilibrium
between the so-called centripetal forces (gravitation and gyrotation) and the centrifugal forces (inertia of mass). In
this paper we will study stars that are stable while spinning.

To obtain the condition vk s >> 1, it is sufficient to choose the orbit radius r small enough, but still r > R.

The condition of non-explosion of the star.

In “On the geometry of rotary stars and black holes” I found the critical radius at which a fast rotating spheric
object will not fall apart at latitudes smaller than 35°16', even at very fast rotation speeds. The generalization for
some other shapes than the sphere are worked out in “The Kerr-metric, Mass and Light-Horizons, and Black
Holes' Radii”, chapter 3, section “Are Pure Black Holes explosion-free ?”. 1 found the equilibrium between the
corresponding accelerations, and the corresponding explosion-free Critical Radius R .:

AR
Rc = s (3.1)
4
wherein the symbol R is the Schwarzschild radius R, = 26;’” and the dimensionless factor A is found out of
c

I=Am R? . For a sphere, A= 2/5 and for a thin ring with radius R we have A = 1. The radius of the black
hole must be equal or less than R .

Minimum spinning velocity for the validity of equation (3.1).

Remark that the condition for the non-explosion of fast spinning stars is independent from the spinning speed.
However, the expression (3.1) is not applicable for slowly rotating stars, because during the deduction of the
equation (3.1) in the latter mentioned paper, I have supposed that the gravitational part is negligible versus the
gyrotational part. When the gravitational part is not negligible, the star will even better be kept together, and the
critical radius can be considerably larger without any risk for falling apart.

The condition for which (3.1) is precise enough and applicable in this paper as explained in the Appendix at the
end of this paper, where a general study of the explosion-free equilibrium of stars is given.

Also in the mentioned papers, I find that the final shape of fast spinning stars and black holes must be tiny and
ring-shaped.
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Quotient of apparent mass and real mass.

Let us now compare the apparent mass with the real mass. The equation (2.6) , combined with the definition of

vkse , and in which we replace R by the expression of R¢ that we found in (3.1) , gives us the quotient of the
apparent mass and the real mass :

(3.2.a)

+
81'3/2 c6 /IGS/ZmS/Za)

2
m,, | 26" m"w 32rc°
m

This equation is only valid for fast rotating stars that do not explode, due to the gyrotation force that keeps the star
together, whatever the rotation speed might be.

One might be very surprised to see such huge powers in this equation. However, this is due because we have
assembled several conditions in the same equation. The first condition is that we have considered that the apparent
mass can only be observed by observing the orbit velocity of an orbiting mass about the star or black hole. Thus,
we consider the apparent mass at the level of that orbiting object. One power of the real mass is accounting for the
orbit velocity of the orbiting object, caused by gyrotation. The second condition is that the chosen type of star is
an explosion-free one. A fourth power of the real mass is accounting for this condition!

The case of vk se >>>1 allows us to maintain only the first term of the right hand of equation (3.2). The second
term becomes negligible.

m,, AG'm &
m 64 r’c"

The equation (3.2.a) can then be simplified as : (3.2.b)

We see that the speed of light is present to the power minus sixth, which induces that there are needed very high
values for the black hole's mass in order to get significant values for the apparent mass.

Observational limitations due to the Light Horizon.

The radius of the Light Horizon ryu of black holes has been calculated in “The Kerr-metric, Mass and Light-
Horizons, and Black Holes' Radii”, chapter 2, section “What specifies the light-horizon of black holes?” and is
given by :

GIo'
+7

(3.3)
* 2e!

This value is the minimum distance r from the black hole that has to be used in (3.2), because it is not possible to
observe phenomena that are closer to it, at the level of the equatorial plane, wherefore equation (3.3) is applicable.

The condition for non-explosion (3.1) should still be applicable, although it has not yet combined in the equation
(3.3).

Since Z = Am R* | and combined with the equation (3.1) , we get as a limit for the light horizon riu (by

replacing R by Rc) :
AG m R} o’ AR, R} & AR & 26m 26 mao’
rLH:Rs+—4:Rs+—2: s+ 2 = 2 + 8
2¢ 4c 64c c 8c

(3.4)

wherein the effective radius of the black hole must be equal or less than R¢ . In (3.4) , we expressed the light
horizon in different ways.
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Orders of magnitude.

ﬁrﬁnu(uann)lm
Let us apply the equation (3.2.b) with (3.3) for a ring-shaped
black hole of one hundred solar masses.
+ 400
When we suppose it is rotating at 1000 rpm, we get in
fig.3.1, for a given distance r , the apparent mass versus the
black hole's mass. T30
Based on the equation (3.1) for the non-explosion of the star,
and as far as we can trust the values of the natural constants | F—-
c and G at that position in space, this stable ring-shaped
super-massive black hole has a radius of 73 km only !
Nearby that radius, the apparent mass is hundreds of times Lioo :
the black hole's real mass (Fig.3.1). =
In this example, the light horizon is at 298 km. ,7_-?:
Fig. 3.1 200 400 600 800 1000
4 miapp)}/m
$ 10000
In the case of a ring-shaped black hole of a thousand solar
masses, at the same rotation rate of 1000 rpm.
Then, we get in fig.3.2, at a given distance r , the apparent A0
mass versus the the black hole's mass.
Based on the equation (3.1) for the non-explosion of the star,
the stable ring-shaped super-massive black hole has a radius + s000-
of less than 733 km ! Close to that radius, the apparent mass
is ten thousands times the black hole's real mass (Fig.3.2) !
In this example, the light horizon is at 7315 km. Lo
Fig. 3.2 | 2
5000 10000 15000 20000

We conclude that the apparent mass takes the main part of the total gyro-gravitational attraction for black holes.
Non-Keplerian attraction is then observed. However, at very large distances, this apparent mass does not play a
significant role and can be neglected. The choice of 1000 rpm has been observed and this value is not unusual.
Due to the fact that matter can be transformed to gamma rays under high speed, such as with beaming black holes,
the limitation of the black-hole's spin velocity is set by the speed of light of the disintegrated mass.

4. Discussion and conclusion.

Out of the equation (3.2) it is confirmed that fast-spinning super-massive black holes can generate incredibly huge
apparent masses, if they are shaped at the critical radius that is necessary for non-explosion, which is given by the
equation (3.1). The apparent mass, caused by gyrotation, however decreases with the inverse cubic power of the
distance, see equation (1.5) , whereas the gravitational forces decrease with the inverse square power of the
distance. This fast decrease of the gyrotation force with the distance preserves that more distant objects would be
attracted and absorbed by these predator stars.

As known from the equation (3.1) that gives the radius' value of fast non-exploding rotating stars, these stars have
very small shapes, in the order of magnitude of kilometres.

Finally, we conclude that the rotation speed of the star is not the main parameter for obtaining huge apparent
masses. The parameter of the (real) mass of the star is much more important to the gyrotational mass due to its
power 5/2 .

© Feb. 2008 - March 2009 7 pl05



the generalscience
journa

5. References.

1. De Mees, T., General insights for the Maxwell Analogy for Gravitation.
Mercury's perihelion shift and the bending of light grazing the sun.
Solar-, planetary- and ring-system's dynamics.
Fast spinnings stars' and black holes' dynamics.
Spherical and disk galaxy's dynamics.

2. Heaviside, O., A gravitational and electromagnetic Analogy, Part I, The Electrician, 31, 281-282 (1893)
3. Jefimenko, O., 1991, Causality, Electromagnetic Induction, and Gravitation, (Electret Scientific C*, 2000).

4. Jefimenko, O., 1997, Electromagnetic Retardation and Theory of Relativity, (Electret Scientific C*, 2004).

Appendix : Critical radius of a spinning star.

The critical radius at which a star will not fall apart even when spinning at a high rate, is deduced from the
equilibrium equation for accelerations, containing gravitation, gyrotation and centripetal accelerations. In this
Appendix, I analyze the outcome of equation (3.1) more generally.

In “On the geometry of rotary stars and black holes”, chapter 3, I wrote the equation (3.3), which can be simplified
for the equator by putting the latitude angle ¢ to zero. The star does not fall apart if this radial acceleration is
negative.

G1 G m
0<’'R|1-——— |-—; (A.1)
2Rc R
I generalize the case for any angular inertia of the type I = A m R? and get
AG m
0<’R' | R-——— |-Gm (A2)
2c
Let us consider four cases.
AG m
Case 1: Gm<<o'R*| R- 5 (A.3)
2¢
. . o AG m
Here, the explosion at the equatorial zone can be avoided if &R < Rc = 272 . (A4)
c

This is the most general situation for fast spinning stars, as we saw in an earlier paper. The gravitational part is
negligible, and we get high spins and small star's shapes.

AG m

Case 2 : R << )
2¢c

(AS)

Then the total acceleration is always negative and this confirms the case 1.
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AG m
Case 3 R>> 5 (A.6)
2¢
G m
Falling apart of the star can be avoided if R < R, =3 > (A7)
This case is applicable to the sun and to the classic stars with a rather slow spin.
AG m
Case 4 : R= - (A.8)
2¢

Also here, the total acceleration is then always negative and this confirms again the case 1.

In fine, we can maintain two cases with their corresponding critical radii : cases 1 and 3. The cases 2 and 4 are
only different aspects of the case 1.
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How Stars In and

outsidgGalaxies
behave

The most incredible happened. The concept of “DMekter” has been grafted on the General
Relativity Theory. But was that necessary? Gravégnetism proves it wasn't necessary, as
clarified in the first paper of this chapter. Thanstancy of the star's velocity in disc galaxiegis

a successful application of Gravitomagnetism.

In the second paper, the objects orbiting in flylath a spinning object are studied more in detail.
The results are applicable for satellites thattaabout the Earth, or for the stars outside the dfs
disc galaxies.

Out of the knowledge of the second paper, the thapler of this chapter evaluates how much time
is needed to form disc galaxies out of spherickEbges.

A dangerous evolution with the Milky Way could happwhen mega black holes are formed at its
center. This is the subject of the fourth and pegter on Galaxies.

Savor the most dramatic successes of Gravitomagmetn the next pages!
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Deduction of orbital velocities in disk galaxies.
or: “Dark Matter”: a myth?

by using Gravitomagnetism.

T. De Mees - thierrydemees@pandora.be

Summary

In my paper A coherent dual vector field theory for gravitatida explained how simply the Gravitation Theory
of Newton can be extended by transposing the Max&lettromagnetism into Gravitation. There exisitdded a
second field, which can be called: co-gravitati@yrotation- (which | prefer), gravito-magneticlfieand so on.

In this paper, | will call this global theory theaMwell Analogy for Gravitation (MAG) “Gyro-Gravitain”.

One of the many consequences of this Gyro-Graeitafheory that | have written down, is that Darktidadoes
not exist. At least far not in the quantities tlsameones expect, but rather in marginalized guesitiMany
researchers suppose that disk galaxies cannossuiiout missing mass that, apparently, is ifkésiand which
has to be taken into account in the classic Newtepler model to better explain the disk galaxiéspes.

An remarkable point is that Gyro-gravitation The@ynot only very close to GRT, but more importaedsy to
calculate with, and coherent with Electromagnetikns no coincidence that nobody found the sanseltevith
GRT, not because GRT would obtain some other rdsutitbecause it is almost impossible to calcukatk it.

A demonstration is again given in this paper, whededuce the general equations for the orbitabaies of
stars in disk galaxies, based on the assumptiarsofiple mass distribution of the initial spherigalaxy.

Index

1. Pro Memore : Symbols, basic equations and pipllog./ Maxwell Analogy Equations in short / The definition
of absolute local velocity.

2. Why do some scientists claim the existence afkdnatter"?/ The orbital velocity of stars in a disk galaxy /
What did Kepler claim ? / Is there a way to get Kepler law working? / The easy solution: Black tdat/
The other reasoning.

3. Pro Memore : Main dynamics of orbital systeimé/hy the planets' orbits are plane and prograd&iiations
for the accelerations nearby spinning stars.

4. From a spheric galaxy to a disk galaxy with ¢ansstars' velocity. The global stars' velocity in disk galaxies.

5. Origin of the variations in the stars' velodtieThe galaxy's bulge area / The zone near the bulgee star's
velocities, farther in the disk / The global orbhit@locities' equation of disk galaxies.

6. Conclusion : are large amounts of “dark mattextessary to describe disk galaxies ?

7. References and interesting lecture.
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1. Pro Memore : Symbols, basic equations and philophy.

1.1 Maxwell Analogy Equations in shortke two fields.

The formulas (1.1) to (1.5) form a coherent seeqgfations, similar to the Maxwell equations. Thecglcal
chargeqis substituted by the maBg the magnetic field by theGyrotation £, and the respective constants as
well are substituted (the gravitation accelerati®mwritten asg and the universal gravitation constant@s=
(4T[Z)'1. We use sigiid instead of= because the right hand of the equation inducesethéand. This sigri]
will be used when we want to insist on the inductfoperty in the equatiork: is the induced forceV the

velocity of masdn with density,0. The operatok symbolizes the cross product of vectors. Vectoesnaitten in
bold.

FOm(g+vx Q) (1.1)
Ogopl/C (1.2)
c2Ox Qo j/+0glot (1.3)

where] is the flow of mass through a surface. The tégidt is added for the same reasons as Maxwell did: the
compliance of the formula (1.3) with the equation

divjo —dp/ot
It is also expected dvQ=002=0 (1.4)
and OxgO -0R/adt (1.5)

All applications of the electromagnetism can frdrart on be applied on thggrrogravitationwith caution. Also it
is possible to speak of gyrogravitation waves.

1.2 The definition of absolute local velocityhe velocities are not relativistic.

When it comes to a competition between GRT and MAG@ention should be paid to two very important
differences.

The first one is that the actual MAG that | usen@ really relativistic (although one could spedksemi-
relativistic; | prefer to speak of Dopplerian).vbrks like the Newton and the Kepler theories, &iked non-
relativistic Electromagnetism.

Newton and Kepler did not see that the second &gisted, caused by the second terrfsitm m'(1+ v2/c2)k2.

This expression is namely the simplest form for @o-gravitation forces, and it is applicablevibetn two
identical moving masses in one dimension of plaee (‘A coherent dual vector field theory for gravitatiptast
chapter).

This second term, which is very small and whichbig the way- often wrongly seen as an expressitatem to
relativistic phenomena (I would rather say: tramsakeDoppler-effects), was not observed at that Ena relation
to Doppler-effects will not further be discussedhis paper.

The extension of the theory for very fast velositie non-steady systems has been settle@lbg Jefimenkan
several of his books, and is very analogical to twhacalled “relativistic electromagnetism”, whetiee field
retardation -due to the finite velocity of gravitet- has been taken into account.

The consequence of this first difference is thathie framework of MAG, we should only study the dgnof
steady systems, wherein the retardation of thddjelue to their finite velocity, is not of any cial importance.

The second difference is that absolute velocitylyrezxists. Not “absolute” with regard of the “cesit of our
Universe, but locally absolute” in the observed system wherein the fomteract within a given time-period.
This means that the solar system can be studieal dgsed system for “short” time periods of seveedrs.
However, | found that Mercury's perihelion advaige@duced by the sun's motion in the Milky Waygs&Did
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Einstein cheat ). Also the solar system, together with its motionthe Milky Way, can be seen as a closed
system too.

When the system of our Milky Way is consideredréhis no need to also consider the cluster whayeirMilky
Way is just a tiny part of, etc.

Without much more explanations, you feel alreadatthmean by “local absolute velocity”.

One of the facets is indeed the place- and timeniade of what is to be observed or to be calcdlaites, that
magnitude can be 'the quantity of elapsed timetHat particular system as well. The gyrotatiort paMercury's
perihelion advance is only visible after many yearspared with the very visible gravitational oabitnotions of
the system.

The correct way to settle it, is to understand #mathgravitation field of anyparticle can be seen as tloeal
absolute velocitygero in relation to all the other particles. Nlo¢ observer can be at an absolute local velagity
zero, unless he is a dynamic player in the systéim avsignificant mass. Each motion of one body génerate
the gyrotation field onto any other body of theteys and vice-versa. This means that in a moving body-
system (without any other body in the universe),hage to consider the gravitation centre of theidmds the
zero velocity of the system, just as we used td\fewtonian systems, in high school. And every iotatl motion
of each patrticle plays a role in the gyrotatiorcakdtion of the system.

2. Why do some scientists claim the existence ofdik matter”?

2.1 The orbital velocity of stars in a disk galaxyhe velocities are constant.

One of the mysteries of the cosmos is the discotiat in disk galaxies, the velocity of the stafghe disk is
almost constant. The Milky way characteristics sttewn in Fig. 1 (from Burton 1976 Ann. Rev. 14, 2gBown
from the ADS).

300, 1200
250 ..mg
tims)| (Mg pc®)

O L 1 ] 1

| | . 1
0 I 2 3 4 S 6 7 8 9 10 1 2 13 1w 15

Figure2 Varnation with distance from the galactic center of the linear velocity of differential
rotation, ©(R), according to Simonson & Mader (1973) at R < 5 kpc and according Lo
Schmidt (1965) at R > 5 kpe, and of the corresponding total galactic mass surface density,
a(R), according to Innancn (1973). The dots show the rotational velocities found from H I
observations of the subcentral-point region by Shanc & Bieger-Smith (1966).

Fig. 2.1.

The linear velocity of the stars is given by thevel® (R) and is fairly constant from the distance of 1 ke
the centre on. The curv@ (R) represents the observed mass surface densityciitvie is smooth and resemble a

hyperbolic function. Much discussion exist on tleerectness of curve (R) because of the very high luminosity
of accretion disks nearby black holes, which givegh apparent mass that is not in correct relatitth their real
mass content.

In Fig. 2. some other velocities are shown of savether disk galaxies (from Rubin, Ford, and Thandn1978

ApJL 225, L107, reproduced courtesy of the AAS)gémeral, we can say that the velocity of the dtafairly
constant, beginning at a distance of 2 or 3 kpc.
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Fig. 2.2.

Rotational velocities of stars in several disk g@s. Most of them have a similar graphic: a
fast, almost linear increase near the nucleus, alkoollaps of the velocity before kpc, and a
stabilization in the disk at (nearly) one singléooiy.

The centre of the bulge has no specific (averagkcity, which result in a zero velocity on theuig. The first

part of the disk outside the bulge, at nearly 2y kas often gotten a some higher velocity. Andr dvkpc, the

velocity is almost linear, sometimes sinusoidalte®f this linearity is almost constant or stays ishort range of
values.

2.2 What did Kepler claim 2The velocities decrease with the distance.

In a planetary system as the solar system, theefddollow a quite simple rule. The square of thatoselocity of
the planet is inversely proportional to its distafiom the sun. This law has been written down bplK&r.

vZ=GM/r (2.1)

For low velocities, this law is correct and candmplied in this paper as such, even if the coreggtation for
higher velocities is somewhat different, as | expd in “On the orbital velocities nearby rotary stars anddk
holes , in chapter 3, equation (3.10).

By increasing distances from the sun, planetsnapidly decrease its orbit velocity. And this laswiothing more
than a geometrical one.

There is noa priori reason that the same law wouldn't be true for stai® galaxy. But reality is different !
Equation (2.1) is extremely different from whablsserved in galaxies.

The purpose of this paper is to find out why tkisa.

2.3 Is there a way to get the Kepler law workingPhe easy hypothesis: Missing Mass

There is a logical problem, and it should be sollgggically. Thus, in order to get disk galaxies @ymg with
Kepler's Law, what could be different that we caneee? Galaxies and stars in general are obseavet],
classified by its distance to us, their weight,irtimeotion in relation to us and so on. For longdjmve only had
light as sole measuring instrument to define akthproperties. Since a few decades, this haséx@éended by
waves of other frequencies than just light: X-rays.

But still, the method is very uncertain if massesreot bright, but cold.

At the other hand, the Kepler Law and Newton's lawky got two variables: mass and distance. Thearsal
gravitation constant could be variable too, butluntw, no evidence has been found for this.
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Some scientists reasoned as follows: the only bhrikeft is mass. The mass distribution neededafeonstant
velocity of the stars must be totally differentrthahat it looks like. Is the mass distribution diént than what
we can see? There must be Missing Mass.

2.4 The easy solution: Black Matterhe start of the myth.

This is how the myth of Missing Mass started, beeasbme scientists reasoned strictly in the coneevway.
The rest of the story is that if that missing miadavisible and thus not bright, it must be Blddhtter.

However, we will see very soon that this way ofKimg is incorrect.

2.5 The other reasoningThe meaning of the Kepler law.

I will not tell you anything new when saying th&ietKepler Law for circular orbits is nothing motgah an
application of the geometrical relationship betwasatonstant force (or a constant accelera@pand a velocity
that is perpendicular to that force (or acceleradh It results in a circular path with raditis

vZ=ar
Any force that stays perpendicular to the velooibeys to this geometrical relationship. It is cléeat with this

relationship, any change of the acceleration allawbange of the velocity and/or the radius. Thihé basic idea
where | start from and which allows me to find tiogrect velocities of the stars in a disk galaxy.

3. Pro Memore : Main dynamics of orbital systems.

3.1 Why the planets' orbits are plane and progradee swivelling orbits.

The gravitation field of the sun is our zero vetgciThe spinning sun gives a motion versus thivitaton field.
This motion is responsible for the creation of aofgtion field as explained inA* coherent dual vector field
theory for gravitatioh. A magnetic-like gyrotation field around the swill influence every moving object in its
neighbourhood, such like planets.

(, ) Planet with
de orbit

Fig. 3.1
The planetary system under the gyrotational infageaf the spinning Sun. Each orbit
will swivel until the sun's plane, with the resulttttize orbit becomes prograde.

These planets will undergo a force which is analalgio the Lorentz force (1.1). In my papérettures on “A
coherent dual vector field theory for gravitatiohy’l explain in Lecture C how the planets move, eleing from
their original motion. The Analogue Lorentz foradlp all the prograde planetary orbits towardsghe's equator,
as explained in chapter 5 of‘coherent dual vector field theory for gravitatioSince the gyrotation force is of a
much smaller order than the gravitation force,ghtire orbit will swivel very slowly about the axisat is formed
between the intersection of the orbit's plane &edsun's equatorial plane. This is due to the tarecomponent
of the gyrotation force. The orbit will progressverds the sun's equator. The orbit's radius willai@nge much
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because the radial component of the gyrotationefaiscsmall as well. That component will only slighthange
the apparent mass of the planet, compared witheiiscity and its orbit radius. The relationshipvee¢n these
parameters is given in my pape®ni the orbital velocities nearby rotary stars antdk holeg, chapter 3,
equation (3.10), admitting that the orbit radiusians quasi constant.

When the planet was originally orbiting in retroggadirection, the gyrotation force will push theuptt away

from the sun's equator. Since the orbit's radidsamly change very slightly during this orbital swlling, the
swivelling will continue until the entire orbit bemes prograde, and further converge to the sunateq

3.2 Equations for the accelerations nearby spinrstays.

In former papers, we found the equations for theelecations upon an orbiting object about a spipsiar, due to
the gravitation and gyrotation fields. The orbiténés not forming a plane that is going through ske's origin,
but an orbit that is parallel to the star's equalbe reason for that choice will follow further.on

_ 3Gmww R*sin’a G mcosa

a = 3.1
X, tot Srzcz r2 ( )
_ 3G mww R'sina cos’ a G msina -
Ay ot — 5r%c? 2 (3.2)

These can be written in the more adequate fornauati relation to the radial and the tangential ponents of
the gyrotational part :

2 2
2 = _GmR a)za);cos a (3.3)
Srec

_Gmwdw R
a, = T in2a (3.4)

R is the star's radiugn the star's mass ar@the spinning velocity of the staq is the angle between the star's
equator and the considered pdint ¢J the orbit angular velocity of the poipt(the parallel-orbiting object) artd
the distance from poif to the star's centre& is the light's speed arfd the universal gravitation constant.

4. From a spheric galaxy to a disk galaxy with conant stars' velocity.
4.1 The global stars' velocity in disk galaxies.
Relationship between the spherical and the diskgal

We have to consider some other facts before weogarf analysis of the stars' velocities in the djalaxy: we
need a reconstruction of the original sphericadugal And we analyse the disk part of the disk galkas well.

P
- Re \L, R Re
fig. 4.1
The schematic view of a disk galaxy with radﬂes. The bulge is nearly a sphere or an

ellipsoid. The bulge area, the disk and the fiereys are studied separatelf is the
considered placd;, is the variable place (for integration).
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In fig. 4.1, we show the schematics of a disk galavth the fuzzy ends of the diskﬂe and 7?e , and with the

fuzzy bulge. The considered plgaés at a distancg® from the galaxy's centre. The variablis used for
integration purposes.

When we call the spherical galaxy “1” and the diskaxy “2” the following infinitesimal volumes are

dV,=2nrhdr and dV,=4mr*dr

Since for every concentric locatiérwith the respective volumes of cases “1” and “®& gan say that
dM,=dM, (because only the densities and the volumestgotged) , it follows the £, 4V, = 0, 4V,

. _pP h
or: == (4.2)
P 2r
. o 3M,(r) -
The spherical density distribution is given ,01(1‘) = Anr by definition,
r

or: dM,(r)=47mr’ p(r)dr .

While the expression for the disk galaxy's massd M, =2 77r p,(r) h(r)d r

In order to fix the ideas, we go further and wepifp as follows.

Idealizing and simplifying the gravitational part.

The value O'Ml(l') can be found by assuming that the density digiohuwof the original spherical galaxy
responds to a simple formula. We could sensiblypBfynour analysis by assuming that for every conde part
of the spherical galaxy is valid that :
dM (r
¢ = constant = % 4.2)
dr R,

WhereinM0 andR0 are the total mass and the radius of the bulges. dfoice is only made in order to get

simpler results. Besides, such a relationship igatally unexpected: when we look at a sphericddgy as a
succession of spherical layers that have the shitiness, from the bulge to the “end” of the galaxg can
expect that the masses could possibly be equakidh layer. The volume of each layer increasesatieatly
while the mass for each layer stays the same.eéAtehd” of the galaxy, the density decreases driaaibt as
well.

Combining (4.1) and (4.2) , we get for the diskagal:

py(r)= o

" 277r R, h(r) *3)

Now, we also know that for the disk galad M, =2 nrpz(r) 11(1') d r , so that when combining with
(4.3):

dM,(r M
2( ) — M, or MZ(I‘) =—2r (4.4)
dr R, R,
2
4
Filling in this equation in the Kepler equationgbs. —£- :G]WZZ(I‘)
r r

This means that in this special, simplified case get for the overall stars' velocity the simpleapn:
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(4.5)

showing that the overall velocity of the stars le tdisk of a disk galaxy is constant and equaht Kepler
velocity at the boundary of the bulge.

Remark however that we just manipulated formulashematically without respecting the full physioataning
during the deduction. Firstly, in (4.4) we consitbionly the mass from the galaxy's centre to theg#l and not
the mass further away from the galaxy's centreoisyg, we considered the mass to be concentratedaipoint
mass at the galaxy's centre.

Although the observed velocities stay in a resdatange, close to the velocity defined in (4.Bg, teality shows
slightly different local velocities. The origin tiese differences interested me, and will be uaddilereafter.

5. Origin of the variations in the stars' velocities.
5.1 The galaxy's bulge area.

5.1.1 Gyrotation acceleration of stars inside thige.

Let us start thinking of a spherical galaxy, whérén centre is rotating, say, one or more masBlaek holes.
These black holes are fast spinning, and many s&asthe center of the spherical galaxy are spinas well.

When we look at a disk galaxy, we observe thatct@ral bulge is not a sphere like the sun, fulinaftter, but
that the bulge is a system by itself.

The summation of the gyrotation field of all thestfapinning stars of the bulge creates a globakilfu spread
gyrotation field, which is difficult to analyze &g as the distribution of the spinning starsriknown.

Since it is even more difficult to know the localrgtation acceleratioinside the bulge without knowing the
locations of the individual black holes, it seerhattthe spread of gyrotation would be ratteepriori- random-
based.

But even if there are several spinning black ho@#ating in different directions through the bulgke global
gyrotation field of the bulge apparently allowe@ flormation of the disk galaxy. The disk of theagal finds its
origin in a global gyrotation field vector, whic perpendicular to the disk.

5.1.2 The fuzzy gyrotation field of the bulge.

Let us think of the fuzzy gyrotation field of thelbe again.

Theoretically, we get, based on (3.4) and with edgapproximation, the tangential gyrotation acalen :

G & m,w, R
, = — S——sin2q; (5.1)
5¢" 5 D;

1

where & ; symbolizes that tha fast spinning stars can be situated anywhereeimtiige. In fig 5.1 , the meaning
of the symbols is visually shown. The vall[élsand @, are variables in time.

The locations and the parameters of the fast spinstiars and black holes are not known. Some titatsould be
used here, but this is not the aim of the presepéep
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fig. 5.1
The bulge of the disk galaxy. A massat a vertical heightH and a horizontal distancg®

from the centre is influenced by the gyrotatiorblaick holei. The surroundings of the bulge

are fuzzy, caused by a random distributionnoblack holes which result in unwell defined
vectors of the gyrotation fields.

The local thickness of the bulge and its surrougsliis symmetric for th&-axis and is determined by (5.1). The
summation-part in equation (5.1) indeed represargpread of gyrotation sources that has a stardkar@tion

and results in a Gaussian probability curve arated-y-plane, but also an axi-symmetric one aboutZais.
Even if the individual black holes are distributethdomly and asymmetrically, we may assume thaktgle and
the z-distribution are Gaussian. This means that alsihérz-direction, a number of stars inside and outside th
bulge could have been trapped by some black hdlesevrotation axis lays parallel to t€y-plane.

The radial component of the gyrotation acceleratamngiven in (3.3), is valid here as well, butiit§uence with
regard to the stars' velocities is not significamipared to the gravitation part.

Concerning the influence of gyrotation and graigtatfor the stars' velocities in the bulge, | exXptat the
effective gyrotation acceleration in the bulgeaw/| because in (5.1), the number of fast spinniagkbholes will
probably be several thousands of times less thautotlal number of stars in the bulge. Moreover,dtientation
of the fields of each black hole's gyrotation filil be randomized, so that the sum of all suetd§ will be very
limited. It follows that the gravitational acceléoa is dominant inside and nearby the bulge.

5.1.3 Gravitational acceleration in the bulge.

Let us do now the easiest part of the work: theigraon acceleration of the bulge. When the moténthe stars
is not taken into account, we speak of pure gréwita The Newton's law for the gravitation accefiemra inside

homogene full spheres gives, at a radlis

ag,Ro(R):_GIj;foR (5.2)

0

With the little information we have got about thalde, this is the best possible equation. The msigis shows
an attraction.

5.1.4 Stars' velocities in the bulge.

If only the gravitational part of the acceleratiossignificant for the orbital velocities, the ssaorbital velocity at
aradiusR is defined by :

GM,
Ry

v.o(R) = R (for0 <R <R) (5.3)
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As observed, the velocity is linear with the radinside the bulge (Zone 0).

4 Velocity

¥ou/u

fig. 5.2
The orbital velocity in the bulge is linear and cb&s its maximum at the bulge's boundary.

In fig. 5.2 we see the graphic of the velocitiesgoch a bulge, arbitrary supposed here to be 1f0¢teadiameter
of the total disk.

5.2 The zone near the bulge.
5.2.1 More localized gyrotation activity.

The shape of the disk galaxy's section nearby thgebis resembling a Gauss probability distributiém the

horizontal directionX-component), the 'random' distribution of spinnbigck holes in the bulge and the overall
orbital motion of the stars in the bulge contributea more accentuated overall gyrotation vectat tis

perpendicular to the galaxy's disk. This means th@Z-component of the gyrotation is far more domindnatnt
the X-y-component.

The gyrotation forces constrain the orbits to sid@wvn, the more away they are from the bulge. Fhigpe will
influence the gravitational mass to be taken iroantin that area, resulting in different orbitalacities.

5.2.2 The gravitational formulation.

The shape of the disk galaxy near the bulge itefiaig the more we go away from its bulge.

For stars laying in the disk's plane at a rac(iﬁ%2 +H 2)1’2 from the galaxy's centre (see fig.5.3) , the orbit

velocity will be defined by the mass contained witthat radius. For that part of the equation we aggue that
the relatively wide spread of the stars in thisaaalbows us to use the Kepler equation near thgebul

For any star in the galaxy, the bulge's area caseba as a point mass with sz§ . The corresponding orbit
acceleration is given by:

GM,R __ M H
(Hz +R2)3/2 (5.4) A puigeyy — (Hz + Rz)slz (5.5)

a(bulge) X =

But also the mass outside of that radius will ieflae that orbit velocity. That part of the equatah better be
described by a mass-distribution of a disk.

T
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fig. 5.3
The bulge area seen as a ellipsoid. A star, orgiiha distancR 2+H , will get a
gravitational influence which is equivalent to a poimass of the size of the bulge's mass.

For simplicity, we consider the bulge as a spheré \a{itadiusRO .

2) 1/2

I will now find the gravity formulation for the disoutside the bulge. Then only, | will be able &ddct a global
formulation for the star's velocities nearby thégbuand at any place in the disk as well.

5.3 The star's velocities, farther in the disk.
5.3.1 The basic gravitational equations.

Although (5.4) is an approximation for stars theg alose to the bulge, it is quite close to realithis will be
clear when we analyse the disk's velocities. Hézedf deduct the detailed acceleration equationsifiy place in
and close-by the disk.

m

dr

fig. 5.4
A star with mass m orbits about the bulge's nucl@iee infinitesimal ring of a certain
density and height will be integrated in order itwdfthe orbital velocity of the star.

In fig. 5.4 ,r is the variable radiusRR the horizontal distance arfd the height of the star with masga.
Following geometrical equations are valid2 =H2 +[2 and D2 = R2 + H2 (5.6.a) (5.6.b)

Remark that, for simplicity, we consider a diskhwthickness zero. In reality, the disk's thickn&ssot zero,
especially nearby the bulge. Therefore, the dedndiereafter is only valid at a certain distanctéhefbulge.

am o’
' L

Now dM=gr)h(r)rdrda and dag, ,, =G (5.7.a) (5.7.b)

whered @z, ,, p+ is the infinitesimal centripetal acceleration e direction o D" .

_R-rcosa

cos B

Thus, with (5.7.a) , (5.7.a) , (5.8.a) and (5.8 .&juation (5.7.b) becomes :

Also: 1 and D =(R-rcosa) + H* . (5.8.a) (5.8.b)

G',o(r)ll(r)r(H2 +(R —rcos a’)z)dr da

dﬂ r,a)D* =
R(r,a) D o +R  reosd 312 (5.9)
cos (3
r sing -
Now: tamf=_-—""—and cosf=(1+tan’f) " (5.10.a) (5.10.b)
R —r cosa
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. | _GM, (H2 +(R—rc0sa')2)drda
Using (4.3) ,we find :  dag, ,p- = 3 (5.11)

27TR, (H2 +R*+r*-2R rcos a')

In order to find the horizontal and the verticaimpnnent of the acceleration, a projection with alygk needed.
Due to symmetry, | disregard tiecomponent in the plane of the disk.

which result in a multiplication od &, ., p- With cosy for d a,,, ., and withsiny for da;, ., :

Therefore, notice that tan )y = L (5.12)

R —-rcosa

Using (5.10.b) for the anghg, and (5.12) , the following components are found:

GM, (R-rcosa)drda

dag, o = (5.13)
FEar 2R, (H2 +R*+r’ —27€t‘cosa')3/2
and
_GM, Hdrda
daR(r,a)z - Ip) (5.14)

271R, (H2 +RY*+r?-2R rcos 0')3

Equation (5.14) is different from zero iH # O . From (5.13) and (5.14) follow that the oriergaty of the
infinitesimal vectord a is given by (5.12).

The integration of both (5.13) and (5.14) has tddken between the following limits (the same Igrdre valid
for theX- and thez-component).

Re 21 Re 271
Reaox = J. J.daR(r,a)x dadr and i, = J J‘d%'{(r,a)z dadr (5.15) (5.16)
Ry 0 R 0

Remember that for the bulge part, we have got anatljuation. Of course, the integrals (5.15) andi6(5are
meant to be non-trivial. The integral frddrto 27T corresponds to twice the integral frého TT.

5.3.2 Finding the gravitational equations in thaldi

In the first place, we will integrate thécomponent. Remember that the parameférandH must be taken
constant during the integratioll is not supposed to describe the profile of thexgal

Integrating first forr , we find :

da

a _eMm,’ RR, sin* a+ H?cos 3 R R,sin” a + H? cos a
HOY 2R, (stin’a+H2)\/H2+722+7292—272729¢05a (R’sin2a+Hz)\/Hz+R2+R0’—2RRocosa'

0

(5.17)
This integral has been taken betWRbrandRe .

Also theZ-component can easily be integratedifoiwhich gives the following result:
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GM,’ H(R, - Rcos a) H(R,-Rcosq) da
RO 2R, (stinza+H2)\/Hz+Rz+Re’—ZRRecosa (stinza+H2)\/Hz+Rz+R§ -2R R, cosa
(5.18)

This integral has been taken betW(R‘OrIadee as well

Since the integration of (5.17) and (5.18)0is complicated, | could integrate it numericaltprh O to 27T .
However, | consider that stars at a certain distdshevill orbit in a plane under a certain angle witie disk, but |
don't expect a significant difference of velocipngpared with stars which lay in the disk's plan.

Thus,H = O is a valid option in order to get a first ideatloé orbital velocities of the stars. This maked T
considerably simpler.

— GMO ? Re R()
AR (@yxim=0 ~ J 2 2 B 2 2 da
277R, | R JR*+R?-2RR,cosa@ R-/R’+R>-2R R,cos a
(5.19)

By putting aside the facto GM,/27R,) ,We look at the remaining part between the brisclad integrate it.

Therefore, remark that the integral fréhio 27T corresponds to twice the integral frdho TT.

. _26M,| R 4R,R 7|l R, ARR 7
R ,disk|H =0 ]TR0 R(Re —R) (Re _R)Z ’2 R(Ro —R) (R0 _R)Z ’2
(5.20)

whereinF(X, TU2) is the Complete Elliptic Integral of the First Ifin

The equation (5.20) combined with (5.4) wherein se¢ H = O form the overall equation for the orbital
acceleration of the stars of the disk galaxy, sifiel for stars in the disk's plane, and accordihg mass
distribution of equation (4.2).

_GM, 2GM,| R,
a +

_ 4AR,R 1 R, F 4R,R 7
Rt = R 7R, |R(R,-R)| |(R,-R)’2)| R(R,-R)| |(R,-R)* 2

(5.21)

In the next section, | will deduce the orbital \aties for stars in the disk galaxy and find theresponding
graph.

5.4 The global orbital velocities' equation of dgdaxies.

The equation for the orbital velocities of the star the disk galaxy follows outof 2 =a R .

. _ |GM,  2GM, R, 4RR m\_ R, |g ARR 7
e R R, |(R.-R)| ((R.-R)’2]| (R-R)| |(R,-R)" 2
(5.22)

This equation (5.22) gives the orbital velocity afijon in the disk's plane f(RO <R< Re . Remark that these
velocities are only initial velocities, just aftdre orbit swivelling.
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5.4.1 Interpreting the gravitational equations.

The velocities' table is easier to deduce numdyidabm (5.19) than using equation (5.22) , by awog the
Elliptic Integral. By choosing the valu¢#, =1 and R, =10 | and by varyingR between 1 and 10 , the

general profile of the disk galaxy's orbital vetas will appear clearly enough. | leave to thedeao experiment
with other mass distributions and with more dethdata by using (5.17) and (5.18).

(U'fz(lf)zM(,:> R 1 12 2 3 4 5 6 7 8 9 10
dr R v 1 083 154 1,75 1,84 1,92 2 207 217 2,34 2,78
0
tab.5.1

Comparing the figures in tab.5.1 suggests thag#iaxies NGC 4594 , NGC 2590 and NGC 1620 (se2.8y
respond quite well to the mass distribution of eiqua(4.2). Other mass distributions will resultather velocity
distributions.

We are then able to link mass distributions to eiiles and check the theory's validity.

6. Conclusion : are large amounts of “dark matter’necessary to describe disk galaxies ?

With the calculations in this paper, we demonsttdtet the gyrotational swivelling of the orbits efiptical or
spherical galaxies permitted to find a consequetdoity deduction for the stars. The found velesitfor a mass
distribution of dM,(r)/dr =M,/R, gave encouraging results. They describe the stafstities of a certain

number of disk galaxies without the need of darktenaThe order iff of the last equation's right hand is zero.
This kind of disk galaxies | will call galaxies ofder zero.

The physical basics of the MAG theory, with swiirel orbits about spinning black holes in the bukgems to
lead to at least one kind of disk galaxies: gakaxiEorder zero.

The used mathematical model seems to be totallgistemt with galaxies of order zero as well. Butentorders
of disk galaxies have still to been analysed.

\‘
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Swivelling time of spherical galaxies
towardsdisk galaxies

by using Gravitomagnetism.

T.DeMees - thierrydm@pandora.be

Abstract

This is the second paper dedicated to detailediledions of disk galaxies. The first i©h orbital velocities in disk
galaxies : “Dark Matter”, a myth? ¥ wherein | explain how to calculate the mass distion of a disk galaxy and
the orbital velocities of the stars, starting frarmass distribution of the originally sphericalaggl. This is based on
the extended gravitation theory, called “Gyro-Gratdn” or gravitomagnetism. No existence of Darlatidr nor
any other fancy supposition is needed at all isehzalculations.

The objective of this paper is to find the matheozsdtequations related to the time which is neefdedhe star's
orbit to swivel down to the equator. The total déen-change of the disk galaxy in the time candumd as well.
Yet, these deductions are simplified by keepingstamt the bulge's gyrogravitational propertiesmythe process.
| leave to the reader to experiment with time-deleeh models of gyrogravitational fields in the haulg

An explanation for the very limited windings of oMilky Way's spirals is a direct consequence os fhéaper.

1. From a spherical to a disk galaxy. The location of the orbi_ting star in_side the oribitjefine_d by
the angled . The equipotential line of the gyrotatia®

Let us consider a spherical galaxy with a diamg@r. through the orbiting star has been shown as well.

Because the centre contains massive spinning starsgrom a former papBr we know that the tangential

spinning black holes, a gyrotation field will stad  gyrotational acceleration of a star's orbit is givsy:
make the stars' orbit swivel, as shown in [2] &id [

After a timet , the radius of the disk galaxy & . The

stars beyondie did only swivel partly, and are not part
of the disk itself. (1.1)
Consider fig.1.1 wherein the spherical galaxy'sgjbus @t the placed=0. _
shown. The bulge is the group of fast spinningsstaat Herein, | is the inertial moment of the bulgey its
has a global spin. However, the spin-vectors of thangular velocity,a the orbit's inclination angle of the
individual fast spinning stars are oriented varipushe  considered orbiting star, and its orbital angular
considered star with massorbits at a distance from  Velocity, which follows the Kepler law:
the galaxy's centre. _do v 1[GM,

star —

( )Sp“efe_a_ roor\

Gl waw
2r%c?

a,= (sina coa (1~ 3 sif a)—g sida coaj

1.2)

wherein M, is the bulge's mass.

The swivelling equation (1.1) can be representea in
graph, as in fig.1.2.

This means that for prograde orbits, the statessifare
given for an orbital inclination ofa = 0 andrv4. For
retrograde orbits, they are= 0 and 3v4.

Fig. 1.1 :Definition of the anglex and 8. The orbital plane
is defined by the orbital inclinatioar in relation to the axiX .
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4 gyrotational tangential acceleration Below, | now will study the swivelling time for the
T05 stars' orbits in a simplified form. Consequently will
replace some values by approximations or by their
average value.

2. The swiveling time from a spherical
galaxy to a disk galaxy.

T-0.5

uoneulaul jeyglo ¥

The transformation from a spherical galaxy to &dis
galaxy is quite clear. We have seen that randomly
inclined orbits of planets about the Sun have shdde
until they arrived to the Sun's equatorial plandésoA
most of the stars outside the galaxy's bulge swiivéhe
bulge's equator plane.

Out of fig.1.2. follows that at a certain distance the
path length between the random inclination anglef
S an orbit lays between zero amdr. The average path
For inclinations betweenr = 0 andv4 (prograde), and |ength is thervrr/2 until the equator. And this is also the
for a = 34 and 1 (retrograde), the acceleration tendsayerage path length until the swivelling star passe
towards positive_values,_ resulting in a rotatiodaft  the disk's equator for the first time (remembett the
towards the rotational axis of the Earth. motion is an exponential decreasing oscillation).
For inclinations betweena = 14 andv2 (prograde), Remark that the complete swivelling will not occur
and fora = 12 and 3v4 (retrograde), the acceleration nearby the bulge, due to the fuzzy and stronglyabée
will much more strongly tend towards negative value gyrotation fields in that region.

resulting in a rotational drift towards the equatbaxis

of the Earth, and retrograde orbits are stronglghpd Integrating (1.2) twice over time gives the timeisth

12

Fig. 1.2.Tangential gyrotational orbit acceleration &+ 0.

back into prograde orbits. the average star need to reach the disk region.
t t
We saw in [2] that the -simplified- value of therst Hence )2 :J' _[atgdt dt (2.1)
velocity in disk galaxies has become : o\n
= | (L.3) . |
R, To get rid of @ in (1.1), let us replace the geometric

whereinM) is the mass anB the radius of the bulge function ina of (1.1) by its average value betweer~

(fig.1.3) We have not taken into account theélanda =71/ 2.
gyrotational forces of the bulge as a part of the 3
attraction force, just for simplicity of the calatibns. Thus, (sina coRa(1- 3 sirf ar)—Z sida coe'j =

These forces are to be considered as of secondaey. o av
2
. . 3 .
This means that (1.2) will become, after the svingl (72) Z[ [S'”a co2 (1-3sirf a) =, SHa coaj da =773

_dﬁ_&_} G M,

(w)disk_a_ r r\ R, (1-4) (22)
Hence, (a,0) :_”Gé'# (2.3)
When comparing both equations, the factot” re
becomesRo'“2 after time. n
Herein, (o, =21 (2.4)
i=1
O is the total angular momentum for tmestars in the
- R 4( Y bulge and is as defined in fig.1.3, as a simplification.

Fig.. 1.3:The schemgtic view of a disk galaxy vyith 2 And when applying the equation (2.2) into (2.1)y, b
radiusRg . The bulge is nearly a sphere or an ellipsoid. assuming that the average tangential gyrotational
The bulge area, the disk and the fuzzy ends adiestu  swivelling acceleration is a constant for each tonkih

separately. And- is the considered place. radiusr , it brings me, after integration to:
B 2 _ n6(lw), v,
m/Z—(at,g)a\/E - 12r %2 t (2.5)

© May. 2007 2 pl24 updated 19 July 2010



Thierry De Mees thierrydm@pandora.be

and after rearranging, | get the following resualt the inclination till W4 were attracted by the disk and got

swivelling time for a given orbit : swivelled towards the disk. Only at the extremitads
the disk, the fuzzy part betrays that the inclioattill
6132 174 is more difficult to swivel down.
t(r) = | — (2.6) The third phase is the formation of the spiralstiby
| G( ' w)t 2 contraction of some hyper-dense zones, even yet aft

partial formation of the disk. When observing tletual
For the choice of the value @ , | suggest to take the spiral-gradient, it appears as if the delay of time
average of equations (1.2) and (1.4), because Vebptween the formation of the inner and the outetspE
probably, the change of angular velocity occursrdur the disk were very short, but in fact this delaynsch
the swivelling, while the angular momentum of theonger because the stars that are farther away fhem

bulge is transmitted to the disk. bulge can only form spirals at the time that thekdias
become hyper-dense enough at that place, while the
1./ M inner disk zone has its spirals yet formed.
(a)’)av =—MN__0° (2.7) The observed strange form of the spirals, | woaltier
r ﬁ say: many parts of spirals, correlate quite wethvthis
explanation.

The equation (2.6) can then be rewritten as:

_ 6V rYERY® 4, Conclusion.
(r) GQ/4M(J)/4(I w):,i)Zt (28)

The time for an average orbit-swivelling is propamal
_ to an exponent 17/8 of the star's orbit radiushdugh
The farther away from the bulge, the longer it &kethe found time-equation is only a limited part bt
(nearly quadratically) before the disk takes foAhthe  formation time of our actual Milky Way, it allowssu
extremities 2, of the disk, there is still a fuzzy zone of glready to have a clearer view on the formatiomlisk
stars because only a part of the stars did swiviiledy, — galaxies.
namely those who whereof the orbit inclination
originally was beyondv4.

5. References and interesting lecture.
Closer to the bulge, the disk is quickly generafEe
growth velocity of the galaxy's disk decreasesditpa 1. De Mees, T., Introduction to the Flyby Anomatlye
n time. Gyrotational Acceleration of Orbiting Satellites,
General Science Journal, 2010.

3. Discussion. 2. De Mees, T., On orbital velocities in disk géda :

In the equation (2.8) it is the bulge's angular rantam “Dark Matter”, a myth?, General Science Journal,
that is the most difficult to evaluate. Especidigcause 2007.

it probably evolved from a low value to a highetuea ]
with time, and maybe there occurred a contractibn @3- De Mees, T., A coherent dual vector field tlyefor

the central zone. gravitation, General Science Journal, 2003.

The time delay which is observed in spirally wound*- Jefimenko, O., 1991, Causality, Electromagnetic

galaxies such as the Milky Way does not corresmind  |nquction, and Gravitation, Electret Scientific,080
all to the total lifetime of the galaxy. The reagderthat o o .
there are Severa| phases Of “me to Consider. 5. HeaV|S|de, O., A graV|tat|0na| and e|ectr0magne
The starting point is the spherical galaxy with a anajogy, Part I, The Electrician, 31, 281-282, 1893
spinning center, made of spinning stars and evéntua

black holes.

Then follows the swivelling of the orbits, by whithe

disk diameter increases steadily, beginning from th

centre and becoming very thin -in cosmic terms- at

some places, causing a hyper-density of the disk

compared with the original density of the spherical

galaxy.

If the original orbit inclination was situated betn 0

and 174, the swivelling was originally pointed towards

4. Later, when the disk formed, even stars atrait o
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Gravitomagnetic Evolutionary Classification of Galaxies

explained by the Gravitomagnetic Field Theory

T.DeMees - thierrydemees @ pandora.be

Abstract

The Milky Way might be a bar galaxy. In this papee show that bar galaxies are spiral galaxies with
orientation change of the bulge's gravitomagnedicif The tilting of the gravitomagnetic field evek from the
bulge to the galaxy's extremities at wave speedthadphysical acceleration of the stars away from disc
follow soon. Finally, this will result in a new,ightly elliptical galaxy that will again turn inta disc galaxy and
then a spiral galaxy. If the Milky Way really is kmr galaxy, the solar system will some day get aeho
acceleration (an apocalyptic sway) towards a neidely oscillating position in the galaxy. Finallye come to a
Gravitomagnetic Evolutionary Classification of Ga&s that is different from the usual classificato

Key words : gravitation, gravitomagnetism, Milky Way, bar gafaevolutionary classification
Method :  analytical.

1. The galaxy evolution from a spherical to a spirally disc galaxy.

Spherical galaxies mostly doesn't remain sphefiaragéver. They turn to spherical and even disc>defg that on
their turn become spiral galaxies (fig. 1.1).

Fig.1.1 :The evolution of a spherical galaxy towards a spialaxy.

Below, we will explain how this happens, due tauaber of spinning stars in the center of the oabgalaxy.
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1.1. From a spherical galaxy to a disc galaxy

Consider a spherical galaxy. Nearby the centerspfieerical galaxy, there are many stars that an@&cting due to
gravitation. The galaxy doesn't collapse by itsvigaion, and we expect that the stars are orbidbgut the
center. The very short orbits of the huge amourstanfs in the center will constantly mutually irghce.

Most probably, the sum of all the orbits and spafisthe stars of the center will result in a glolaaigular
momentum different from zero, which will guide trest of the galaxy's future. This global spin isp@nsible for
the creation of a gyrotation field as explainedAncoherent dual vector field theory for gravitatioA magnetic-
like gyrotation field around the bulge will influe@ every moving object in its neighborhood, sukh the orbits
of the stars in the galaxy.

The stars outside the center will undergo a forbe&lvis analogical to the Lorentz force. In my pafleectures
on 'A coherent dual vector field theory for gratioa' ”, | explain in Lecture C how the orbits move, degimg
from their original motion. The Analogue Lorentzde pulls all the prograde orbits towards the a&nexjuator,
as explained in chapter 5 oA ‘toherent dual vector field theory for gravitatio8ince the gyrotation force is of a
much smaller order than the gravitation force,ahtire orbit will swivel very slowly about the axisat is formed
between the intersection of the orbit's plane ama lulge's equatorial plane. This is due to theyeatial
component of the gyrotation force that makes thst awivel under influence of the gyrotation fiel@ihe orbit
will progress towards the equator of the galaxgister. The orbit's radius will not change much biseahe radial
component of the gyrotation force is small.

When the star was originally orbiting in retrogratieection, the gyrotation force will push the stavay from the
bulge's equator. Since the orbit's radius will ortivange very slightly during this orbital swivelirthe swiveling
will continue until the entire orbit becomes pradgaand further converge to the bulge's equator.

The spherical galaxy turns into an ellipsoid galard finally to a

disc. Greatly exaggerated, it could look like figR.

Taking into account the above explained effectst@ts will end
N up having the orbit in the same sense that theesefrthie rotation

’ \ \ -t
,’, / R N of the center, depending on the amplitude of thetayion. Every
Vo ': i star will have an absorbed oscillation, but it b&come a group
\x,'«\’ ] J ," of stars in phase, or even a part of the disartliecome a disc
RN S NS with a sinuous aspect.

Fig. 1.2 And in this way, the gyrotation widens its fieldagreement with
9.+ the conservation law of angular momentum.

The center is obviously not a point but an amalgéstars that has own rotations in various dirextid-arther on

the disc, only a gravitomagnetic force of the ceated of the first part of the disc exists. Closethe center, the

stars have chaotic movements.

1.2. From a disc to a spiral disc.

The pressure on the stars exerted by the gyrotfifitians the disc and increases its density schrthet several
stars will get in fusion. Several high density zoméll create empty zones elsewhere. Finally, sstmectured
shapes, such as spirals or matrices, will begbetshaped.

Fig. 1.3 :From a disc galaxy, compressed by gyrotation, towardpiral galaxy.
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Since the creation of the galaxy, a long time hasspd. The mystery of the (apparently too) low remuf
windings of spirals in spiral galaxies is explairgdthe time needed for the angular collapse aaddtmation of
the spirals.

1.3. The galaxy's bulge area.

Gyrotation acceleration of stars inside the bulge.

Let us start thinking of a spherical galaxy, whére center is rotating, say, one or more massiaek holes.
These black holes are fast spinning, and many s&asthe center of the spherical galaxy are spinas well.

When we look at a disc galaxy, we observe thatctdral bulge is not a sphere like the sun, fuliraitter, but
that the bulge is a system by itself.

The summation of the gyrotation field of all thestfapinning stars of the bulge creates a globakilfy spread
gyrotation field, which is difficult to analyze &g as the distribution of the spinning starsngnown.

Since it is even more difficult to know the localrgtation acceleratioimside the bulge without knowing the
locations of the individual black holes, it seerhattthe spread of gyrotation would be rattepriori- random-
based.

But even if there are several spinning black hetgating in different directions through the bulgke global
gyrotation field of the bulge apparently allowea lormation of the disc galaxy. The disc of theagglfinds its
origin in a global gyrotation field vector, which perpendicular to the disc.

The fuzzy gyrotation field of the bulge.
Let us think of the fuzzy gyrotation field of thalge again.
The locations and the parameters of the fast sminsiars and black holes are not known. But we ktiat the

black holes are attracting more and more starstlaaidthe orbits of these many black holes are ngakhmaotic
motions. We also imagine several stars spinningiaéach other, loosing energy, and becoming bladésh

fig. 1.4
The bulge of the disc galaxy. A ma¥g at a horizontal distancef from the centre is
influenced by the gyrotation of black hlérhe bulge and its surrounding are fuzzy, caused b

a quasi-random distribution ofi black holes which result in unwell defined vectofshe
gyrotation fields.

In the next chapter, we will look at the stabilitiithe angular momentum of the bulge and we wnldl fihat major
changes are possible.
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2. When the global spin of the bulgeflips: from a spirally to a turbulent bar galaxy.

Before being able to explain the possible reasdrssich a tilt change in the bulge, we first lookbp equations
that govern the bulge and the disc.

2.1. The acceleration and the swiveling time ofttaegalaxy to a newly formed disc galaxy.

The value of the acceleration and of the swivetinge of the bar galaxy towards a newly formed ajataxy is
found in “Swivelling Time of Spherical Galaxies Towards dsdaxies .

In that former paper, | assumed also that the geepath length of an arbitrary chosen orbit of spéerical
galaxy was/TR / 2 until the equator. The time had then to be fountiad a double integration ofi() to the
time.

In the present case, if the bulge of the bar gatdted with an angled, the swiveling path length will now be
reduced to only@ R. The correct time for the swiveling of the baragaf into a newly formed disc galaxy will
last (for a placéR) :
t(t
OR=|| [a,qdt|dt
0\o0

2.1)

In (2.1) , R is the distance of a certain place on the baxgai@m the bulge's cented,, is the acceleration due
to the gyrotational field of the bulge.

After integration (is not time-dependent, only @atependent in the disc) and rearranging, thetrissgiven by :

207

Z¥0)

tr = 2.2)

Also here, | have neglected the small time retéwdadue to the wave transmission. A real valuetfiat time can
be deduced when we find a way to find the gyroteti@acceleratio@, of the bulge. I will do that in one of the

coming papers. From my former paper, mentioned @i gyrotational acceleratiay, is given by (2.3) :
n
D Lw
_TwG o
Ao = 9 2 & (2.3)

wherein we have simplified several parts and whgend ¢j are the rotation parameters (inertial momentus, th
angular velocity) of thé& spinning black holes and stars, which can be ngpaitywhere in the bulge. The angular
rotation of the stasis G .

2.2. Catastrophes in the bulge of galaxies : wheewa giant black hole is formed.

The sum of all the angular momeritsof thek stars and thén-K) black holes in the bulge is given by :
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L=) I,w, @4

whereinl is the inertial momentum ang) the spin for any of them. We consider here thesdtabe spheres and
the black holes to be rings, as explaineddm ‘the Geometry of Rotary Stars and Black Hbles

One would think that equation (2.4) regulates thlyé's gyrotation and the disc's orientation, bat's not true.
Indeed, the conservation of angular momentum ioitapt and has to be respected, but the real infliés given
by (2.3).

In the bulge, an amalgam of stars can clot intetaof mutually orbiting stars. Their global angutaomentum
will cause a global contraction (collapse) duehi® gyrotation field that has a compression thardagportional to
the global spin velocity. The quasi-chaotic motafrthe black holes and large stars in the bulgebrang them
close of stars from the bulge’s edge and attraamthThe new upcoming stars and black holes can toaaty
different spin orientations than the global bulgaigular momentum.

But a far more important evolution inside the bulg¢hat an amalgam of stars can collapse and bee@huge
black hole with a different spin rate and spin otéion. A single huge black hole can dramaticalfuence the
global gyrotation axis of the bulge.

2.3. Description of the process.

The consequence of this process is that the siz¢hanorientation of the total angular momentunthefbulge can
evolve dramatically. In cases when a large quamtitgtars reduced into a huge black hole, it canagetally
different angular momentum. If the bulge would neergth a group of stars or a galaxy, even smaditrangly
different orientation of the bulge's angular momemis possible.

And when such a change happens, the disc zondseabuige's boundaries will become to get a modified
orientation as well: that part will swivel and by bit, from the bulge's border to the outer sifi¢he disc, the
whole disc will swivel as well. But will this happeinscathed?

v

Fig.2.1:a bulge tilt occurred by the evolution of the numienewly arisen black
holes' tilts, making the disc swivel from the cembethe outer parts of the disc
and tare loose the stars by a gyrotation shock wae get a bar galaxy.

Imagine a bulge that gets tilted compared to tlse.dihe transmitted gyrotation wave at the speddybf will

make swivel the disc by a circular shock wave dedritewly tilted part of the disc will gravitatiohalisturb the
rest of the disc. It will attract the boundary aradise fatal issues for planets nearby stars.
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The disc galaxy becomes a bar galaxy with a cirduldoulent area at the border of the new formiag pnd the
old disc.

4. Introduction of a new evolutionary classification schemefor galaxies.

This leads us to a clear view on the evolutiondagsification of galaxies. First we have the sptadrgalaxy.
When the galaxy's center contracts and the orientaf the center becomes well defined, gyrotaflattens the
galaxy in to an elliptic galaxy and then a discagg| by making the orbits swivel slowly into prodeaorbits. The
gyrotation compression augments the disc densityallows stars to get grouped, forming new staivigt and

cluttering. This makes it possible to get zoneshwit increased number of stars and more empty z&yethe

constancy of the speed of the stars in the distxgathe arms become spirals.

Fig.4.1:Evolutionary classification of galaxies. From spieal galaxy to an elliptic galaxy, then a disc gajeand a spiral
galaxy. After a reorientation of the bulge's angut@omentum, a bar galaxy with a circularly outsigeesading turbulent zone
is created, which a apocalyptic disturbance of ttaessand planetary systems of the whole galaxy.

It is possible that, sooner or later, the bulges getother tilt due to one of the processes | meatidoefore. Then
the galaxy becomes a bar galaxy, from the bulgatdsvthe rest of the disc. The galaxy swishesartarbulent
object with gravitationally interacting stars byoaplyptic sways. Later on, that slightly ellipticgalaxy will
again become a disc galaxy.

5. Conclusions.

Gravitomagnetism allows a novel evolutionary clisaiion wherein the bar galaxy has a more corpesition.
The formation of bar galaxies occurs when the Bslgamgular momentum changes dramatically, due ¢o th
absorption of a small galaxy, a cluster of staeg teduced to a fast spinning huge black hole,yothk natural
attraction of stars from the disc with totally @ifént spin orientations. Out-phasing black holasthe ejection of
matter from companion stars in dual star systesws @hange the bulge's angular momentum.
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Most likely, bar galaxies will only form after thetage of disc galaxies and spiral galaxies, aneérgém a shock
wave with a turbulent reorientation of the wholsadgalaxy into a newly orientated flat ellipticallaxy and then
again to a disc galaxy.
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On Dancing and

Beating Asteroids
and Satellites

It is if asteroids were alive! The Sun's gyrotatifmmces make them dance during their orbital
motion. In these two papers, Gravitomagnetism mdgecomply with all observations on asteroids
that were made on hundreds of them during years.

Moreover, Gravitomagnetism discovers that the agterthat orbit under an inclination angle with
the Sun receive veritable beats when they pasSuhi&s equator.

Also the fly-by of satellites is studied here besmthey answer to the same laws of motion.

It is an grateful confirmation of the theory, ahgredicts the unobserved!
Fly with the asteroids in this chapter!
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the general science
journa

The Gyro-Gravitational Spin Vector Torque Dynamics of Main Belt
Asteroids in relationship with their Tilt and their Orbital Inclination.

described by using
the Maxwell Analogy for gravitation.

T. De Mees - thierrydm @ pandora.be

Abstract

Several observational studies of the main belt asteroids showed a direct link between the evolution of the spin vectors
and the inclination of their orbit. A study wherein the evolution of 25 main belt asteroids and 125 synthetic objects was
computed over 1Myr (E. Skogldv, A. Erikson, 2002) clearly quantified this link. Verification of these results with the
observation of 73 asteroids confirmed the results. Non-gravitational (YORP-/Yarkovsky-) torques are not considered
here. Following observational conclusions have been made by E. Skoglov and A. Erikson:

- the spin oscillations' amplitude increases with increasing orbital inclination of the asteroid.

— the largest spin oscillations' amplitudes are found if the initial spin vector lays in the orbital plane.

- the spin obliquity differences are generally insensitive to the shape, composition and spin rate of the asteroids.

— there is a significant majority of asteroids with a prograde spin vector compared to retrograde ones.

— the spin vectors of prograde asteroids are more chaotic than the spin vectors of retrograde asteroids.

— there are very few asteroids having a spin vector that lays in the vicinity of the orbital plane.

— the heliocentric distance is relevant for the spin vector behaviour.

In this paper it was found that the gyro-gravitation theory, which is the closest Euclid theory to the General Relativity
Theory of Einstein, complies very well with these observations.

We find that the asteroid's tilt swings continuously during a full orbit. The theoretical values of the cyclic tilt variations
are calculated.

Keywords: Main Belt Asteroids — gravitation — gyrotation — prograde — retrograde — orbit — precession — nutation.
Method: Analytical.

1. Orbital data of the main belt asteroids, by E. Skoglov and A. Erikson.

In our solar system, the orbital evolution of the main belt asteroids is primarily influenced by Saturn and Jupiter. The
orbital perturbations are ordinarily periodic in the sense that they vary between certain limits. The spin vectors of
asteroids can be influenced by nearby passing planets, by collisions, but there has also been observed a mechanism due
to the asteroids' orbital evolution.

When I discovered the papers of E. Skoglév and A. Erikson, I became intrigued by their results. In these papers, the
latter mechanism (the one related to the asteroids' orbital evolution) has been observed and reported. This means that
the orbital perturbations by Saturn and Jupiter have not been studied here, but only the relationship between both the
initial spin orientation and the orbital evolution, in relation with the spin vector evolution of the asteroid.

1.1. Basic data of 25 real objects.

Table 1.1 shows which 25 large asteroids have been chosen (E. Skoglév, A. Erikson, 2002) to perform the observations.
The average semi-major axis of the orbit is given and the orbital inclinations: maximal, minimal and average.

These orbital variations, caused by Jupiter and Saturn, generate spin vector changes.

On these data, the study of E. Skoglov and A. Erikson has been based on.
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Asteroid imin (°) iave (°) imax (°) daye (AU) Asteroid imin (°) fave (°) imax (%) Adgve (AU)
| Ceres 7.3 9.7 12.0 277
2 Pallas 265 332 38.7 277 41 Daphne 11.5 15.5 19.5 2.76
s ASEEE 29 47 70 258 51 Nemausa 74 10.1 12.:7 237
6 Hebe 116 14.4 7.2 243 | 64 Angelin I 26 4.5 2.68
7 Iris 38 6.5 9.0 2.39 130 Elektra 18.9 22.1 25.3 3.12
9 Metis 23 49 72 239 243 Ida 0.0 24 4.2 2.86
17 Thetis 24 5.0 7.3 2.47 270 Anahita 0.5 36 6.3 2.20
18 Melpomene 7.0 99 12.6 2.30 451 Patientia 11.8 14.0 16.2 3.06
19 Fortuna 0.0 2.6 4.6 2.44 471 Papagena 10.9 13.8 16.5 2.89
20 Massalia 0.0 2.0 38 2.41 694 Ekard 14.5 18.0 21.9 2.67
23 Thalia 6.8 9.7 12.5 2.63 [ 776 Berbericia 14.6 17.2 19.7 293
31 Euphrosyne 23 26.5 303 3.16 | 852 Wladilena 20.1 24.0 28.0 236
32 Pomona 38 6.2 8.5 2.59
39 Laetitia 1.6 9.9 12.1 2.77 The Minimum, Average, and Maximum Orbital Inclination

(F min> Laves and i, Respectively) Together with the Average Value

. of the Semi-major Axis of the Orbit (a,,.) for the 25 Real Main Belt
Table 1.1 (source : E. Skoglév, A. Erikson) Asteroids

1.2. The results of the study for the 25 real objects.

In fig.1.2 has been drawn the evolution of the spin vector X = c0S &, where & is the obliquity of the spin vector,
which means the tilt of the spin axis from the normal to the orbital plane, as shown in fig.1.1.

Fig. 1.1 : definition of the obliquity &
of the asteroid's spin vector and the
orbital inclination i.

The ordinate of Fig. 1.2 shows the minimum and maximum values of this obliquity after a time period of 1 Myr (10°
years).

The figure also shows the precession frequency (p = d v/ d ¢ ) wherein | is the precession angle of the spin vector.

10
=
=
= 0
o

-10

1 05 0 0.5 1 -1 0.5 0 05 1
initial X, o= 10"/yr initial X, a=10"yr
(source : E. Skoglov, A. Erikson)

Fig. 1.2.  The average precession frequency (p =d /dr) and the minimum
and maximum X values (X = cos &, where ¢ is the obliquity) obtained during the
time period [0,1] Myr for 65 equidistant initial X values for objects having the
orbital evolutions of 1 Ceres (iye =9.7°, x), 20 Massalia (iy. =2.0°, o), and
694 Ekard (iave = 18.0°, +). The artificial precession parameter (@) is 10"/yr
and the time step of the spin axis integration is 3.125 years. Note the increase in
A X, the difference between the maximum and minimum X values, with larger
orbital inclinations. The largest A X values are obtained for initial values close
to X =0.
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The fig. 1.2 should be read as follows. The spin obliquity of three asteroids, Ceres with i, = 9.7°, indicated with x,
Massalia ( i, = 2.0°, 0 ) and Ekard (i,,. = 18.0°, + ) have been plotted. The initial value X = cos & gives the spin
obliquity at the time zero, and the maximal and minimal spin obliquities X are given for each of the asteroids, after the
time span of 1 Myr.

In this discussion we consider our planetary system such that the spin of the sun points upwards.

The plotted results give quite a lot of information about the change of the spin vector obliquity over the given time
span. The maximal and minimal values are symmetric for Ceres and Massalia. The larger the value of the orbital
inclination is, the larger is the AX between the maximal and minimal values of the computed spin obliquities X. The
AX between the maximal and minimal values lays in the region of an initial value X of zero, where the initial spin
vector obliquity equals to 90°, and hence is laying in the orbital plane.

According to the computation, the initial spin vectors which are perpendicular to the orbital plane of the asteroids,
would almost remain unchanged. However, there is a less stable situation when the initial value X is directed upwards
than when the vector is directed downwards.

The results for the asteroid Ekard are significantly different for both the maximal and the minimal values of the

computed spin obliquities X , i.e. a clear tendency towards lower values. This means that the spin vectors tend to point
more downwards.

1.3. Basic data of 125 synthetic objects.

Besides these 25 real objects, 125 synthetic objects have been created, based on the properties of the 25 real objects but
with artificial orbital inclinations i, of 5°, 10°, 15° 20° and 25°. An artificial precession parameter has been
introduced as well, for the use of the numerical extrapolation.

I assume that E. Skoglév and A. Erikson used the best possible numerical integration and the best possible empirical
adaptations to obtain the 1 Myr extrapolation for these synthetic objects. Indeed, the exact physical process is up to now
unknown, and the results must be interpreted as being entirely empirical.

1.4. The results of the study for the 125 synthetic objects.

In fig. 1.3. is computed how the behaviour of the synthetic asteroids changes with time, based on the real data of Ceres.
In this case, only the delta is plotted and not the absolute values of computed spin obliquities X. The legend is : orbital
inclinations of 5° (o), 10° (+), 15° (x), 20° (O) and 25° (*).
The same conclusions can be taken as with the real objects.

0.9
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08 o "ty o (s 8lov, )
e
*
L e ]
0.7 % S OOCO000G ipp . o
¥ . joooocomc \O‘K]Dooocuock X The difference between maximum and minimum X values, AX,
M ta} e . e . - o . . . -
0.6 o o ‘\:»0( ”; J for each initial step in X for five synthetic objects based on the properties of
. ) e . o . . . . .
e qco Pt e s Ooc % I Ceres, but with five different synthetic average orbital inclinations, 5° (o), 10°
* ol ool Ky, ® i e Al
05 x| ° 0 B, % +), 15% (%), 20° (0), and 25° (). The largest AX values are found for initial
= 2 pres K o *
* X = . . . .
= i 0 xxxx 2 i XXXX % ¥ X values close to X =0, as is also the largest increase in AX when the orbital
04r + s A W y v " :
x 2] sl bty Xxx o | inclination (i) is increased. This situation is typical for a majority of the objects
f x ot B = X O . ’
03 X et ‘++__++ % o studied.
bl AT +
25 45t +PI ‘eae T "
0.2F X L+ iesesas AYRLR: SREERRIBNAG eteae. *‘x- .
o fha Fig. 1.3
+ saot e+
01 "
0 : ‘ : . .
-1 08 06 -04 02 0 02 04 06 08 1
initial X

When the inclination of asteroid's orbital plane is very large, there remains a significant AX , even for asteroids which
are perpendicular to their orbital plane, especially for those perpendicular ones that are pointed downwards.
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The instability of the latter asteroids is greater than that of the former ones.

Another graphic describes how the maximal values of AX can be plotted in relation to the orbital inclinations of the
synthetic asteroids. The results are shown in fig. 1.4. Again, we see that the larger the value of the orbital inclination,
the larger the maximal AX becomes.

Both the 25 real objects (x , the least square method gives the lower line) and the 125 synthetic objects (o , the least
square method gives the upper line) are shown.

1.5 T T T T T

(source : E. Skoglov, A. Erikson)

1 The maximum value of AX as a function of orbital inclination
(i) for the 25 real objects (x; lower line), and for the 125 synthetic objects

X (0 upper line). In both cases, AX grows in an approximately linear way when
§ the inclination is increased. The least-squares method has been used to adjust
linear relations to the data.
0.5f 1
Fig. 1.4
c A
0 5 10 15 20 25 30 35

The two lines suggest a linear behaviour, but there are clear deviations. The lower end of the individual results of the

125 synthetic objects is showing a steadily slower increase of the maximal AX with increasing orbital inclination. Since
the number of such asteroids is high, this tendency is representative.

1.5. Observational conclusions.
Out of this study, a number of quantitative and qualitative conclusions are made.

— It follows directly from the fig.1.2 , fig.1.3 and fig.1.4. that the spin oscillations' amplitude increases with an
increasing orbital inclination of the asteroid.

—  Out of fig.1.2 and fig.1.3, the largest spin oscillations' amplitudes are found if the initial spin vector lays in the
orbital plane.

— It is found from the integration method™ !'”), that the spin obliquity differences are generally insensitive to the
shape, composition and spin rate of the asteroids.

— It appears!'?! that the spin vectors of prograde asteroids are more chaotic than the spin vectors of retrograde
asteroids.

—  Also it has been found"? that the heliocentric distance is relevant for the spin vector behaviour.

2. The observed spin vector distribution, by A. Erikson.
2.1. The spin vector distribution of 73 asteroids of the Main Belt.

Very important data of the asteroids exist because special efforts have been made during the last decade to observe this
for long time neglected subject, while much more information was collected about the planets.
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5 Retrograde EP Prograde N

=73

— Total
i< 10 deg.

T —i = {deg

(source : A. Erikson, 2000)

The distribution of the ecliptic latitudes (So) of the spin vectors
for 73 main belt asteroids from Erikson (2000). The included objects have been
divided into two subsets with respect to their orbital inclination (i). Note the
absence of asteroids with high orbital inclinations whose spin vectors are in the
vicinity of the ecliptic plane (EP).

Fig. 2.1
OJI 1 |

-1.0 -0.8 0.6 0.4 -0.2 0.0 0.2 0.4 0.6 0.8 10

Sin f;
In fig. 2.1 there have been several parameters of 73 real asteroids grouped upon one graphic. The total number of the
asteroids' spin vectors has been split up in a retrograde and a prograde part, compared with the sun's spin. The left
graphic shows the retrograde part and the right part the prograde. The ecliptic latitudes, which are the asteroids'
individual spin latitudes above (positive) or below (negative) the individual asteroids' orbital plane, are given by Sin f3,

Fig. 2.2 : definition of the ecliptic latitude Sin B of the
asteroid's spin vector : B is positive above the orbital plane.

Definition of prograde and retrograde spin vector. The spin is
prograde if its sense is directed above the orbital plane, and is
retrograde if its spin sense is directed below its orbital plane.

In fig. 2.2 we find the definition of ecliptic latitude Sin 3, of the asteroid's spin vector : 3, is positive above the orbital
plane. The definition of a prograde and a retrograde spin vector is given as well. The spin is prograde if its sense is
directed above the orbital plane, and is retrograde if its spin sense is directed below its orbital plane.

We have to pay attention with making conclusions from the fig. 2.1, because the orbital inclinations are divided in only
two groups, and the spin vector obliquities are not precisely related to these orbital inclinations. Nevertheless, we can
find several results.

A first discovery is the presence of nearly 64% prograde asteroids versus 36% retrograde asteroids.

The second is that in the prograde part, the majority of the asteroids (a quantity of 30) shows an average orbital
inclination of less than 10% , against a quantity of 18 with an average orbital inclination of more than 10%. In the
retrograde part, we find 11 asteroids with orbital inclination of less than 10%, against 14 asteroids that have an average
orbital inclination of more than 10%.

Thirdly, there are almost no spin vectors oriented in the vicinity of their own orbital plane (for Sin B, = 0), especially in
the case of orbits with a higher inclination.

2.2. Observational conclusions.

Out of this study, a number of qualitative conclusions is made. These conclusion are:

—  Out of fig. 2.1 it appears that there is a significant majority of asteroids with a prograde spin vector compared to
retrograde ones.

— It has been found "' '* that there is an absence of asteroids with their spin vector pointing in the vicinity of their
orbital plane. Also the fig. 2.1 shows this.
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3. The Maxwell Analogy for gravitation: equations and symbols.

The Maxwell Analogy for gravitation is the closest theory to the General Relativity of Einstein, while the universe
remains Euclid and is not curved. The double aspect of the gravitational field is expressed by the Newtonian gravitation
field, supplemented with the gravitomagnetic field that 1 call gyrotation. This latter field has been proposed by Oliver
Heaviside at the end of the 19" century. The so-called Gyro-gravitation Theory, which is this very same theory, but
including a new physical definition for 'the observer'?), is suitable to explain celestial mechanics for steady and quasi-
steady systems. The retardation of gravitation due to its finite velocity is not taken in account and this does not affect
the results noticeably.

For the basics of the theory, I refer the reader to my paper: “Analytic Description of Cosmic Phenomena Using the
Heaviside Field”'*!. The most relevant parts are summarized in the next paragraphs.

3.1. The general equations of the Maxwell Analogy for gravitation.

The gyro-gravitation laws can be expressed in equations (3.1) up to (3.6) below.
The electric charge is then substituted by mass, the magnetic field by gyrotation, and the respective constants are also

substituted. The gravitation acceleration is written as g , the so-called gyrotation field as £2, and the universal
gravitation constant out of G'=4r ¢, where G is the universal gravitation constant. We use the sign < instead of
= because the right-hand side of the equations causes the left-hand side. This sign <= will be used when we want insist
on the induction property in the equation. [ is the resulting force, v the relative velocity of the mass m with density

p in the gravitational field. Andj is the mass flow through a fictitious surface. Bold fonts represent vectors.

Fem(g+tvxQ) 3.1 divj<-0dp/ot (3.4
V.g «p/& (3.2) divQQ=V. Q=0 (3.5)
VxQ&<j/ i+ 0g/ot (3.3) Vxg <« -0Q/70t (3.6)

It is possible to speak of gyro-gravitation waves with transmission speed c.

c=1/(Ct) (3.7) wherein =41 G/

3.2. Calculation of the gyrotation of a spinning sphere.

For a spinning sphere with rotation velocity @, the result for gyrotation outside the sphere is given by the vector
equation (3.8) . In fig. 3.1, one equipotential line of the gyrotation vector £2 has been traced for a spinning sphere with
radius R , a moment of inertia 7 and a spinning velocity vector @ at a distance vector 7 from the sphere's centre.

A

Q)

Fig. 3.1 : A spinning sphere with radius R and
rotation velocity @ is generating a rotary gravitation
R field (or “gyrotation” field) £2 at a distance r from
the sphere's centre.

GI 3rimer 2
Q &——- [a) - %J wherein for a sphere : I = g mR? (3.8.2) (3.8.b)
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The value of the gyrotation can be found at each place in the universe, and is decreasing with the third power of the
distance 7 . The factor @ e r represents the scalar vector-product, and this value is zero at the equatorial level.

In fig. 3.2 , the definition of the angles « and i is shown. The orbital plane of the asteroid is defined by the orbital
inclination i in relation to the axis X . The exact location of the asteroid inside the orbit is defined by the angle « . The
equipotential line of the gyrotation 2 through the asteroid has been shown as well. Is is clear that the gyrotation of the
sun is axis-symmetric about the Z-axis.

Fig. 3.2 : Definition of the angles a and i . The orbital
plane is defined by the orbital inclination 7 in relation
to the axis X . The location of the asteroid inside the
orbit is defined by the angle « . The equipotential line
of the gyrotation (2 through the asteroid has been
shown as well.

Now, we need to write the equation (3.8) in full for each of the components, in the case of the solar sphere.

Therefore, we need to know the angle S in terms of the inclination i and the position angle « , since the scalar vector-
product of (3.8 a) is defined by @ rcosf.

Therefore we notice that (see fig.3.2): rsiny =r, =rcosa sini (3.8.0)
And since Siny =cos 3, we get : cos S =cosa sini (3.8.d) (3.8.¢)
Hence,
GmR’ 3 .
(Qx,Qy,QZ) =— (0,0,a)z)——z(rx,r ,rz)(a)rcosasmz) (3.9
5r°c r g
wherein (rx,ry,rz):r(cosa cosi,sina,cosasini) (3.10)

The equations (3.9) and (3.10) constitute the detailed vector formula of the equation (3.8). Remark that @, = 0= wgyp, -
In the next chapters we will analyze the torque which is exerted by the gyrotational part of the gyro-gravitation.

Firstly, we have to analyse the effects of gyrotation on the asteroid. Some of the components of the gyrotation will
affect the spin or the motion of the asteroid, other components will not affect the asteroid's motion.

For the calculation of the torque on the asteroid, we need a few mathematical steps. In the first place, we have to find
the relationship between the sun's coordinate system and the most simple possible coordinate system of the asteroid.
When we have this mathematical relationship, the torque can be analysed and the conditions for a maximum torque can
be found in relation to the orbital inclination of the asteroid and to the obliquity of the spin vector.

Let us first express the gyrotation field in the asteroid's local coordinates.
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3.3. Coordinate system transformations.

In this chapter, we will study the general implications of the gyrotational field on the asteroid.
We define the axial tilt 1 as : n=¢cti (3.11)

whereby the angle of axial tilt 77, the obliquity angle £ and the angle of orbital inclination I are chosen in the same
plane. The axial tilt or spin vector tilt is the tilt of the asteroid compared with the Sun's reference spin vector.

The asteroid spins with an angular velocity wygt around the Z"-axis. The coordinate system X' Y’ Z' is the translated

solar coordinate system X Y Z over the distance of the asteroid's orbital radius » and an angle « in the orbital plane that
is inclined with angle i .
We do not consider orbital eccentricity in this paper.

Fig. 3.3. : coordinate system transformation. The asteroid spins
with an angular velocity @gg; . The coordinate system X' Y’ Z'is the
translated solar coordinate system X Y Z over the asteroid's orbital
radius » and an angle ain the orbital plane that is inclined with
angle i. The spin axis of the asteroid is defined by the angle 7,
which is the axial tilt of the spin vector. The X and Y axes of the
solar coordinate system are chosen such that the coordinate system
X"Y"Z" is a rotated coordinate system X' Y’' Z' over the angle n
while the axis X' remains identical to X”'. The orbital inclination i
is shown here in the same plane as Z Z'.

The spin axis of the asteroid is defined by the angle 77, which is the axial tilt of the spin vector. The X and Y axes of the
solar coordinate system are chosen such that the coordinate system X" Y"" Z" is a rotated coordinate system X' Y’ Z'
over the angle 7 while the axis X’ remains identical to X"'. The orbital inclination i is shown here in the same plane as
Z Z'and as 7. We have represented the sun's gyrotation field, which has to be considered uniform in the case of
asteroids because of their small sizes.

It is clear that the asteroid's axial tilt 7 is not totally defined in space here, because any tilt orientation upon the cone's
surface with symmetry axis Z' and angle n will comply with the description. However, the role that the exact tilt
definition would play is very small, since each place upon the cone will be described once at each orbital revolution.
The lack of exact tilt coordinates could play a role for large orbital inclinations, but not for smaller inclinations. Exact
tilt coordinates could be preferred for a detailed study of individual asteroids, which is not the aim of this paper.

Based on fig. 3.3 in the former chapter, we can write down the related equations between the coordinate system
X'Y'Z" and X' Y'Z'.

The relationships between both coordinate systems are given by :

(X", Y",Z")=(X",Y'cosn+Z'sinn,—Y 'sinn+Z'cosn) (3.12.2)
and inversely :

(X',Y',Z'")=(X",Y"cosn—Z"sinn,Y "sinn+Z" cosn) (3.12.b)
The study will be continued in the coordinate system X" Y Z" .

When we want to calculate the torque of the sun's gyrotation onto the asteroid, we will have to rotate the initial
gyrotation from the coordinate system X' Y’ Z' to the coordinate system X" Y Z" .
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Hence, (.Qx Q0. ) = (.Qx , Q2 cosn+Q_sinn,— Q2 sinn+Q_ cos 77) (3.13)

Now we know the values of the gyrotation on the asteroid in the coordinate system X" Y Z" and are now ready to
calculate the angular acceleration due to this field onto the asteroid.

3.4. The angular acceleration and the torque of the solar gyrotation acting onto an asteroid.

In fig. 3.4 we consider an asteroid under the influence of the solar gyrotation 2" .

Fig. 3.4 : we consider the asteroid under the influence of
the gyrotation 2" . The asteroid is rigid, and the only
motion-related acceleration is a ..

_(2 7 Q E/4

z

Two cases are shown: a velocity that is perpendicular to the X" axis and one that is perpendicular to the Y" axis. The
gyrotation £2" has been split up in its components (£2",, £2",, 22",).

When applying the equation (3.1) for each of the components, we get the forces that works onto the asteroid due to
gyro-gravitation. Let us firstly write this result as an acceleration only, and omit the gravitational part, because it does
not play any role for the torque of the asteroid.

Hence,
(a; ,a; ,a;) = (vy .Q; ,v; .Q; ,v; .Q; —v; .Qx) (3.14.a)

But the asteroid is rigid, and some accelerations will have no other effect but internal compression of the matter, and
the stability of the asteroid. When a”, or a”, , or both, are directed towards the asteroid's centre, we get an unstable
asteroid. If both a”, and a”, are directed outwards, we get a stable asteroid. The study of the asteroid's stability is
made in Appendix A. . Lo L

The motion-related accelerations are : (ax ,a, ,a, ) = (0, 0,v, Q2 —-v, Q ) (3.14.b)

Only the component which is perpendicular to the asteroid's equator is relevant for the torque. In other words, Q”, is
not relevant for it.
This means that locally, the following gyrotational equations can be written down (see fig. 3.4).

()

=v, Q) and a ., =v,Q, (3.15.2) (3.15.b)

However, if we want to describe the totality of the angular acceleration 7"’ on the asteroid, we should re-write (3.1) for
angular motions. The purely Newtonian gravitational part is omitted in (3.16) and (3.17).

T =0, 2 and T =, 02, (3.16) (3.17)

y

For the torque T , we get :
C =100, and C =100 (3.18) (3.19)

Remark that C.=0.

The equations (3.18) and (3.19) can be written in full by using the equation (3.9) , (3.10) and (3.13). So we get:
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GmR ol 3. . . :
ot :m5r—3ac)2]w]((l_zsmz 2a]s1n77—% sin 2« sini cosn] (3.20)
3GmRolo, , . ..
P cos” a sin2i (3.21)

The equations (3.20) and (3.21) define the solar gyrotational torques on asteroids for each orbital inclination, but also

on each location on the orbit.

4. Conditions for a maximal and minimal gyrotation on the asteroid's orbital inclination.

4.1. Forced gyroscopic motion.

ZH’!A

’

}/f"

Fig. 4.1 : Precession and nutation of an asteroid.

The angular velocity y in x y z is given by :

v, = ] (4.4)
v, = ¢ sin6 (4.5)
w. =¢cosb (4.6)

Let us consider the forced gyroscopic motion upon the
asteroid. The spin axis of the asteroid is the Z"" -axis.

We define the following notations for the Euler angles : the
precession angle ¢ , the nutation angle & and the spin
angle ¢ of the asteroid.

In the coordinate system x y z , the angles & and ¢ are
needed to define a location.

In the coordinate system x'y’z’, the angles 8 , ¢ and @
are needed to define a location.

In the respective coordinate systems, the following
relationships are valid.
The angular velocity @ in x'y'z’is given by :

0, =0 @.1)
0, = ¢ sin@ (4.2)
4.3)

. = ¢ cosf+ ¢

The angular momenta are :

L =1 o, =1,0 4.7)
L=1 o, =1,¢4sind (4.8)
L=1 o =1, (¢5 cos@+gb) (4.9)

wherein we define a cylinder-symmetric asteroid with the inertia momenta : [, =1 =1 , and I, =1_, and wherein

0 , ¢ and ¢ are time-derivatives of 6 , ¢ and ¢@.

The equations of motion are then :

L, -Ly +Ly,
LZ _Lxl//y +Lyl//,x

© Dec. 2007

L.-Ly. +Ly,

=T (4.10)
=T (4.11)
=C (4.12)
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wherein L is the angular momentum and C is the solar gyrotation torque that works upon the asteroid.

Notice that in this paper ¢ = @, , where @, is the spinning velocity of the asteroid.

Remark that the orientation of the coordinate system X" Y"" Z"" is not defined yet. We chose it such that the Z""-axis
corresponds with the Z" axis, and the X""-axis corresponds with the torque defined as ZZy = ‘Cj +‘C;2 and its

orientation (angle ¥ in the coordinate system X" Y"" Z"") given by tany =C /T .
7/ y X

The equations of motion become, written in full :

Io(é—gbz sin @ cos@)+1 ¢sin9(f¢cos@+gb)=@y (4.13)
IO(%& sin@+2 ¢0 cos@)—[ 9(¢ cos9+gb)=0 (4.14)
1 (¢+¢cos@—¢9 sin9)=0 (4.15)

Due to the high number of solutions, we should simplify these equations by setting a minimum of restrictions.

Suppose that (9 = 0, or, in other words, the spinning velocity can be seen as a constant.

l o,
(21,-1)cos6

Out of (4.15) and (4.14) we find for the precession velocity : ¢ ~ (4.16)

The calculation is summarized in Appendix B. Since 6 is not known yet, we can get it from (4.13) by using (4.16).

We know that by definition, the nutation and the change of tilt position are equal, thus: 8 = An .

2
21,-1
For the angle An we find (see Appendix B) : AT] =arctan| C u

2 (4.17)
VI o)

The value of the nutation is however not constant. The angular velocity of the nutation, 0 , can be found by
differentiating (4.17) to the time.

Knowing that d@/d t = ax d6 /deax, wherein ay is the orbital velocity of the asteroid, we get (see Appendix B):

. do 27,-1) dT
9=a)0—=a)0( . 2) ) (4.18)
da 1,] 0w da

The vector Ty, is rotating about the Sun, together with the asteroid's orbit. It fluctuates between a certain minimal value

and its maximal value, due to the oscillations of « .

4.2. Calculation of the spin vector tilt changes.

The calculation of the spin vector tilt changes can be realized by using (4.17), worked out with the equations (C.2) to
(C.6) of appendix C.

The change of the tilt occurs continuously by the equation (C.6).

© Dec. 2007 1 pla4a 29/12/2007 - Updates 18/01/2008 and 29/09/2011



Thierry De Mees

An (C.6)

20 (21, 1) in?2i
szR a)( 0 ) (2+2sm 2l]sinn

5¢¢ 1,1 o, 8 sin’n

After every orbital semicircle, the tilt change with a very tiny portion. It will swing back during the next orbital
semicircle.

4.3. Calculation of the precession changes.

The precession velocity of equation (4.16) can further be simplified to:

. I o
b=
2[,-1

(4.19)

because of the very small values of 6.

5. Discussion and conclusions.

Based on our theoretical results, we come to a certain number of confirmations of the observed data by E. Skoglév and
A. Erikson. Let us take the points one by one and comment it. The equations (3.20) and (3.21), (C.6), and fig.A.1 are
the main theoretical data whereon the correlation can be tested.

— the heliocentric distance is relevant for the spin vector behaviour.
This property follows directly from (3.20) and (3.21). The dependency from the distance to the sun is inverse, with an
exponent 3.

— the spin tilt oscillations' amplitude increases with the increasing orbital inclination of the asteroid.
The main theoretical data, see equation (C.6), confirm the increasing values of the oscillations with increasing orbital
inclination i and, consequently, of its torque and its precession.

— the largest spin oscillations' amplitudes are found if the initial spin vector lays in the orbital plane.

At an axial tilt of n = /2 , the acceleration's values are the largest, according to the main theoretical data. Since the
values 77 and ¢ are relatively similar for values around 1 = 7/ 2 and for not too important orbital inclinations, there is a
good correlation between the observed and the theoretical data.

— the spin obliquity differences are generally insensitive to the shape, composition and spin rate of the asteroids.

This is not what we found theoretically. It is not clear why the observational data do not discover this, but probably the
reason is that the high impact of the orbital inclination totally masks the observational data of the other influencing
parameters.

We found a flaw in the representativity of the graphical concepts of E. Skoglév and A. Erikson, especially for the
fig.1.2 and fig. 1.3. To show this, let us define &= arctan(Xy) - i , so that n= g+ i = arctan(X) , and the function X=
cos (arctan(Xp) — i ) , which is only a transcription of the definition X = cos ¢ , apart from the term -i . This function
only depends from the orbital inclination i and from the initial, fixed cos & . Now we found that the shape of curve that
this function represents, is virtually the same as the one of fig.1.2. In other words, the only fact of the inclusion of the
orbital inclination i already gives the curve shapes of fig.1.2, totally independently from any observations. The
supposed (strong) dependence of the orbit inclination to the spin vector tilt 77 is namely only fictive in that graphic. The
same is valid for the function represented by function AX = cos (arctan(Xp) — i ) - Xy compared with fig.1.3, which
supposes a strong dependency from the spin vector obliquity € that however is almost only caused by the part of the
orbital inclination i. The influence of other parameters appear to be severely masked as well in these graphics. In other
words, the choice of associating the tilt with the obliquity angle £ is unfortunate for observational data, because the real
tilt n is totally masked by the influence of the inclination i. It would be likely to get the observational data in the form

An=f(n,i).
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- the spin vectors of prograde asteroids are more chaotic than the spin vectors of retrograde asteroids.

From fig.A.1 it is clear that the stability of the asteroids theoretically comply with these findings. For prograde orbits
and for large orbital inclinations, the graph shows a very strong tilt instability, while for retrograde orbits, the graph has
a milder instability. However, for prograde orbits and for small orbital inclinations, the tilt instability is very low.
Remark that the use of the terms 'prograde' and 'retrograde’ in the theoretical part is to be related to the solar spin as a
reference, while in the papers of E. Skoglov and A. Erikson, this means : related to the reference of the ecliptic latitude.
For small inclinations, the observational difference is barely noticeable.

— there is a significant majority of asteroids with a prograde spin tilt vector (0 < < 7/2) compared to retrograde
ones (w/2<n<nm).

This property can explained by the theory, since fig.A.1 is asymmetric to the prograde and the retrograde orbits. Indeed,

the prograde tilts are fully stable for small prograde orbit inclinations. Since there are more prograde orbiting asteroids,

the number of prograde tilts must be higher as well.

— there is an absence of asteroids with their spin vector pointing in the vicinity of their orbital plane.
This follows from the equation (C.6) where the largest deviation of the tilt is obtained if = z/2. It also follows from
fig.A.1, where most of the orbit is unstable if n = 7/2.
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Appendix A : Tilt stability study of the asteroids.

From (3.15) it follows that the larger a", is, the more instable the asteroid's tilt. With (3.20) we see that the most
instable situation occurs if, roughly speaking, n=7/2.

But a", is not the only factor for stability.

A stable asteroid's tilt is also given by the condition a"”,> 0 or a’, >0 . A labile asteroid is obtained if a", <0 or
a", <0 . We have indifference if a",=0 or a", = 0. With (3.14.a) and with the angular notation such as in (3.16) and
(3.17), we conclude that tilt stability indifference occurs if Q", =0.

When using (3.9), (3.10) and (3.13), we come to the following conditions for an indifference of the tilt stability :

3 cos’a sin®i—1
tann = —; . (A1)
3sina cosa sini

Graphically, the equation (A.1) has been plotted in fig. A.1.
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Fig. A.1.a and b.: Plot of the neutral tilt angle 7,cua in relation to the angular location « and the orbital inclination i. Values of 1
that are higher than 7,11 (northern semicircle) or lower (southern semicircle) will give a stable asteroid's tilt. Values of 7 that are
lower than 77,cuna1 (northern semicircle) or higher (southern semicircle) will give a unstable asteroid's tilt. Prograde orbits with small
inclinations provide very stable tilts, but above an orbit inclination of about 77 /8, the tilts suddenly become very unstable until about

77 /8, after which they become stable again for about 0 < @ < 7/8 and 77 /8 < a < 7 . Note that the orientation of the tilt in space
has only been defined regarding the z-axis, not the x and y axes. The results for the x and y axes are averaged. However, during one
orbital rotation, all the possible orientations to the x and y axes are reached.

Tilt stability is obtained if Q"”.>0 or tann >(3 cos’ a sin’ i—l)/(3 sina cosa sin i) and this occurs if

N >N peu (Morthern semicircle) or 177 <n_ ... (southern semicircle); unstable tilt is obtained if €2".<0 or

tann <(3 cos” o sin’i—1)/(3 sinax coser sini) and this occurs if 7 > southern semicircle) or
n neutral
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1 <M, (nOrthern semicircle). For fig. A.1, this means that the zone between both neutral curves is unstable, but

that the zone outside is stable. Roughly speaking, we conclude out of fig. A.1, that when the orbit inclination is smaller
than nearly 7 /8, as well prograde as retrograde, the tilt is highly stable. However, once the orbit inclination is higher
than 7/8, there is a sudden switch to an unstable tilt. Then, the tilt will swing northwards or southwards, depending
from the position at that time in the northern or the southern orbit semicircle.

Remark that the zone of tilt stability is much wider in o for prograde orbits if 0 < i< 7/8 then for retrograde orbits
when 77/8<i<m

This the main reason why the planet's tilt in our solar system are stable. Venus' tilt, which is opposite, might have been
originated because of an original orbit inclination wherefore i> 7/8, causing a tilt instability and even a tilt switch,
without any collision with other bodies. As known by former papers, the inclined orbits tend to swivel into prograde
orbits that are nearly in the Sun's equatorial plane.

Note that the orientation of the tilt in space has only been defined regarding the z-axis, not against the x and y axes. The
results for the x and y axes are averaged. However, during one orbital rotation, all the possible orientations to the x and y
axes are reached.

Appendix B : Calculation of the precession and the nutation.

Since =0, from (4.15) we get : ¢ =0 tan 0.

. I (0
Using this in (4.14) gives : ¢ = B.1
sing this in (4.14) gives ([ 0 (2 + tan’ 9) -1 )cos@ @D
Wherein tan’0 << 2.
A §
We can use (B.1) in (4.13) and we obtain : 2 o _tan@=C (B.2)
o 2 Xy
(2]0 —1 )
(21,-1)
or for the nutation angle : 0 = arctan| C, - (B.3)
NEE
0

The nutation velocity is found as follows: since d@/d¢= ayd6f/da , wherein ay is the orbital velocity of the asteroid,
we find :

2
- do 20, -1 ac
9=a)0£:a)0 (27, 2) - day (B.4)
C,(21,-1)
1+ (2L 1,1°%0>
I,1%0? o
. I.1%*(21,-1) dCT
which can be simplified to : 920)0%20) 2 wl( 0 ) s (B.5)

0
da (1010} +T2 (21,-1)") da
We know that C,, is very small in this application, and hence :

- do (21,-1) dT
0=0w,—~w = B.6
‘da I, %7 da ®.6)
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The same result as (B.6) can be found by using (B.1) in (4.13) while supposing 0 small enough to be neglected and 6
small enough to consider that tan@ = @ . This confirms a good credibility of the parametric choices.

Let us work out (B.6). We defined Ccy = IZZZ + nyz (B.7)
dC dC
g, G *tG
Working out (B.6) will need us to find the result of v da da (B.8)
d a C;Z + C;Z

The derivatives are :

dC, 3GmR wl o,
do 517 ¢

cos 2a ( sin 2a sinn —sinicosn) (B.9)
and
dC, 3GmR’wl o
da 10 7°¢?

Lsin 2¢ sin 2i (B.10)

We do not write (B.6) in full with the results that we find in (B.9) and (B.10), but it is clear that there is a solution.

Appendix C : Detailed estimation of the relevant torques and tilt variations.

Since (B.7) is relevant for any value of a, we can choose to limit our analysis to the average values of each performed
orbital revolution.

We get for the values ¢ =0 or @« =7,and @ = 7/2 or o =- n/2 the following results :

GmR ol o
c*+C? =———— 1 Llgin C.1
* Y la=tr/2 5137 1 €D
Rol in® 2i
C+T’ :Gm 3(02]0)] 1+2S1.n2 ! sinn (C.2)
Y la=o S5ric 4 sin"n

And this gives as an average for the total circle:
GmR ol o, 9 sin® 2i
- <32 I+, [+ ———
a, 5ric 4 sin"n

c’+T? sinn (C.3)

which can be simplified, when using v/1+x =1+ x/ 2 into:

Rol in’ 2i
Cf+‘(§’yz sz 3602'60'(2+2S1,n2 l]sinn (C.4)

Oy Sric 8 sin“n

Equation (4.17) can then be written as follows :
2
Ro (21,-1 9sin®2i | .
An = arctan Gm3 2(0 ( 0 ) 2+—Sl.n2 : sinn (C.5)
Sric I, I w, 8 sin"n

Since the absolute value of A7 is very small, we can omit the trigonometric function and set approximatively :
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(C.6)

An = Z
157550 1,1 o, 8 sin’n

GmR o (21,~1) ( 9 sin’ 2i] .
r 2+ sinn
Hence, (C.6) is the nutation value after half an orbital revolution, and it will swing back during the second half an
orbital revolution.
For important inclinations, and especially if they are close to /2, the tilt variations can become up to 3,25 times that of
the same asteroid if it would orbit in the sun's equator plane.
The same effect occurs with satellites that orbit about the Earth (fly-by anomaly).
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Cyclic Tilt Spin Vector Variations of Main Belt
Asteroids due to the Solar Gyro-Gravitation.

described by using
the Maxwell Analogy for gravitation.

T. De Mees - thierrydm @ pandora.be

Abstract

In the paper “The Gyro-Gravitational Spin Vector Torque Dynamics of Main Belt Asteroids in relationship with their
Tilt and their Orbital Inclination” 1 found the excellent compliance between the observations and the extrapolations of
E. Skoglov and A. Erikson, 2002, and the theoretical deductions according the Maxwell Analogy for Gravitation. This
implies namely the existence of the second gravitational field : Gyrotation (Co-gravitation). Six of the seven
observations are directly explained by the theory. The seventh observation : “there is a significant majority of asteroids
with a prograde spin vector compared to retrograde ones” is explainable by supposing that the asteroids are created, like
most of the planets are, prograde. The theory found that the asteroids' spins are expected to end-up as retrograde. Two
factors play a role : the speed of change of tilt due to gyrotation, and the other influences like the perturbations by
Jupiter and Saturn or the gravitational librations. Here, mainly the gyrotation part is studied analytically and
graphically, and commented.

Keywords: Main Belt Asteroids — gravitation — gyrotation — prograde — retrograde — orbit — precession — nutation.
Method: Analytical.

1. Introduction.

This paper is an extension of “The Gyro-Gravitational Spin Vector Torque Dynamics of Main Belt Asteroids in
relationship with their Tilt and their Orbital Inclination” wherein the following observations could be confirmed
theoretically.

— the spin oscillations' amplitude increases with increasing orbital inclination of the asteroid.

— the largest spin oscillations' amplitudes are found if the initial spin vector lays in the orbital plane.

— the spin obliquity differences are generally insensitive to the shape, composition and spin rate of the asteroids.
— the spin vectors of prograde asteroids are more chaotic than the spin vectors of retrograde asteroids.

— there are very few asteroids having a spin vector that lays in the vicinity of the orbital plane.

— the heliocentric distance is relevant for the spin vector behaviour.

— there is a significant majority of asteroids with a prograde spin vector compared to retrograde ones.

The last observation however is only valid, according the theory, if at the origin, the asteroids were created with a
prograde spin, like the majority of the planets. In “Are Venus’ and Uranus’ tilt of natural origin? ” and in “The Titius-
Bode law shows a modified proto- gas-planets' sequence.” are explained how the planets are probably created from a
solar eruption.

If the asteroids' spins are really created prograde, and if a number of asteroids might have changed polarity of spin by
collisions, there might also be some of them that just obey the theory, wherein is found that the tilt changes from

prograde to retrograde continuously du to the gyrotation force that works on it.

In this paper, we look for the interpretation of the quantitative results of the former paper: “The Gyro-Gravitational
Spin Vector Torque Dynamics of Main Belt Asteroids in relationship with their Tilt and their Orbital Inclination”.
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Especially, we look for the net velocity of the asteroid's tilt change due to the solar gyrotation, for prograde and for
retrograde orbits.

2. The tilt change and its interpretation.

2.1 The equations.

In the former paper, I have found the velocity with which the tilt of the asteroid will change. This is given by the
equation (B.6) of that paper.

d6  (21,-1) dz,

‘da° 1,107 da

=0 @2.1)

wherein

— 0 is the time-derivate of the angle 0 , which is the deviation of the tilt spin vector;

- we define a cylinder-symmetric asteroid with the inertia moments : [, =1 =1 , and I =1, =1 ; whereby the
Z axis is the spin axis;

— the spinning velocity is @, and the orbital velocity @y ;

- ‘Qy =, /Cf + ‘Cf is the effective torque on the asteroid;

— «a is the position angle of the asteroid in the orbital path (see fig. 2.1);

Fig. 2.1 : Definition of the angles « and i . The orbital plane is
defined by the orbital inclination 7 in relation to the axis X . The
location of the asteroid inside the orbit is defined by the angle o .
The equipotential line of the gyrotation €2 through the asteroid has
been shown as well.

The torque T is given by ZZy =, /Cf + ‘Cf the equation (B.7) in the former paper: (2.2)

“The Gyro-Gravitational Spin Vector Torque Dynamics of Main Belt Asteroids in relationship with their Tilt and their
Orbital Inclination”

wherein :
GmR ol 3. : 3 . :
C :%((1—Zsmz2ajsmn—5 sin2a sini cosn] (2.3)
RPol
and : C __3GmR ol o, cos’ o sin 2i (2.4)
g 10 7 ¢*

In these equations, we have called @, , = @ . The derivate to a is given by the equations (B.8) , (B.9) and (B.10) of

the former paper.
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dC
iz, GSEeg S
Working out (2.1) will need us to find the result of = da da (2.5)
da 62 + 2
& v
The derivatives are :
dC, 3GmR*wl : : :
s 2T 3(02 19, cos 2a ( sin 2a sinn —sinicosn) (2.6)
da S5ric
dCT Rl
And 2 :3Gm 3(02](0] sin 2a sin 2i (2.7)
da 107 ¢

Partially, the value of 0 will vary cyclically with the orbital cycle, but it will also progress steadily until 8 reaches 7,
as found in the former paper “Analytic Description of Cosmic Phenomena Using the Heaviside Field”.

2.2 The special case of a=r/2.

But, what is much more interesting is that for o= 7/2 the value of 0 in (2.1) becomes strongly dependent from
(cosn).

dz, | 3GmR ol 0, . .
= T sinicosn (2.8)
da |,_., 5ric
2
R? 21, -1 ) o, .
:3Gm3 2(0 ( 0 ]) 0s1nicos17 (2.9)
a=r/2 5ric 1,1, 0,

This equation suggest that there is a velocity shock at that place : the smaller 7, the larger 6 when the asteroid crosses

the sun's equator. When n=7/2, 0 falls to zero at the place where o= 7/2 (orbit nodes).

2.3 The special case of a= 0.

This case of course happen only once during each orbital cycle.

dz, | 3GmR* ol o, . .

=— — sinicosn (2.10)
da |0[:O S5ric

and
2

. R? 21,-1) o, .
0 :_3Gm3 2(0 ( 0 ]) Y sinicosn (2.11)
=0 Sric I, I, o,

Also here, the smaller 7, the larger 0.
2.4 The special cases of n=0 and n=r.

For analysing these cases, I prefer plotting the results for 0 <i<m and for 0 < a <2 . The result contains only the
trigonometric factors, not the gravitational nor the shape-related nor the motion-related constants of the equations.
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Fig. 2.1: Indicative values of the tilt change 0 at n=0and 1= 7. The thick red line shows i =0 and o =0. The
graph is plotted for 0 <@ <27 and 0<i<m.

A strong positive velocity shock occurs when « is just over 7/2 and 3 7 /2. A weaker positive velocity shock occurs
just over ¢ = 0 and @ = 7 A strong negative velocity shock occurs when « is just before 7/2 and 3 7/2. A weaker
negative velocity shock occurs just before @ =0 and a = 7. The strongest velocity shocks occur at i = 7/2.

This result is important to understand some chaotic motions of spin vectors in general, for planets as well.

2.5 The special cases for other values of 7.

Below are plotted several cases of tilts. The thick red line shows i =0 and o = 0. The graphs are plotted for 0 < a<2x
and 0<i<m.

Fig. 2.2: Indicative values of the tilt change 0 at n=nr/9.
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Fig. 2.5: Indicative values of the tilt change 0 at n=nl/3.
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Fig. 2.8: Indicative values of the tilt change at n=37/4 (n=-7/4).
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Here, the velocity variations are smaller and less precise than in the case of small values of 7. Remark how different
this graph is from the one of n=7/4.

Fig. 2.9: Indicative values of the tilt change 0 at n=>5x/6 (n=-n/6).

3. Discussion and conclusions.

The velocity of the nutation is indicative for the small motions and even for chaos of the spin vector of some asteroids.
There is no tilt position where no tilt velocity effect would occur. Even for orbits with a zero inclination, the tilt velocity
effect occurs four times per orbit cycle.

For 11 = 7 /2, the tilt velocity variations are almost identical for any orbit inclination, and their magnitudes are not much

lower than the maxima of, say, the tilt velocity variations for 17 = 0.

For a spin vector that is directed prograde and parallel to the Sun's spin vector, or opposite to it, retrograde, there is a
sudden jump of the velocity for every quarter of its orbit.

From a former paper we know that the prograde tilt is labile and the retrograde tilt is stable. We know also that, for all

tilts, there is a tendency to move the tilt towards the tilt position of 77, in order to have an alignment of the tilt with the
local gyrotation vector. See my paper: “Analytic Description of Cosmic Phenomena Using the Heaviside Field”.

The shape of the tilt variations becomes sharper when the tilt vector becomes prograde 17 =0 or retrograde 17 = 7 and
the maximal values increase significantly. The maxima are again obtained at the orbital position where the asteroid
passes the Sun's equator.

The same effects of sudden tilt orientation changes should occur with artificial satellites that orbit about the Earth, and
should be very noticeable.
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Elliptical Fly-By and Expected Gyro-gravitational Orbit Accelerations

described by using
the Maxwell Analogy for gravitation.

T. De Mees -+thierrydm @ pandora.be

Abstract

Following to the two former papef$he Gyro-Gravitational Spin Vector Torque DynamafsMain Belt Asteroids
in relationship with their Tilt and their Orbitalnklination” and “Cyclic Tilt Spin Vector Variations of Main Belt
Asteroids due to the Solar Gyro-Gravitatignivherein we theoretically studied the tilt motioasd variations of
spinning asteroids, we continue the analysis withstudy of the orbit anomalies of satellites. €haations for the fly-
by of satellites near the Earth, or near planetgimeral are deduced.

Keywords Fly-by — satellite — planet — gravitation — gigtion — prograde — retrograde — orbit.
Method Analytical.

1. Basic equations of the former papers.

In the former papefThe Gyro-Gravitational Spin Vector Torque DynammisMain Belt Asteroids in relationship
with their Tilt and their Orbital Inclination} a physical deduction is found for the motion #mel variations of the tilt
of asteroids. This deduction is based upon the Mé#xfnalogy for Gravitation.

As explained, the gravito-magnetic field of the thandeed influences the path of satellites becatfisbeir velocity,
by the following equation, which is the analoguedrdz force for gravity:

FOm(g+vxQ) (1.1)

Hereing is the gravity field vector of the EartkR its gravito-magnetic field vector (also callggrotatior), andm
andv the mass and the velocity vector of the satelieexplained the gravito-magnetic field vectofaand out of the
Earth’s data (see eq.(3.8.a) in that paper and .2} lfelow).

The equations are totally valid for a spinning Ratttat is surrounded by orbiting satellites. ThetlEa angular

velocity is @, its moment of inertia ik

~_ Gl 3r (@)
Q= - 1.2.a
2r302[ re (1.2.2)
. 2 2
wherein for a sphere: | = Em R (1.2.b)

The value of the gyrotation can be found at eacleein the
universe, and is decreasing with the third powehefdistance

I . The factorwer represents the scalar vector-product, and
this value is zero at the equatorial level.

If we want to understand the accelerations of #tellites
due to the second field, gyrotation, we need toxktte vector

Fig. 1.1 : A spinning sphere with radiuR and

rotation velocityw is generating a rotary gravitati product VXQ in the vector equation (1.1) with the help of
field (or “gyrotation” field) 2 at a distance from the vector equation (1.2). Therefore, we need stefi@itions
the sphere's centre. of orbit angles, see fig.1.2.
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Fig. 1.2 :Definition of the anglesy andi . The orbital
plane is defined by the orbital inclinatidin relation to the

X axis. The location of the asteroid inside the toibi
defined by the angler . The equipotential line of the
gyrotationg through the asteroid has been shown as well.

In order to find the vector produatx Q , we need to know the angf@ in terms of the inclinatiom and the
position angler, since the scalar vector-product of (1.2 a) fingd by wr CO5.

Therefore we notice that (see fig.1.2): rsiny=r, =r cosx sin (1.3.a)

And sinceSiny = c0SG, we get : cosB = cosr sim (1.3.b) (1.3.0)
GmR 3 .

Hence, (QX,Qy,QZ):W{(O,O,a))—ﬁ(rx I rz)(af cosr sm)} (1.3.d)

wherein (rx,ry,rz) =r (cosx cois ,sir ,cas $i) (1.3.€)

The equations (1.3) constitute the detailed vefoionula of the equation (1.2). Remark thiat ahgyth-

2. Accelerations due to the Earth’s or planet’s spi.

In this paper, we will make abstraction of the Hitééés elliptic exact orbit shape, but the readan implement that

by defining an anglex, that defines the location of the orbit's pericentEhen, by applying the anglg, in the
equation (1.3.e), the correct variability of thalites can be expressed. By using the classical wglequations for

elliptical orbits, defined by the angles anda , the reader can find any primary velocity of dubit.
The analytical equations below are valid &oy= 0. This means that the orbit’s pericenter calasiwith the position of
a=0. They allow us to get graphical representatiointhe satellite accelerations due to the Eaghistation field.

Rotation of coordinate system to the ellipticaln@a

With (1.1), we find the acceleratio®sx Q due to gyrotation.

In order to see more easily what really happenk witatellite, let us make a transform in the plahthe satellite’s
orbit. More precisely a rotation of the system otrer orbit inclinationi. The coordinate systeX’ Y’ Z’ is given by a
clockwise rotation over the angle

(X',Y', Z)=( Xcosi+ Zsini,Y - X sini+ Z cog (2.1)

By doing this, we have put the satellite orbithe X’ Y’ plane, and we can easily find the correspondirrgtgyion
(QX,Qy,QZ):(Qxcos' +Q,sih Q,+Q, sin+Q, cog 2.2)

Equation (2.2) is written in full in Appendix A.
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Below, we will define the equations that coverptltal orbits and then we find the gyrotational éecations, which
are explicitly written down in the Appendix B.

3. Elliptical equations.

In order to adapt the equations for an elliptithpave apply the following Keplerian equations:
a(l-¢&°
L _ap-e)

= and V= GM(E,—EJ (3.1) (3.2
1+ & cosy

ra

wherein a is the ellipse’s major radius and is the eccentricity given by

£=1-(b/a)" =g a (3.3)

Herein,b is the ellipse’s minor radius,the coordinate of the focus (the planet) if the
center is taken in the middle of the ellipse, a@ad the shortest distance between the
ellipse and the planet’s center.

Remark that we have defined the anglas the angle between the major axis and the

Fig. 3.1 :Definition of the satellite’s position.
anglea for elliptic orbits.

Furthermore, the satellite’s position can be wniths (fig.3.1):
F=(r,.r,r,)=¢" cosar,’ sir ,0 (3.4)
If we want to find the coordinates of the orbit'slacity vector in the coordinate systdpd’,Y’,Z’), we need the
slope of the tangent, which is given by the andisee fig.3.1). Therefore we take the basic eqnatiothe ellipse

2
X =c 2
whereof the center of the coordinate system coaxiglith the planetg +§ =1. (3.5)
a
X-c 'd
By differentiating this equation, we come te(:iz) +%d_y =0 , orwith (3.1) and (3.3) this gives:
a X
d b’(X-c 7 ( rcosa - C F( cosr— &/ t te-£( 1 cos
9 _ o 0 (x=9__B(teosr—g__ bloow-af)  re-s(s o)
dx ay & rsina a sina siny
From (3.6) follows the following initial orbit vedities:
' V'sina
v, =V Cosd = =
\/sin2a+(1—£—£2(1+ com))
, . Vv (1—5—52 (1+ coscr))
v, =Vsind=-
2 2 2
\/sm a+(1-£-&*(1+ com))
v, =0 (3.7.2) (3.7.b) (3.7.c)

4. Further equations.

The satellite’s gyrotational acceleratiolig Q in the(X’,Y’,Z’) system due to the Earth’s rotation are then given
by:

(a/3a)=(yal- v, va - Ve va e )=(ve s ' 9y ),
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Option 1 : Rotation of coordinate system to polaoinates versus the planet.
AY

What interests us are the values of the tangeatidl the radial accelerations

Lt g al versus the planet, and finally the acceleratiorsd #re perpendicular to the orbital
X’ plane. To see these accelerations, let us malensform in the plane of the satellite’s
o orbit. More precisely a rotation of the system other anglen. The coordinate system
a’ X" Y" Z" is given by a counter-clockwise rotation over dmglea :
a '
C/ ] p- X’ Fig. 3.2. rotation of the coordinate system.
(X",Y",Z)=( X cosa+ Y sinr ,Y cog— X sia 2 42
Or, for the accelerations:
(axay : az") :( a coxx+ @ sir ,a, cog- a s az)
Wherein we find the radial and the tangential azredions (see fig.3.2):
(7.2 &) =(a. 2. 3] >

Option 2 : Rotation of coordinate system to polaom@inates versus the orbital path.

Another interest thing are the values of the tatigeand the radial accelerations to
the orbital path, and finally the accelerations #n@ perpendicular to the orbital plane.
To see these accelerations, let us make a transfothe plane of the satellite’s orbit.
More precisely a rotation of the system over thglam+d (sinced is negative). The
coordinate syster)(* Y Zis given by a counter-clockwise rotation over éinglea :

Fig. 3.3. rotation of the coordinate system.

(X*,V,Z):(—Xsin5+ Y co® - Y sio- X cod 2

(4.4)
Or, for the accelerations:
(ax*,ay*,a;)z(—ax' sind+ a, co® - a siv- g cod az)
Wherein we find the radial and the tangential azredions (see fig.3.2):
(ax,ay,éy)=(ar,q’@) (4.5)

When using the equations (3.7), the equation @ah)be found.

5. Graphical solutions.

The figures 5.1 and 5.2 show the values of thela#ons that satellites undergo by the equatb®)( written in
full by the equation (D.3.a). The tangential accsien ar, along the satellite’s path is zero, as confirnbgdthe
equations in the Appendix D.

In fig. 5.1 we show the radial gyrotational accatEma, , which points to the Earth’s center, for the eslwfi anda
between FrandTt
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Fig.5.1: The radial gyrotational accelerat'mﬁ of satellites about the Earth, in relation to dhnkeital
inclinationi and the orbital positioa of the satellite. We too#/b = 2 The red line are the zero values for
a andi. The values of anda are betweenTtandTt

The values o, are zero for the orbital inclinationghat are multiples oft4. The highest absolute values are found

for inclinationsi between-in these values, especiallydoequal to 0. Fool equal tortor -Tt, there is an attenuation due
to the orbit’'s eccentricity. For circular orbithete is no attenuation.

In fig. 2.2 we show the gyrotational acceleratén scaled at 25%, which is perpendicular to thellitate orbital
plane, for the values dfanda between FandTt
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Fig.2.2: The gyrotational acceleratiaﬁ* , perpendicular to the orbital plane, of satedliédout the Earth, in relation to the
orbital inclinationi and the orbital positioa of the satellite. We tool/b = 2 and we had to scadg to 25% compared
with ar*. The red line are the zero valuesdoandi. The values of anda are betweerrtandTt A side view is also shown.
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The scales of the orbital inclination and the @lbjtosition of the satellite are taken the samebfith graphs. Here as
well, there is an attenuation @t= Tt

The highest values @, are obtained when the orbital inclination isTé2, when the orbit is perpendicular to the
Earth’'s equator. The prograde value is double @ lén absolute value) as the retrograde one tladvidth (action
radius) is also larger. Prograde orbits always simiowards equatorial orbits £ 0) and retrograde orbits first swivel

towardsi = T¥2 , then towards the planet’s equator (0). The retrograde value is smaller due to tliptie shape,
which causes an attenuation. This is caused byclimice of an elliptic orbit whereof the pericentsrsituated
according to fig.1.2.

6. Discussion and conclusions : the swiveling prageof inclined orbits.

We have calculated the satellite accelerations tbu¢he Earth’s rotation. It is found that the valuef ar*
(perpendicular to the orbital path) are zero foraahital inclinationi equal toT7/2 and its multiples. The highest
absolute values are found for an inclinatiaf 174 and 374, for a equal to 0. Foal equal tortthere is an attenuation

due to the orbit’s eccentricity. For circular oghithe valuex atTtequals that oftt = 0 (in absolute values).
With the least satellite’s orbit inclination, awépm the planet’s equator, an important radial sae¢ion occurs

upon the satellites. At= 174 already, the accelerati@y comes to an absolute maximum around the periceniés
explains why significant alterations of the sate#li paths occurred near Saturn.

For specific fly-bys, the double integration a;' and ay' over time gives the satellite’s extra displacenthrd to the

planet’s spin. The energy increase can be found ftas well.

There is no gyrotational acceleration along thelb&'s path, sincey is found to be zero. A vector product indeed
cannot be oriented the same as one of the proctatponents.

The strongest values for the accelera&én(acceleration that is perpendicular to the orljitahe) are obtained for
the inclinationsi that are perpendicular to the planet's equatquiahe, att/2. The orbital positionst where the
highest absolute values are obtained, are zeromExémal absolute values af are significantly larger than those of

ar. Prograde orbits always swivel towards equatarhits and retrograde orbits first swivel towartie poles first,
then towards the planet’s equator.
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Appendix A : Gyrotational field equations written in full.

The values of the velocity are given in (2.1) and the values of the gyrotafibare given in (A.2) below, based
upon the equations (1.3.d) and (1.3.e).

GmR . . . \:
Q.,Q ,Q )]=———(0,0w)— 3w , ,
. ( 0 Q, Z) o [( w) cos sin( cas cbs ,gin ,a@s |$|]1

(QX,Qy,QZ):%[wcow siri(~ 3cos cos-, 3sin( -1 3aos g
or

(Qx,Qy,QZ):(i(r)nr—;zu(—Bco§a sinP+ 3sin@ sin ,2cos s(n-1 3cos i§;)|
(A1)

Then, we can solve the equation (2.2):

. R
Q. :Gm3 20)
5rc

Qy' = —3%)8"1 2r sin
10r°c

. GmRw

Z  Br?

(sini - 3cosr) cos sin

Q cosa Sin cob

(A.2.8) (A.2.b) (A.2.C)

Appendix B : Gyrotational acceleration equations witten in full (Cartesian).

Written in full, the accelerations due to the E&r{jplanet’s) rotation, exerted on a satellite §8el) and (3.2):
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, :_GmRza)\/ GM| 2(1+ & com) 1 (1-£-£*(1+ comr)) cosr siniz
lore® | a (1-¢) \/sin2a+(1—£—£2(1+ cosz;z/))2

,__GmRZa)\/GM 2(1+ ¢ coxr) sin 2 sin 2

-1
20rc® | a (1-¢?) \/sinza+(l—€—52(1+ COW))Z

,_Gm Rza)\/ GM{2(1+gcosa) _lJ (1—8—82(1+ Cosn'))( sin— 3cog)- 3sir
5réc? a (1_‘92) \/sin2a+(1—£—£2(1+ coszvr))2

cosa sin

(B.1.a) (B.1.b) (B.1.c)

Appendix C : Gyrotational acceleration equations witten in full (polar versus the planet).

Written in full, the accelerations due to the Ear{jplanet’s) rotation, exerted to a satellite are:

. _GmRw |GM[ 2(1+scosr) _|sin*a-(1-£-£*(1+ cow)) cos
=a = Tor'c? - (1_ 2) - - - sind cosr
£ \/Sln20'+(1—8—£2(1+ cowr))
~(Te-(w
,,:qzigzg)\/ (ZM 2(1Ifc;)sq)_ cosa ( e-&( cosf))2 <ind sinar
( 5) \/sin2a+(1—£—£2(1+ cosr))
., _GmRw |GM[ 2(1+£comr) _|(1-&-¢*(1+ cosr))( sii~ 3cos)- 3shm .
T 122 -1 - cosa sin
re a ( € ) \/sinza+(1—£—£2(1+ co:‘a))

(C.1.a) (C.1.b) (C.1.0)

Appendix D : Gyrotational acceleration equations witten in full (polar versus the orbit).

Written in full, the accelerations due to the Ear{planet’s) rotation, exerted to a satellite are:

. _._ GmRw | GM[ 2(1+¢ coxr)
a’ =g =-

10172 3 (1—52) —1} sind cosr

3, =3=0

' GmR?a)\/ GM[2(1+50037) _lJ (1-&£-£2(1+ coma))( sin— 3cos)- 3str
5’ | a (1-&?) \/sin2a+(1—£—£2(1+ cosz:)/))2

(D.1.a) (D.1.b) (D.1.c)

cosa sin
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Interpreting the
Cosmic Redshifts
from Quasars

The two next papers are related by the study ofdtshift of light that comes from the limits ofth
universe.

The observational data from astrophysicists is ¢iones very unclear, and some interpretations
sometimes are completely wrong because of a laekafable applicable physics.

| start in the first paper to compare the angulamantum of a galaxy with its formed quasar.

The quasars' redshifts and their matter-jets cantbepreted by basic physical assumptions and by
Gravitomagnetism, and compared with the relatedxyalThis first paper should be seen as an
attempt and as a draft for further studies.

If redshift is not workable to determine distanddight, maybe another way is useful: according

Gravitomagnetism, the distance should be deperidemtthe inverse square of the frequency.
Let us discover the most secret parts of cosmology!
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Quasar's Gyro-gravity Behavior, Luminosity and Redshift.

Described by using
the Maxwell Analogy theory.

T. De Mees - thierrydemees @ pandora.be

Abstract

The high redshift value of quasars is generally described by the Hubble constant, related to the Doppler-effect due
to the expansion of the universe. In this paper, we look closer to the part of the redshift that is caused by gyro-
gravitation, which is the analogue application of the electromagnetic Maxwell equations upon gravitation.

The result of our analysis explains the possibility of a high value difference between the quasar redshift and the
related galaxy redshift due to the quasar's rotation (spin). Moreover, we find results that are within the observed
redshifts, based only on the expected quasar-radius of a few light-weeks, without the artifact of an expanding
universe.

Key words : quasar, gravitation, luminosity, gyrotation, galaxy.
Method : analytic.

1. Pro Memore : Maxwell Analogy equations in short, symbols and basic equations.

The formulas (1.1) to (1.6) form a coherent set of equations, similar to the Maxwell equations. The electrical
charge ¢ is substituted by the mass 11, the magnetic field B by the Gyrotation £2, and the respective constants as
well are substituted (the gravitation acceleration is written as g and the universal gravitation constant as G =
4r ;)'1. We use sign < instead of = because the right hand of the equation induces the left hand. This sign <
will be used when we want to insist on the induction property in the equation. F' is the induced force, v the

velocity of a mass m with density 0. The operator x symbolizes the cross product of vectors. Vectors are written
in bold.

Fem@+vxQ) (1.1) div2=V R2=0 (1.4)
Vgepl/C (12) Vxg & -0R2/dt (1.5)
VX Qe<j/L+g/dt (1.3) divj<=-dp/at (1.6)

where j is the flow of mass through a surface.
All applications of the electromagnetism can from then on be applied on the gyrogravitation with caution. Also it
is possible to speak of gyrogravitation waves.
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2. Rotation of galaxies and quasars.

Quasars are seen as the originator of galaxies. The jets of matter from surrounding nebulae or accretion discs are
projected at high speed from each side of the quasar rotation axis and form spinning nebulae. The projected matter
that is situated quite far from the quasar's both poles will hold up the new projected matter in order to form a kind
of spinning bar along the quasar's spinning axis, with at each end, a spinning knot, and in the middle the slowly
dying quasar.

2.1. Angular momentum of a galaxy.

When I have calculated the velocity of the stars in a galaxy, based on a certain simple mass distribution, I found a
simple relationship between the bulge's mass and radius, and the velocity of the stars.
In “A coherent dual vector field theory for gravitation”, I found the velocity of the stars in a disc galaxy as :

» GM,
Ve =

R,
The angular momentum of the galaxy can be found as follows: AL =w AT = % AT 2.2)

1

.m- The velocity v is constant and corresponds to (2.1). The mass distribution
00 l ) ) is supposed to be the quantity of the bulge's mass M, every step of Ry .
This means that between every R; and R;+; we find a mass M, (see fig.

Fig. 2.1. The disc galaxy after 2.1). The inertial momentum of a ring shaped part of the disc is
collapsing of the orbits.

wherein M, is 10 % of the total mass M and R, is the radius of the bulge. 2.1)

Al=RAM,=R'M, (2.3)
at a position i in the bulge (see fig. 2.1). To fix the ideas, we take the galaxy's overall radius R =10 R, .

We find the angular momentum of the galaxy by making the sum of (2.2) by using (2.3).

9
Since R; =(i+1)R, ,wefind L=M,R,v) (i+1)=55,/GM, R, (2.4)
-0
2 2
When we make the sum of (2.3) , we get £ = M, Roz Z(I'+ 1) =385M, R(f 2.5)
-0

and since L. = @ I , we find the average value for the galaxy's angular velocity @, :

— 55 |6 M,
w, = 3 (2.6)
385\ R,
Or, in figures : o, =724 10" rad/s 2.7)

(Instead of the sums in (2.4) and (2.5) , we should have put integrations which would result in the quotient 50/333
instead of 55/385 . However, this doesn't make any difference in the general discussion).

For our Milky Way, we took the reasonable estimate of a bulge diameter of 10000 light years having a mass of 20
billion of solar masses.
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2.2. Angular momentum and angular velocity of a quasar.

The mass and the angular momentum of both the galaxy and the corresponding quasar are of the same order
because there is a limited loss of mass in time.

We could consider a quasar as a sphere, but, due to my former work, I have found out that the shape should be a
torus. But since we speak of orders of magnitude, it doesn't change much anyway.

Thus, for the quasar, the same value of L is valid.

We can write, in general : Loyoor = Liaar = M, qR: o, (2.8)
Since the total mass remained the same : M, = 10M, . (2.9)

we have to find out the other parameters.

The observation of quasars suggests that the radius of a quasar could be as small as a few light-weeks. Just to fix
an order of magnitude that is generally accepted (in fact even lower radii are supposed) we'll take a radius of 16
light-weeks, which is 1.45 - 10> m.

We get now only two subordinated parameters left, the mass density and the mass velocity, which both are
interdependent.

A second important observation of stars resulted in the fact that the equatorial angular velocity is much slower
than the internal angular velocities. Since quasars have the shape of a torus (see my earlier paper “On the
geometry of rotary stars and black holes™) , we can in a first approximation also assume that the velocity of the
matter in the quasar is nearly constant.

vV 4

Hence, assuming that the velocity is 10% of the speed of light : @gq = F = 10R
q

q

(2.10)

We chose this velocity just as an example, because this is a free parameter in these calculations, and we will
calculate the corresponding density of the quasar. If the result is reasonable compared with the chosen mass'
velocity, we can form a basis for further research with the gyro-gravitation theory (or Maxwell Analogy for
Gravitation).

To the benefit of simple calculations that we do here to find out if the found density is of a credible order of
magnitude, we will assume that quasars are ideal fluids and that their density is equal over the whole object.

Let us write the moment of inertia of the quasar about its spin axis as : 1, = x M qu (2.11)

wherein Kis a figure of order zero (10°) that depends on the exact shape of the torus.

Then [ = TkK ,Oq R: wherein X' also is a figure of order zero (10°) that depends on the exact shape of the

torus and 0 is the constant density in the quasar.

. _ ’ 4
And thus : qu =TKK P, I, drq (2.12.a.b)

For the angular momentum we find when using (2.10) and after integration to ¥, between zero and Rq :
‘quasar

Ly =1,0, :%%Kk’pch: (2.13)

So, when using (2.11) , knowing that the angular momenta of the quasar and the galaxy are equal, and when using
the integrated version of (2.4) -see the remark after equation (2.7)- :
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_ 8L, _400JG M, R, o1

7KK’ ¢ R, 7kK’ ¢ R,

Pq

In figures, when assuming that K'= &K'= 1, this gives :  Oguaear = 4-35" 10* kg/m3 ) (2.15)

3. The gamma-ray production of quasars.

It seems maybe strange that we have chosen a mass' velocity as large as 10% of the speed of light. However, the
observed large jets of quasars make us believe that the velocity should be high. Hereafter follows the relationship.

At the quasar's surface, the high speed of matter creates a huge inwards force due to the gyrotation force that is
given by the second part of the equation (here, it is written down for a ring-shaped object) :

Gm(1—3sin20{) G mcos o

(3.1
2R R’

a =R cosa|1-

The first part is the centrifugal force (inertia resistance), the third is the pure gravitation. The equation shows only

the force along the x-axis that is perpendicular to the spin axis. The angle ¢¥is the angle compared to the equator.
Equation (3.1) is taken from my paper “On the geometry of rotary stars and black holes”, equation (3.3) , wherein
the spherical inertial moment has been replaced by a ring-shaped inertial moment.

Below a certain value of ¢, the global acceleration @y will be directed inwards for an unlimited angular velocity,
provided that for the quasar's radius we have :

R, <GMq/(2c2) (32)

With the figures of chapter 2, we come indeed to the validity of (3.2) , what means that the quasar that would be
deducted from our galaxy would be compressed without exploding in a certain zone, which is defined by -35°16’

> >35°16°.

In the former chapter, we have chosen a quasar's radius that is of the order of magnitude of the generally observed
quasars, and which is small enough to maintain the quasar together spites the high rotation speed. Moreover we
have chosen a radius that -mechanically speaking- allowed matter to spin at very high speeds (instead of 10 % of
the speed of light, the actual speed might even be much higher) . So, we might wonder why the observed emission
of X-rays couldn't simply be due to matter that got disintegrated into gamma rays due to this high speed, on top of
the gamma rays from the jets. The large gyro-gravitational forces made that the redshifted gamma-rays became X-
rays to us.

Although there is no direct proof for this point of view, it is an interesting hypothesis because it makes fit together
quite a number of puzzle pieces.

The high luminosity of quasars can also be explained by this disintegration, provided that the light would be able
to escape. And we can check that. The quasar is indeed never a full black hole because we proved in “On the

geometry of rotary stars and black holes” that the maximal possible explosion-free zone is -35°16" > @ >
35°16’. This means that light will escape outside this zone anyway.
Remark that the produced gamma-rays will not be mechanically bound with the quasar any more.

The non-explosion-free zone of the quasar is then the originator of mass losses that forms a nebula environment
around the quasar.
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The quasar's spin will drive nebulae matter to the equator-level as an accretion-ring, where the gyrotation forces
are the largest, but also to the poles-levels the remains nebulae matter, where the gyrotation forces are the lowest.

The jets are formed by the gyro-gravitational propulsion that is explained in “A coherent dual vector field theory
for gravitation” , where we can apply the vector multiplication of equation (1.1).

When the matter of the accretion ring approaches the radial way, it deviates in retrograde direction (for particle A’
and C’). See fig. 3.1 top view. With fast rotating heavy masses this acceleration is enormous. Then, when the

bl A}, A’ C
. Qv
c’C C A” C \ :

side view Fig. 3.1 top view

An

Power jets produced by gyro-gyrotational action on the quasar's accretion disc.

particles go by retrograde way, again an acceleration is exerted on the particles in another
direction (particles A”, C”). As a consequence these particles are projected away from the
poles.

Finally, the jets are stopped by the nebulae along the spin axis, where they are
enlightened.

Fig.3.2. X-ray
picture of quasar.
Credits :RUG

4. Comparative gyro-gravitational redshift of the galaxy and the quasar.

Since both the galaxy and the quasar have nearly the same mass, the Newtonian gravitational redshift of both the
galaxy and the corresponding quasar are of the same order as well.

But let us look at the gyrotational redshift. In “The calculation of the bending of star light grazing the sun.”
equation (2.6), the force working on light grazing the sun has been calculated.

Of this equation, the first one is of pure gravitational origin, the last one is purely dependent from the angular
velocity of the sun. Analogically, we use that part of the equation for the galaxy and the quasar and we find the
respective accelerations (adapted for ring-shaped objects) :

q 2
m I'q

m I'g

F. 26GM K, R* & F 26M Kk R ?
A - > g£1+ g452 gJ - 1+ “4(‘.‘2 1 (4.1.a.b)

wherein K g, q is a figure of order zero (10°) that depends on the exact shape of respectively the galaxy and the
quasar.

We have considered the force at the equator-level, thus, the angle ¢ is zero. The parameter r is any radius
wherefore R < r . The mass m is the mass of light.

The loss of energy of the wave can be expressed in relation to dg and dq (we note now ' g, q'in one equation,
which is valid for both the quasar and the galaxy) :
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hva dyv a
hdv=——%dr, ths: —=—Eldr (4.2.a.b)
c (4 c

wherein v is the frequency of the wave and / the Plank's constant.
Integrating this from R, to infinity gives (0 is the emitted frequency and v the observed) :

v oo
dov a
—= jﬁfdr 4.3)
(2 v R, ¢

We can write (4.1.a.b) in terms of M, and R, , and knowing that Mg =M, ,Re=10R,, Ry;= 3.1-10° R, , we

see that all the right hand parameters of (4.1.a.b) are constants, except ¥ . Let us call the group of constants 'A',
then we have after integration of (4.3) the equation for the redshift :

7= gt R) (44)
()]

wherein A is the group of constants in (4.1.a.b) , respectively for the galaxy and the quasar:

2 2

A= 26 M, |1+ 1 Tea Cea (45)
2,4 4c2

For the galaxy, the gyro-gravitational redshift Z is negligible, especially because the escaping light that has lost
energy by leaving the galaxy gains the energy back by entering the galaxy of the observer.

The final result for the galaxy's gyro-gravitational redshift is then by definition zero and that of the quasar (in this
example, for a quasar-radius of 16 weeks) is (with K=K =1):

2=0.06 (4.6)

This value is within the range of the observed redshifts for quasars. By taking the quasar's radius a little larger, the
redshift decreases.

5. Discussion and conclusions.

How foolish is the idea of matter that can have a velocity of 10 % of the speed of light? Is the plasma of super-
dense quasars behaving very differently to allow high densities? To what extend are the equatorial parts of the
quasar spinning slower than the inner part, as it is observed with the Sun and with stars, and what causes it? We
don't know the answer of these questions, but what we can assume is that the quasar's diameter is only a few light-
weeks, that the quasar's density and the spin velocity is very high, and that the origin of the strong jets is related to
the former parameters.

The excellent correlation between the quasar's diameter, the related galaxy's angular momentum and the gyro-
gravitational redshift is extraordinary, and allows to choose a reasonable set of remaining parameters of density
and spin velocity, which are interdependent.

The calculation didn't need any universe expansion theory, and here, the Ashmore redshift™ has not been taken in
account.
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Towards an Absolute Cosmic Distance Gauge by using
Redshift Spectra from Light Fatigue.

Described by using
the Maxwell Analogy for Gravitation.

T.DeMees - thierrydemees @ pandora.be

Abstract

Light is an eledromagnetic wave with a dynamic mass, and with a zero rest mass. A fourth parameter is
gyrotation, the second field of the Newtonian gravitation, discovered by using the Maxwell Analogy for
Gravitation. Here, we apply gyrotation for light. The dynamics analysis of the gyro-gravitation parameters for
light turns out in the possible existence of a very tiny light fatigue and a very tiny redshift as a direct consequence.
This redshift however is frequency-dependent, unlike the other causes for redshift, as the Doppler effect, the
Ashmore effect, the gravitational redshift and the temperature redshift. The discovery of this quadratically
frequency-dependent redshift allows us to set up the basis for an universal cosmic distance measurement gauge.

Key words : gyrotation, gravitation, light fatigue.
Method :analytic.

| ndex

1. Pro Memore : The Maxwell Analogy for gravitation: equations and symbols.

2. The mechanics and dynamics of ligfihe mechanics of light / The dynamics of light.

3. The dynamics of the dark energy in the presence of/lighé gyro-gravitational description of a light wave /
Compression of a light wave / Depression of the light wave / Frequency-dependent redshift.

4. Discussion and conclusion.

5. References.
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1. ProMemore: The Maxwell Analogy for gravitation: equations and symbols.

For the basics of the theory, | refer toA: coherent double vector field theory for Gravitation
The Maxwell Analogy laws for gravitation can be expressed in equations (1.1) up to (1.6) below.

In the 'gyro-gravitation theory' (or 'dual field gravitation theory' or 'Maxwell analogue gravitation theory', etc...),
the electric charge is substituted by mass, the magnetic figlyroyation and the respective constants are also

substituted. The gravitation acceleration is writtengJasthe so-called second field gyrotation field as £
(dimension [3]) and the universal gravitation constant is foundGd = 4777, whereG is the universal
gravitation constant and the gravitation constant that is equivalent to the electrostatic cor&tawte use the
sign] instead of because the right-hand side of the equations causes the left-hand side. This widjrbe
used when we want insist on the induction property in the equétianthe resulting force/ the relative velocity
of the massn with density0in the gravitational field. Andlis the mass flow through a fictitious surface.

FOom(g+tvxQ) (1.2) divjO -dpl ot (1.4)
0.9 0p/¢ 12 Gve=0.0=0 (L5)
ccOxQ0 jl{+ dglot 1.3

1< J 43 Oxg O -dRIot (1.6)

It is possible to speak of gyrogravitation waves with a transmission vecity
c=1/({1) (1.7) wherein r=41G/c. (1.8)

Tis the equivalent constant to the magnetic constant (permeapility)

2. Themechanics and dynamics of light.

2.1 The mechanics of light.

Light owns a dynamic mass, but not a rest mass. In that case, light must make use of a mass which isn't its own,
but has to earn it from some medium. It borrows mass. The name we give that medium isn't important here, so let
us call it dark energy.

Light can then be seen as a compression of the medium itself, running at a \&lediigh is only dependent

from the mass-density and the energy-density of the medium. The same equation for the wave velocity is then
found, identical to the one of fluids:

c=_|— (f is the energy-density, similar to an elasticity fac®is the mass-density)

which is the same as saying thall' = m c’ . The idea here is that thereatibas well as the entitgark
energyare of the same kind. This gives a physical meaning to the famous equation, for light.

2.2 The dynamics of light.

Let us consider alight wave, traveling at a velocity C through the dark energy. A conseguence of the propagating

mass wave in the weak gravitation field of ttegk energyitself is that, when the wave propagates at a vel@cijty
the compressedark energywill almost instantly jump from a very low mass-density status to a very high mass-

density, and back again to the low density. This jump will result in the creation of a gyrotatioffietlat is
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circular and perpendicular to the motion of the light, as explained i@dherent Dual Vector Field Theory for
Gravitatiort.

In fig 2.1 is shown what happens in the weak gravitational @leldf a mass-flow (which here is directed towards
the plane of the paper) travels in that figld

>
/ - \-Q > A moving mass in a gravitation field will generate a second field (analogically to
k m ) > electromagnetism) that is perpendicular to the gravitation field of the moving
\ / g mass.
>
Fig. 2.1.

Since the sudden change of mass (pulse) occurs locally, the gyrotation field will be a local pulse as well. At a
certain place, on the light's path the pulse first grows to a maximum, and decreases back to (almost) zero.

Fig. 2.2

A light wave, travding in the positive x-
axis' direction will generate locally an
U\/ increasing gyrotation field during the

first half period of the wave. During the
second half period, it will generate a
decreasing gyrotation field.

For a certain location, this results in a increase of the gyrotation field during the first half period of the wave, and a
decrease of the gyrotation field during the second half period of the wave.

3. Thedynamics of the dark energy in the presence of light.

3.1 The gyro-gravitational description of a light wave.

Since the change of mass occurs locally as a pulse, the gyrotation field will be a local pulse as well. But if we
follow the wave, the value of the gyrotation pulse remains a constant, and in occurrence, it equals to the maximum
value of the pulse.

While the gyrotation pulse travels with a velodity and the medium has a velocity zero (reference), the relative

medium velocity is indeed €.
Applying equation (1.1) results in the generation of a cylindrical gyrotation force which acts on the medium, as
shown in fig.3.1.
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Fig.3.1.a. Fig.3.1.b.

A light wave travels with velocityand creates an elementary cylindrical
gyrotation forceF o on the medium's mass, towards the wave mass.

From equation (1.1) follows = mv Q with m = pV . Herein¥ is the velocity of the wave (in fact, the

speed of lightC) , mis its dynamical mass within the wave radi®s © is the density of the dark energy avid
is the volume of the uncompressed dark energyishatated to the electromagnetic wave.

3.2 Compression of a light wave.
The infinitesimal work to compress the light carriee. the dark energy is given by :
dW =dFE=2nFdr (3.1)
For a given cylinder with lengtil and radiusR , on whichQ) acts , the total force is given by :
— 2
F=rmlpcR*Q, (3.2)

Here,R is the radius of the uncompressed dark energynwlthat has to be taken in account for the lightewa

The wave matter that flows through the dark enatgyelocityC in a cylinder with radiufR will be contracted by
the gyrotation that is created by this flux.

At the other hand, the infinitesimal radial disgeaent responds ta r = 2,#d¢ , wherein 4, is the

gravitational acceleration, wherefore we have theation, = ¢ Q (3.3.a.b.)

This last equation follows from the physical origihthe speed of light in analogy with electromaggma, where
we use the electrical fieldd and the magnetic field® , whereforel = ¢ B .

The value of the timéis only half the period of the wave df = 2— . Hence, from (3.2.a) follows that :
v

r=|dr=——0 r >R (3.4)
—‘[ 4v
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Since there is no gravitational source we can redwiation (1.3) to c20 x 2 [0 j/ { . The integrated
equation, after application of the Stokes' theofee®e ‘A Coherent Dual Vector Field Theory for Gravitatipn
equation (2.2)) , is :

§Qd1=4nGﬂ4c2 (3.5)

For a circular path about the light packet, thiegi: Q =2 &' m/(l' cz) r >2R) (3.6)
wherein M2 is the derivative of the mass to the time.
Now, we can say that for light waves, we halte= me? and E = hv .
hu
At a certain place, the density of the dark enetignges to the compressed value of the light nrass—;- .
c

Now, we know that the mass packet of a lendtipasses at a velocity 6f The variation of the mass packet over
time is then/A III/Al‘ . And the timeAZ correspondents to the period of the light packgtvis the inverse of

the frequency 1/0 .

H it foll that th iati I Am_huz 3.7
ence, it follows that the mass variation equals = .
WS Ry " e &9
_2GhV
Hence, we can rewrite (3.6) as : Q= T r >R) (3.8)
And the elimination of from (3.4) and (3.8) gives
, _Ghvu
r = 20° r >R (3.9)

Since this elimination results in a right hand tisad constant for a given frequenty , we have to conclude that
I = R. Remark that the value of the radiss only dependent from the frequently

- . o 8G hv’
Combining (3.8) and (3.9) gives also a frequenepethdent equation :()2 — (3.10)
5
c
Hence, (3.2) can be rewritten as follows, whemmnfillin (3.9) and (3.10) :
G’ v
F=mlpe, |~ (3.11)
c

and the integration of (3.1) becomes, for a widvkover the wavelengtd , since we know thaR is a constant
for a given frequency :

W, =2 P ApG* I VP c™* (3.12)

This is the work that is necessary for the compoessf the light over a distancé.

3.3 Depression of the light wave.

The depression of the wave, when the light packirgth A passed by, should of course be the same valte, bu
with a minus sign, excepted a very tiny part, duéhe fact that in the real world, we can expeat the elasticity
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of the dark energy will show a very tiny energysloghe value of this loss is unknown, and we regres by the
loss facto(1- €) , whereing < 1.

Hence, the energy gain by the depression is giyven b
~W,=-e2 A pG* I VP ¢ (3.13)
Unfortunately, we don't know how much will be loBut anyway, the dark energy density isn't knowhegi

In order to do not confuse this with the tired tigheories, which are cosmology theories, we ¢tedl éffect “light
fatigue”. Light fatigue is a very small redshiffest that is only a fraction from the other causEredshift.

3.4 Frequency-dependent redshift.

The equations (3.12) and (3.13) were found forladgr length ofA , but for a distancélX between the emission
of the wave and its observation, we would get tilofing energy losses (we have pKitin replacement of the

constantsy2 (1 - £) TpG*h c™*):

dW =hdv=«k0U’dx (3.14)
L
Hence, — = KJ.dx (3.15)
which, after integration gives the distarlcdoetween the emitter and the observer:

1(1 1
Lﬁ(u—u—] (8.16)

e

wherein the suffiyo stands for observer amedor emitter.

Equation (3.16) shows that the redshift of the oles light will be non-linear, unlike the redshiftat is caused
by the recoil of hydrogen by the Mossbauer effantike the gravitational redshift, unlike the reifisbue to the
Doppler effect and unlike the one due to tempeeatedshift.

An interesting consequence is that for a frequespmctrum of given isotopes, wherefore the vallesare well

known, the distancd. can be found by the spread of the observed frexyuspectrum for these isotopes.
When the linear redshifts have been subtractedreimaining frequency-dependent spectrum will cqoesl to
equation (3.15).

It is true that the values of the dark energy'ssatnsity or its energy-density, as well as it$aisiic part are not
known yet. An estimate can however been found mgube equation (3.15) for already known distances

4. Discussion and conclusion.

If light fatigue, due to the slightly inelastic #aenergy, can be observed, it has to be quadngtifralquency-
dependent. The possible presence of a quadratiarcshift for a very distant object could resultlie finding of
the real distance of that object to us. Other riéidshre frequency-invariant, such as the grawitsl analogy for
the Compton effect (Zwicky) or Mdssbauer redsHiftAshmore) , the gravitational redshift (Einstejrpoppler
redshift (Doppler) and the temperature redshitb@icia). After subtraction of the frequency-invatieedshifts, as
a whole, the remaining small redshift can appedretguadratic. If so, no other know effect thanlitet fatigue
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will explain it. After a number of such observatipra relative distance scale can then be createddar to find
the loss facto(1- €) .
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The Coriolis
Gravity Theory

When | tried to understand how Solar gravitonst(thexpect be be a kind of electromagnetic
waves) could transfer the forces of gravity, | disered a physical law that relates the Sun's mass
with its spin velocity. Only a few universal consts.completed the relationship.

This relationship allowed me to imagine how theaped gravitons could interact with matter and
obtain an attraction. It appeared to be nothingemumut a Coriolis Effect! This simple Coriolis
Effect explains attraction, repulsion and the irmeof matter! The first paper of this chapter retat
this story.

| explain in the second paper why the Earth expamdier the influence of the Earth's spin, and in
the next paper | realize that the Gravitational €ant rather than the mass is changing when the
earth expands. The stars' life cycle is an excedlerdence for example.

In my fourth paper, | suggest that the mainstreanctept of the Earth's inner core might be wrong.
Two reasons are available to prefer a compressem#hner core.

Finally, my fifth paper proves that although theriGlis Gravity provides as many repel as
attraction particles, nevertheless all heavenlyidsdet a majority of attractive interactions.

Discover now this theory that will open a totallwnworld in the next future!
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Is the Differential Rotation of the Sun Caused
by a Coriolis Graviton Engine?

Thierry De Mees
Abstract

Essential fundamentals of gravitomagnetism areddunapplying the process of the reciprocal gravitzsses by particles that
are defined here as trapped photons. The grawtg fs found to be generated by a Coriolis effeggrted by gravitons upon par-
ticles. Inertial resistance is generated by a Qisridfect as well. In order to demonstrate tharfer case, we apply the graviton me-
chanics to the Sun. The amplitude of this effeébisd to match the Sun’s rotation frequency.

1. Introduction

Mindful of the previous successes of gravitomagmetin cosmic phenomena [1], this paper is the stilgea more fundamental
research on the mechanism of gravitation.

It is well-known that trapped light is the most genient solution for the description of matter, reviethe great number of very
different particles obscure the details of it. ®wecalled energy-matter exchanges allow for thestt@n of a large set of particles
into others.

From my earlier paper, [1] | found the equationsdgrotation, the 'magnetic'-analogue equivalemcgravitomagnetism. In this
paper, | will interpret the gravitation field antkertia as Coriolis effects, applied upon trappleotpns.

2. Gravity as a Coriolis effect

Let C; be an circular orbit of a trapped phoi3;1, within a finite set of orbits of photon(Cl,Cz,...,Cn) that forms multiple ele-
mentary particles. The ortC; represents a particle with mem; , rotating at an orbit radit R; with an angular velocit w; .

Let L; be the path of a gravitcy that leaves that circular ortC; (I use the word ‘graviton' in order to not inteefavith the
word ‘photon’, although both might be of the sainel)x Let C; be another photon orbit at a distaiR;: from C; , with an angular
velocity w; and an orbit radiuR; . Let t; be the intersection (L; with C;.

The vector expression for the Coriolis accelerad; rat the intersectiot;; is then given by: 2@, x¢ = —d; (1)

Y

ij

whereinc¢ is the translation velocity of the graviton.

i 5)7*

Figure 1.a. and b. Tweases of trapped light, hit by a graviton, radial or tangential, and undergoing a Coriolis effect.

Hypothesis this Coriolis acceleratiod; engenders the gravitation acceleration of theégleiC; at a distancR;; from C; .

© May 2010 1

p183



The right hand of Eqg. (1) is equal to the corresiog gravity acceleration, produced by the diluredtion Gm; of gravitons that

leave the circular photon orbit, in tangential ergendicular directions. The gravitational accelenaflux in a pointt; at a distance

The total possible number of intersectiwij;is then given b (2nRi)/Ri . Hence, from Eq. (1) and (2) follows, in totality
= ZTTGW;I or Ui - GmiZ (3)
2CR1‘]‘ 2CR1‘]‘

whereinu; is the according rotation frequency.

It was showed [1] that the mutual gyrotation or&iains of nested particles in a rotating objeanilsir as ; and @ in figure

1.a., have like rotation orientations, due to fke-briented gyrotation fields. However, partictbat are apart from the object always

get opposite spin orientations, li ; and &, in figure 1.b.

3. Inertia as a Coriolis effect

A direct consequence of regarding matter as trapightis the interpretation of the mechanism dadrira. Also this mechanism is
ruled by the Coriolis effect.
Let the trapped photcd; be accelerated by a force in a certain directasnshown in figure 2 and the photon paths will grios

T andt, .

Figure 2.Trapped light under a force F undergoes a Coriolis effect that is oriented in opposite direction.

There are six possible orientations@; (like the sides of a dice) whereof four resultlie same orientation of the Coriolis accele-

ration —aj; =2w;c, and two of them that have a screwing shape (ogteft screwing) don’t undergo any Coriolis effedt all.

4. Derivation of the Sun’s Rotation Equation

It will be shown below that Eq. (3), when appliedthe Sun as a whole, gets a special meaning,adthe tike orientation of par-
ticles by the Sun’s rotation.
Since the gravitons are leaving the Sun in radighgential way, or any situation between-in, ¢hisra net gravitational and rota-

tional effect.
Hence, when applying Eq. (3) for gravitons thavéethe Sun along the equator, we find:

G
e =2 (4)
20Ryq
Herein : G =6.67x10"m kg’ s?
c  =300x108ms"
and for the Sun,  mg,,, =1.98x16°kg
Ry =6.96x18m.

eq
What | suggest here, is that the Sun’s angularcitglonight be defined, due to a law of nature, tsygravitational properties. By
applying the figures above, this can immediatelghecked.

However, when it comes to the entrainment of mditegravitons, a minimum of viscosity is requirddie Dalsgaard model for
the solar density [3] shows a hyperbolic-like fuoit whereof the asymptotes intersect at about R, 8at first, there occurs a very
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quick density increase from @/cm3 at Ryq until 102 g/cm?3 at nearly 0.(R., and next a slow, almost linear density increag# un

1.5x107 g/cm3 at the Sun’s center. On the other hand,dBzétnik et al. [2] found that the highest valugtef Sun’s rotation is lo-

cated at about 0. Req where the corresponding density is?Xficm3.

When applying Eq. (4) by using a corrected radsospewhere between 0.98 and (R, , and when assuming that the total mass

eq ’
may be kept alike, the result for the Sun’s rotatﬁmquencyueq is somewhere between 474 and 515 nHz, or a camespg side-
real period between 24.44 and 22.49 days, whickeiig close to the measured Sun’s sidereal peride¥cef7 days at the equatorial

photosphere [2]. This result suggests that theteqahdisc of the Sun maintains and controls thtation frequency of the Sun ever
since the Sun started to rotate in some initia@aion.

5. Derivation of the Sun’s Differential Rotation Equaton

When a graviton quits the Sun at any latitudeit will cause an acceleration as well, based qn(g) , but whereby the spi®
will be inclined at an angle (the equator is 0 rad) and whereby the raR., remains to same for all latitudes.

In a first approach, | reason as follows. The agerdirection between the Sun’s equatorial, gravitmluced spin, name Weq s

and the inclined spin, namew, , is a/2. The value o w, should, in addition, be reduced by the cosinef towards the rotation
axis because we only observe the component antle a/2 .
Hence Wy = Wyq c0s(/2) (5)

This result is a raw equation for the differentiaiation under the effect of gravitons but it ddegmdeed take into account the
centrifugal flow inside the Sun’s Convection Zofikis flow engenders a Coriolis effect up to theface which attenuates the angu-
lar velocity, especially in a range around the argl /4. It could be possible to extract a semi-empiriaagipn from Eg. (5) that
takes in account this motion, but this is not thenp purpose of this paper.

6. Discussion

The parity of the Coriolis acceleration with then&ugravity acceleration, under the action of estggravitons, is remarkable.
Gravitons at any latitude produce the same rotatauoe, which, combined with the global spin of Bn, result in a differential ro-
tation. The equator is the place where gravitonpgrthe Sun at the largest resulting velocity.

According to S. Korzennik et al. [2] , the measudéterential rotation at the solar surface showsgide range of rotation frequen-
cies between nearly 337 nHz (rotation period oB3#ays at the poles) and 473 nHz (rotation perioB4od7 days at the equator).
With Eqg. (5) we got a raw equation, without solaneection corrections, of the expected differentidhtions at places, other than at
the equator. For example, the calculated resultudiyg 0.9 Req and without further corrections— for the poles4s58 days, which

comply very well with the measured rotation peradc84.3 days.
The expression “Graviton Engine” follows from thechanical Coriolis-process that is at the origifeqf (4).

7. Conclusion

Our Sun seems to behave like a giant particle vdieary place on the surface is propelled by gramgtthat quit the Sun at a
speedc . Its motion may confirm our gravitomagnetic intdfan-model between particles, shaped as circudgaped light, wherein
the Coriolis effect by gravitons generates graivitatOther latitudes on the Sun’s surface, wheeestime process occur, directly con-
tribute to the measured differential rotation.
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The Expanding Earth :

Is the Inflation of Heavenly Bodies Caused by Reo-
riented Particles under Gyrotation Fields?

Thierry De Mees

thierrydemees@telenet.be

Abstract
Gravitomagnetism [1] consists of Newtonian gravity and gyrotation, which is totally analogous
to magnetism. In an earlier paper [2], based on findings with regard to the Sun, I suggested that the
attraction between elementary particles is generated by a Coriolis effect between gravitons and par-

ticles. Here, I deduce that the amplitude of gravity between particles (the process of reciprocal gravi-
ton-losses) is ruled by the spin-orientation of particles. Like-oriented particles engender their mutual
repel, and consequently the inflation of heavenly bodies that was suggested by the Expanding Earth

Theory.

1. The expanding earth theory

The discovery that the continental drift theory is wrong and
that the Earth is instead expanding, from a small object to the
Earth of today, is about to be accepted as a standard. Also Mars
is expanding and the Sun as well. This motivated me to
progress on my theory on the Coriolis effect of gravitons, inte-
racting with elementary particles.

DOCE

Image: Michael Netzer
Figure 1. Expanding Earth Theory. Some billion years ago,
the earth was a small sphere (shown in the middle). It grew
and the surface got broken into parts. Newer parts ap-
peared below the sea level.

What made the Earth grow? Is it still expanding? How
about other heavenly bodies? It is the purpose of this paper to
unveil the reasons of it.

© 2010

2. The internal gyrotation field of a rotating
body [1]

Rotation, and the motion of bodies create fields and forces
in addition to gravity. I call this second field gyrotation, which
is the 'magnetic-analog equivalence in gravitomagnetism and
which is responsible for the flatness of our solar system and of
our Milky Way.

As explained in my paper, the gyrotation of a rotating body
provides a magnetic-like field that acts internally as well as
externally to the body upon moving masses.

®

e

Figure 2. Internal gyrotation equipotentials Q of a spinning
body at a spinning rate w. Surface gyrotation forces are in-
dicated as Fq and centrifugal pseudoforces as F.

In figure 2 , the internal gyrotation equipotentials Q of a
spinning body at a spinning rate w are shown. The gyrotation
fields are parallel and oriented like the rotation vector. The
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surface gyrotation forces are indicated as Fg and the centrifugal

pseudoforces as Fc.

3. The preferential orientation of particles
under a gyrotation field

Trapped light is the most convenient way to describe matter
[2]. (I prefer the terminology “trapped light” over ‘trapped pho-
ton’, since photons are often regarded wrongly as particles
instead of waves). When elementary particles are not preferen-
tially but randomly oriented, six orientations are possible, like
the six sides of a dice or any linear combination of them. But
when a gyrotation field acts upon the body, a reorientation will
occur over time in the sense that the gyrotation direction is
preferred. Initially, a precession upon the particle’s spin will
occur, but because the particles are trapped light, they are not
to be considered as ‘hard’ objects, and their light path will be
able to swivel. There will be an increasing number of particles
that will swivel.

In figure 3, several relevant cases of elementary particles
are shown that are in a gyrotation field and undergo an analo-
g =¢xQ 1)
wherein ¢ is the velocity of the trapped light and Q =Q,, the

gue Lorentz-acceleration

interior gyrotation field of the spinning object. For a sphere,
like the Sun, the Earth or Mars, its value, simplified for an uni-
form density, is given by [1]:

Qpe = Som [G)[Erz —lej ——?(?.G))J @)

T2R3 50 3 5

wherein @ is the spin velocity of the object, r the first polar
coordinate, 7+® a scalar vector product, equal to rwcosa with
o the second polar coordinate, R the radius of the object and
m its mass. The swiveling acceleration is then given by Eq. (1)
but the inertial moment of the elementary particles will slow
down that swivel, and on top of it, a Coriolis effect upon that
swiveling motion will make the particles” orbit precess.

In the figure 3.b. and c., the particles swivel their spin vec-
tor towards the gyrotation field’s direction; the particle in the
figure 3.a. will not swivel, since its acceleration is oriented in-
wards the particle.

Figure 3.a.b.c. Three situations of spinning particles at a spin-

ning rate @, under a gyrotation field Q . In the cases 3.b. and

© 2010

3.c. there occurs a swiveling of the particle towards a like orien-
tation as the gyrotation’s direction, due to an acceleration EQ .

It follows that after time, the random distribution of par-
ticles will not be maintained, but instead an excess in a prefe-
rential direction.

4. Gravity between particles as a Coriolis ef-
fect

The gravitation field can be seen as a Coriolis effect [2], ap-
plied upon trapped photons. For two elementary particles with
their respective trapped light orbits C; and C;, at a reciprocal

distance of R;;, the interaction with a graviton that orbits about

ij
the light orbit C; is given by the Coriolis acceleration dc
which equals to 26; x¢ =—ac 3)

wherein w; is the angular velocity, c the speed of light, and

G

Figure 4.a. Like-oriented elementary particles of
trapped light, hit by a graviton and undergoing a Cori-

olis acceleration dc . The particles repel. Figure 4.b. Un-

like-oriented trapped light, hit by a graviton and un-
dergoing a Coriolis acceleration d-. The particles at-

tract.

Like-oriented particles of trapped light that are hit by a gra-
viton and that are undergoing a Coriolis acceleration 4. will
repel (figure 4.a). Unlike-oriented trapped light however that
are hit by a graviton and that undergo a Coriolis acceleration
dic will attract (figure 4.b). The amplitude | ﬁc| is identical in
both cases.

What are the consequences of the preferential orientation of
particles?

5. Gravitational consequences of the prefe-
rentially like-oriented particles
Under a gyrotation field, caused by the spinning of the ob-
ject, more elementary particles will get like-oriented, and these
like oriented particles repel. The inflating of heavenly bodies is

occasioned by the repel of the excess of like oriented particles
in one direction.

14" June 2010
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Let's go over the main features of like and unlike spinning
elementary particles:

1° Gravity between elementary particles can be an attrac-
tion as well as a repel.

2° Consequently, the ‘universal’ gravitation constant isn’t
universal at all but ‘local” and its value depends from the de-
gree of like or unlike orientations of particles in the bodies.

3° Rotating (spinning) bodies get steadily more like-
oriented particles and consequently, steadily higher values of
the “local” gravitation constant.

4° The gravity of an object, containing ideally random-
oriented particles doesn’t have any global gravitational effect!
In other words, if there is no preferential orientation of the par-
ticles, no global gravitational attraction (or repel) will occur!

5° The parameters of the gravitational attraction and repel
of bodies are their masses (as far as they can be regarded as
absolute values), their distance and their excess quantity of like
oriented particles (also expressible by the ‘local’ gravitation
constant of each of the bodies, as vectors).

6° Rotating (spinning) bodies inflate.

6. Discussion

The Sun, the earth, Mars and all the planets that spin or that
are influenced by the spinning Sun, undergo a transformation
inside. The rotation of the bodies generate a gyrotation of the
same orientation inside the bodies. Due to the Coriolis affect,
like spinning elementary particles get repelled and unlike at-
tracted.

But, let us analyze the external gyrotation of spinning bo-
dies, as a bonus.

ﬁ ®

Figure 5. A rotating body also provides an external gyrota-
tion Q that has an inverse orientation of the body’s rotation.
Every orbiting body gets that gyrotation field working on it,
which orient the elementary particles to it, with time. At-

© 2010

traction of the body occur. Surface gyrotation forces are in-
dicated as Fq and centrifugal pseudoforces as F..

Spinning bodies indeed procure a gyrotation field that is
the inverse of the body’s rotation, and every orbiting object will
undergo that gyrotation field by orientating the particles prefe-
rentially in the inverse direction (see figure 5). Let the large
body be the Sun and the small one the Earth. Since the excess of
orientation of the Sun’s particles is opposite to the one of the
Earth, the gravitons will cause attraction. On the long term, the
Earth’s rotation will slow down, the more that the earth ex-
pands, but the number of like-oriented particles with the Sun
will increase at a slower rate as well, and cause a slower widen-
ing of the Earth’s orbit with time.

One could wonder if the objects on Earth wouldn't be
changing their weight, depending from the orientation of the
object. Would an upside-down object be repelled by the Earth?
No, because the elementary particles conserve their orientation,
whatever the bodies orientation is. And the Earth’s gyrotation
field is more or less oriented likewise over the Earth, opposite
to the Earth’s rotation, which results in a comparably attraction
force all over the world.

7. Conclusion

The expanding Earth has an explanation that is consistent
with gravitomagnetism and with (what I would call) the Cori-
olis Gravity Theory [2]. The like spin of elementary particles
cause gravitational repel and the unlike spin, attraction. Gyro-
tation fields, induced from rotation, orient these spins preferen-
tially likewise with the body’s rotation, which results in the
repel inside the body, and so, its expansion. The consequence
of it is that gravity doesn’t always mean attraction, because it
depends from the excess of orientation of particles in specific
directions. Gravity can be repulsive and attractive. The gravita-
tion constant is not a constant at all but should rather be seen
as a fraction of a mass one (when masses are regarded as abso-
lute entities) that interferes with the fraction of a mass two. It is
then probable that the supposed ‘absolute’ mass of some pla-
nets is different of what has been supposed until now.
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On the Gravitational Constant of Our Inflating Sun
and On the Origin of the Stars’ Lifecycle

explained by Gravitomagnetism [1] [4] and the Coriolis Gravitation Theory [2] [3]
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Abstract
Gravitomagnetism [1] consists of Newtonian gravity and gyrofation, which is totally analogous to magnetism.

In an earlier paper [2], I suggested that the attraction between elementary particles (trapped light) is generated by a

Coriolis effect between gravitons and particles (Coriolis Gravitation Theory). In the subsequent paper [3], I deduced

that the amplitude of gravity between particles is ruled by the spin-orientation of particles and I explained the origin

of the Expanding Earth. Here, I consider the consequence that the value of the gravitational constant of the Sun is

ruled only by the number of like-oriented particles in the Sun and in the planets. I find that the lifecycle of stars is

ruled by a gravitomagnetic cycle.

1. Introduction: the expanding Sun and Earth

1.1 The gyrotation field of a rotating body is defined
by the spin of the object

Rotation, and the motion of bodies create a magnetic-like
field in addition to gravity. I call this second field the gyrotation
Q. As explained in my paper [1], this field acts internally to the
body and externally upon moving masses (see fig. 1l.a and
fig.1.b).

Figure 1.a. Internal gyro-

tation equipotentials Q of
a spinning body at a
¢ spinning rate w. Surface
gyrotation
indicated as Fo and cen-

forces are

@)

.
e

trifugal pseudo forces as
E..

Figure 1b. A
rotating body
also provides
an  external
gyrotation Q
that has an
inverse orien-
tation of the
body’s
tion. Every orbiting body gets that gyrotation field working on it,
which orient the elementary particles to it, with time. Attraction of

rota-
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the orbiting body occur. Surface gyrotation forces are indicated as
Fq and centrifugal pseudo forces as Fc.

1.2 The preferential orientation of particles under a
gyrotation field tends, with time, to change to that
of the gyrotation field

As stated in my papers [2] [3], ‘trapped light” is the most
convenient way to describe matter. When elementary particles
are not preferentially but randomly oriented, six main orienta-
tions are possible, like the six sides of a dice or any linear com-
bination of them. But when some gyrotation field acts upon the
body, a reorientation will occur over time: the preferred orien-
tation will eventually correspond to the local gyrotation direc-
tion.

1.3 Gravity between particles (trapped light) seen as a
Coriolis effect

In my earlier papers [2] [3], it was explained that the gravi-
tation field can be seen as a Coriolis effect, applied upon
trapped photons, wherein the gravitational attraction or repel
is given by : —Gc =24y x¢ )
Whereby —ac = Gml/le2 (2)

wherein Rij is the reciprocal distance (see fig.2 and fig.3).
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Figure 2.a.
trapped light, hit by a graviton and undergoing a Cori-

Like-oriented elementary particles of

olis acceleration 4 . The particles repel.

Figure 2.b. Unlike-oriented trapped light, hit by a gravi-
ton and undergoing a Coriolis acceleration 4 . The par-

ticles attract.

Figure 3.a.b.c. Three situations of spinning particles at a
spinning rate ®, under a gyrotation field Q. In the
cases 3.b. and 3.c. there occurs a swiveling of the particle
towards a like orientation as the gyrotation’s direction,
due to an acceleration dg .

It follows that after time, the random distribution of par-
ticles will not be maintained, but instead an excess in a prefe-
rential direction.

1.4 Gravitomagnetic consequences due to preferential-
ly like-oriented particles

Under a gyrotation field, caused by the spinning of the ob-
ject, more elementary particles will get like-oriented, and these
like oriented particles repel [3]. The inflating of heavenly bo-
dies is occasioned by the repel of the excess of like oriented
particles in one direction.

Let's go over the main features of like and unlike spinning
elementary particles:

1° Gravity between elementary particles can be an attrac-
tion as well as a repel.

2° Consequently, the ‘universal’ gravitation constant isn’t
universal at all but ‘local” and its value depends from the de-
gree of like or unlike orientations of particles in the bodies.

3° Rotating (spinning) bodies get steadily more like-
oriented particles and consequently, steadily higher values of
the “local” gravitation constant.

4° An object, containing ideally random-oriented particles
doesn’t have any global gravitational effect! In other words, if
there is no preferential orientation of the particles, no global
gravitational attraction (or repel) will occur!

5° The parameters of the gravitational attraction and repel
of bodies are: their masses (as far as they can be regarded as
absolute values), their distance and their excess-quantity of like
oriented particles (also expressible by the ‘local’ gravitation
constant of each of the bodies, as vectors).

6° Rotating (spinning) bodies inflate.

On top of these six consequences of my paper [3], two more
consequences follow.

7° The steady state of spinning objects’ gravity is rather an
internal repel than an internal attraction [3].
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8° The steady state of the spinning objects’ gyrotation re-
sults rather in a compression than an internal repel [1].

The consequence 7° follows from the fact that spinning ob-
jects get an internal gyrotation that tends to orient the particles
like-wise, which causes repel. The consequence 8° follows long
since the basic gyrotation calculations in [1].

2 The value of the gravitational constant is
defined by the quantity of like spin orien-
tations of particles

Since the orientation of spinning trapped light (elementary
particles) defines the quantity of attraction or repel, and since
Newton's gravitation equation doesn’t content variables, under
fixed masses and distances, the quantity of like-oriented par-
ticles should be expressed by some variable, that cannot be
included elsewhere than in the gravitational ‘constant’.

2.1 When is the global gravitational constant of an
object minimal?

From the paragraph 1.4, especially the consequences 4° and
5° follows that when an object consists of particles that are
perfectly randomly oriented, there is no global attraction or
repel of particles inside that object. There are as much repelling
as attracting particles and the resultant is zero.

ZG)=O . It follows that ZQ=O

for the gyrotation of the object.

If the object is not spinning and if there is no external gyro-
tation acting upon the object, the situation will remain constant
in time. The global gravitational constant is then zero

2.2 When is the global gravitational constant of an
object maximal?

The individual gravitational constant between two like-
oriented particles is a well defined value : the “elementary
gravitational constant”. This constant indicates the flow of how
many gravitons escape from an elementary particle that are
implicated in a Coriolis effect with another elementary particle.

When all the particles are like-oriented, due to a long-
lasting rotation of the object, or due to an external gyrotation
field that works upon the object, the global gravitational con-
stant will be the same as the “elementary gravitational con-
stant” itself. This is the maximal possible value for the global
gravitational constant of the object.

3 The star’s lifecycle: a typical gravitomag-
netic cycle
Consider a recently born star in its early condition: a cloud
of almost randomly spin-oriented particles, though with some
global spin. The global spin will be consequently responsible

for a gyrotation field, internally and responsible externally
(fig.1.a and fig.1.b), and for a steady increase of the number of
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particles with a spin orientation in the preferred direction, that
of the global star’s spin.

3.1 Towards a red giant

When an increase of like-oriented particles occurs as ex-
plained in [3], the star inflates, due to the repel of these par-
ticles. At the same time, the star’s spin velocity decreases, due
to the radius increase and to the conservation of global momen-
tum. Because the star’s density decreases, the nuclear activity
decreases at the same time. The star finally becomes a red
giant.

Now, the star’s rotation is very low and its size is maximal.
The star’s global gravitational constant became maximal as
well, because its value is directly linked to the number of like-
oriented particles [3]. But it doesn’t mean that all the particles
are like-oriented.

3.2 The spin inversion of the red giant

In my paper [2] I explained that trapped light works in two
different ways upon other trapped light: the first way is by an
orbital graviton, as explained in fig.2, the second way is the one
with a direct radial impact of ‘light’ upon other particles, as
shown in fig.4 below.

@

Figure 4.a. and b. Two cases of trapped light, hit by a gravi-
ton, radial or tangential, and undergoing a Coriolis effect.

From eq.(1) follows that in fig.4.a, the Coriolis effect by the
direct and radial impact of light gives an induced rotation (by a
Coriolis effect), opposite of the global object’s spin. This is
particularly clear when one consider the spin G} as one of a

more inner particle, and 0; as one of a particle that is more

situated near the star’s surface.

The impact of this phenomenon, subsequently to the ex-
pansion of the star towards a red giant is that, the more the
particles are like-oriented, the more the spin will tend to in-
crease in the opposite direction of the star’s global spin. Indeed,

in fig.4.a, the global spin is oriented like the spins & and ;.

The red giant’s spin will reach zero, then will start to in-
crease in the opposite direction! Since the global gravitational
constant was maximal at the end of the expansion period, this
spin increase is fast, and causes the next phenomena.

3.3 Towards a white dwarf

The new spin will generate a gyrotation that is defined by
the spin of the star (fig.1.a), and that is differential, depending
from its latitude. The strongest differential spin at first will
generate a swiveling of the particles’ orientation in its neigh-
borhood, which results in an attraction with the rest of the
star’s particles, which are still oriented as before. The inner part
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of the star will keep the ancient orientation the longest time
and the outer shells of the star will get inversed orientations
more quickly. This means that, still at a high value of the gravi-
tational constant, two zones are built up, which attract each-
other.

Also the global gyrotation, originated by the global spin of
the star, builds-up a compression zone between the equator
and about 35° of latitude, which compresses the star [1].

Both phenomena are responsible for a decreasing distance
between both zones, an increasing pressure and an increasing
spin of the star, strongly augmented by the law of conservation
of angular momentum when the star’s radius decreases, and
resulting all together in the collapse of the star into a white
dwarf, wherein the nuclear activity rises again strongly.

3.3 The star’s lifecycle: an harmonic?

It is quite complicated to analytically predict how the fol-
lowing stage of the white star would be, since the mixture of
‘“up” and ‘down’ oriented particles can become turbulent, and
therefore hard to evaluate. However, it is probable that due to
the global angular momentum, the dust of the dying star could
partly stay together and try another cycle, depending from
how much matter got lost into space.

4 Discussion and conclusion

A new positive test for the Coriolis Gravitation Theory:
the lifecycle of a star

The expanding Sun and the lifecycles of stars have an ex-
planation that is consistent with gravitomagnetism and with
the ‘Coriolis Gravity Theory’ [2]. Rotation (spin) engenders
gyrotation, and gyrotation engenders internally more and more
like-oriented spins of elementary particles.

This results in the following lifecycle of a star: inflation of
the star occurs until it becomes a red giant at a low spin. At that
stage, its global gravitational constant is maximal. The high
number of like-oriented elementary particles also slows down
the star’s spin and inverses it, due to the Coriolis effect be-
tween like-oriented elementary particles and incoming radial
gravitons (fig.4.b).

The global gyrotation of the red giant increases together
with its inversed spin, and the places where the local gyrota-
tion is the largest will again inverse the spin of the elementary
particles. This outer shell of the star will attract the inner part
and result in a collapse to a white dwarf.
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The Expanding Earth : The Inflation of Heavenly Bo-
dies Issues Demands a Compression-Free Inner Core

Explained by Gravitomagnetism

Thierry De Mees - thierrydemees@telenet.be

Abstract
Gravitomagnetism [1] consist of Newtonian gravity and gyrotation, which is totally analogous to mag-
netism. I showed the effect of the attraction and the repulsion of spinning objects. Like-spinning objects en-
gender their mutual repel, and consequently the inflation of heavenly bodies that was suggested by the Ex-
panding Earth Theory. Here, I show that only the heavenly bodies that possess a compression-free inner core
can expand. Besides that, the Solar Protuberance Hypothesis for the formation of planets is herewith sus-

tained.

Keywords: gravitomagnetism, expanding Earth, solar protuberance hypothesis.

1. The inflation of heavenly bodies is caused

by reoriented particles under gyrotation
fields [2]

1.1. The expanding Earth theory

The discovery that the continental drift theory (PANGEA)
is wrong and that the Earth is instead expanding, from a small
object to the Earth of today, is about to be accepted as a stand-
ard. Also Mars is expanding and the Sun as well [2].

1.2.  The internal gyrotation field of a rotating body
(1]

Rotation, and the motion of bodies create fields and forces
in addition to gravity. I call this second field gyrotation, which
is the 'magnetic'-analog equivalence in gravitomagnetism and
which is responsible for the flatness of our solar system and of
our Milky Way. The gyrotation of a rotating body provides a
magnetic-like field that acts internally as well as externally to
the body upon moving masses.

PR S e TN

LY

=

Figure 1. Internal gyrotation equipotentials Q of a spinning
body at a spinning rate . Surface gyrotation forces are in-
dicated as Fq and centrifugal pseudoforces as F..

In figure 1, the internal gyrotation equipotentials Q of a
spinning body at a spinning rate ® are shown. The gyrotation
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fields are parallel and oriented like the rotation vector. The sur-
face gyrotation forces are indicated as Fo and the centrifugal

pseudoforces as Fo . Herein F. comes from the Lorentz force,

transposed for masses : F o= m(5 X @) [1].

1.3. The preferential orientation of particles under a
gyrotation field
In [1], it was explained that like-spinning bodies repel. This
is caused by the external gyrotation field of one spinning body
that works upon the other body. Inversely, unlike-spinning
particles attract.

i) ]‘ 5 i

Figure 2. An external gyrotation equipotential Q of a spin-
ning body with angular velocity o’ creates a repulsion force
upon the second spinning body.

Moreover, like spinning bodies standing above each other
have the tendency to attract and to stay
in line.

Figure 3. External gyrotation equipoten-
tials Q of a spinning body with angular
velocity ® creates an attraction force
upon the like-spinning body that is loc-
ated beneath and above it.
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Inversely, opposite spinning particles will be repulsive.
These proprieties are valid for large bodies as well as for smal-
ler particles, as shown in [2]. In order to meet this latter condi-
tion, we need to consider particles as being spinning, which is
met if we accept the concept of matter that consists of trapped
light.

2. The Earth structure with a compres-
sion-free core

2.1. Two models for an Earth structure

Let us consider two possible main models of how the Earth
has been formed.

Consider in the next figure a mass (in
free space) that has been surrounded by a
thin shell of water at a certain distance. In-
deed, the water will fall upon the mass
(core). The more water falls upon the core,
the more that core will be compressed by
gravity and become very dense. The clas-
sical presentation of the Earth shows a
solid central core, an overlaying shell of
magma, and the final shell of the continents and ocean soils.

Consider now an alternative: a solid shell of mass where in

its centre, a quantity of water has been put.
The water will be attracted by the shell
)

and be spread over its total inside surface.
Figure4b

Figure4 a

The more water is inside, the more the
shell will be compressed from the inside
by gravity. The very centre of the shell will
still preserve a net gravity of zero, and will
be attracted evenly by the shell in all direc-
tions. But the shell, supplemented with the
water, forms the gravity attraction core for
any object that is located on the outer surface of the shell. The
centre of the second model will be compression-free.

There exist evidence for none of both models. The second
model for the Earth will be studied more closely below.

2.2.  Supporting considerations from the Solar Pro-
tuberance Hypothesis.

The second model is not impossible at all. The Solar Pro-
tuberance Hypothesis for the formation of the planets must
provide hollow structures according the following process: a
huge electromagnetic solar protuberance (prominence) causes a
magnetic equipotential between two points A and B upon the
solar surface, in the solar corona. The hydrogen and most of the
atoms of the sun are ionized. As a result, the electrons twirl in a
very tight helix along the magnetic equipotential from point A
to point B, whereas the positive ions twirl from point B to A in
a much wider helix along that magnetic equipotential [2].
When the magnetic equipotential disappeared, the helix of pos-
itive ions attracted the electrons again and has then been pulled
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apart by their mutual repulsion into large parts, that became
spinning hollow hot proto-planets. As long as the cylinder-like
proto-planets were formed of hot, spinning gasses and frag-
ments, the distribution of matter could change a bit, but as
shown in paragraph 2.1, there is no significant room for the
formation of a central solid core out of the initial hollow proto-
planet, due to the zero-gravity that is present in its centre.

When the surface of the planet’s shell of the cooled down,
as well the exterior as the interior edge of the hot gasses and
fragments, there came a moment that the outside shell got en-
tirely closed and could trap all the inside. The crust, together
with the internal magma, form the gravitation field that we
feel. The very centre of the planet has a net gravity of zero, but
all the sides of the shell (magma + crust) attract evenly any
mass in its centre. Hence, the planet’s centre is compres-
sion-free.

2.3.  Supporting considerations from gravitomag-
netism

In the case of a shell-structure for the Earth, there will be a
majority of particles inside the Earth’s centre that will be ori-
ented like the Earth’s spin. This follows from the conclusions in
[5], where we discovered that the Sun’s rotation is related to
the spin orientation of its particles.

Indeed, figure 1 shows the internal gyrotation equipoten-
tials of a sphere, due to its rotation. Figure 2 shows that like-
spinning particles are repulsive and figure 3 explains the at-
traction of superimposed like-spinning particles. Consequently,
under the condition of a gravitational-free area in the centre of
the Earth, a dilatation occurs due to repulsion, perpendicularly
to the Earth spin vector. This results in a density decrease and
consequently a pressure increase in higher layers that makes
the Earth inflate.

If the Earth would have a core with a high compression, the
gyrotation dilatation forces would never overcome these com-
pression forces, and never be able to make the Earth inflate.

3. The mainstream Earth structure model

The mainstream model of the earth’s structure is ambiguous
because it follows the first model of figure 4a, but there is only
a weak argument for the origin of the hot magma of its mantle,
that is supposed to be created by the high inside compression.

3.1. The mainstream layers-model of the Earth

In figure 5 is shown where the mainstream Earth model
stands for.

Seismic waves have been send into the Earth and the reflec-
tions have been measured. Abrupt velocity changes and reflec-
tions of the waves indicate the existence of change of structure,
like solid to liquid, or soft to hard layers and vice-versa. The
Mohorovi¢i¢ discontinuity (A) separates the crust and the
mantle. The Gutenberg discontinuity (B) separates the mantle
and the outer core. However, several discontinuities have been
found between the discontinuities marked as (A) and (B) in fig-
ure 5. Finally, the theoretical Lehmann discontinuity (C) separ-
ates the outer core and the inner core.
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In fact, the model could only be verified for a depth of a
few thousands of kilometers, but not until the inner core,
where assumptions have been made based upon seismic meas-
urements of velocities between the transmitted and the re-
ceived waves (see next paragraph).

30-65

2270

1216

0 35 700 2883 3153 6371 km

Figure 5. Schematic view of the interior of Earth. 1. contin-
ental crust - 2. oceanic crust - 3. upper mantle - 4. lower
mantle - 5. outer core - 6. inner core - A: Mohorovici¢ dis-
continuity - B: Gutenberg discontinuity - C: Lehmann dis-
continuity. The expected gravitation field strengths are
shown as well.

The mainstream gravitational field strength model inside
the Earth is based upon the densities. It increases from 9.8 m/s?
to 10.7 m/s? and then gradually decreases to zero in the Earth’s
centre.

The mainstream inside compression is as shown in the fig-
ure 6 below.

Radius (km)

6000 4000 2000 2 400

Gravity (ms™?)

[} T v ()
0 2000 4000 6000

Depth (km)
Figure 6. Mainstream compression and gravity graph [6].

These values are deduced theoretically from seismic meas-
urements (see next paragraph).
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3.2. The mainstream seismic model for the Earth

Based upon the mainstream Earth model, the mainstream

interpretation of the found seismic values is given by figure 7.

P-Wave
Shadow
Zone

180°

Figure 7. Mainstream interpretation of the Earth’s structure
by the seismic measurements of compression waves (P-
waves) [7]. The shadow zone is occasioned by the refraction
index of the transition through the magma.

In reality, the inside Earth’s structure can only be deduced

by interpreting the transmission time of the wave between
sending and receiving (see figure 8).

Radius (km)

TgEE8EEE

o zt-; 6 B 10 12 14
Velocity (km/sec)

Figure 8. Example of a compression velocity wave (solid
line) and a shear velocity wave (dashed line), where the
sudden velocity increase at a depth of 5155 km is inter-
preted as the evidence for a hard iron core [8].

The compression velocity wave is able to pass
through liquids (magma) but the shear velocity wave
isn’t. Remark that the velocity in the inner core is much
lower than in the mantle, which confirms a low density
of the material. A low density can be obtained by a low-
density material or by a low compression of it.
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Fundamental Causes of an Attractive Gravita-
tional Constant, Varying in Place and Time

Explained by Gravitomagnetism and the Coriolis Gravitation Theory
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Abstract
The gravitational constant G has been measured since more than 200 years [4]. It seems impossible to

find a precise value for G. In this paper, I will analyze the reasons for that issue, according Gravitomagnetism

and the Coriolis Gravitation Theory. In my paper “On the Gravitational Constant of Our Inflating Sun and

On the Origin of the Stars” Lifecycle”, I explained that the Sun and the Earth is expanding due to Gravito-

magnetism [1] , which consist of the Newtonian gravity and gyrotation that is totally analogous to magnetism.

The Coriolis Gravitation Theory completes the picture which governs the gravitation laws. Here, the topolog-

ical values of G are found qualitatively, based on the local gyrotation field inside the Earth. I find that the dif-

ficulties for the measuring of the Gravitational Constant are caused by the location where the measurement is

done and from which location the test materials are originated. Furthermore, I come to the proof why, al-

though the Coriolis Gravity Theory allows gravitational attraction as well as repel, the heavenly bodies” par-

ticles preferentially form distributions that are mainly attractive.

Keywords: gravitomagnetism, expanding Earth, gravitational constant, Coriolis Gravity Theory, gyrotation.

1. The Coriolis Gravitation Theory [2] [3]

1.1. Gravity between particles (trapped light) seen as a
Coriolis effect
In my earlier papers [2] [3], it was explained that the gravi-
tation field can be seen as a Coriolis effect, applied upon
trapped ‘light’, where particles are made of. The relevant inte-
ractions are shown here :

&, o &
O
Yo

Figure 1l.a. Like-oriented elementary particles of trapped
‘light’, hit by an orbiting graviton and undergoing a Coriolis
acceleration 4. . The particles repel.

Figure 1.b. Opposite-oriented trapped ‘light’, hit by an orbit-
ing graviton and undergoing a Coriolis acceleration . .

The particles attract.

Attraction or repulsion are the processes that rule gravity,
caused by escaping ‘gravitons’ from opposite- or like-oriented
spins of particles. The interaction occurs, due to a Coriolis ef-
fect of the escaped graviton, interacting with the second par-
ticle’s spin. (If in the figure 1, the spin of particle 2’ is oriented
to the left or to the right, the acceleration will be up or down.)
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1.2. The expanding Earth

The repulsion variant of the Coriolis Gravitation Theory
explains the expanding of the Earth qualitatively [2]. However,
I didn’t yet treat the aspect of how the attraction and the repul-
sion can cohabit. A qualitative explanation will be given in this

paper.

2. Integration of Gravitomagnetism with the
Coriolis Gravitation Theory

2.1. The early Earth and its particles’ orientation

From the general point of view, one could say that the par-
ticles in the early Earth probably were oriented randomly. But
the Earth was formed from a certain physical process. Al-
though I am won for the idea of a solar protuberance that
formed the Earth, any other process could result in some global
orientation distribution of the particles.

It will be shown below that there always occurs attraction
between particles, according to the figure 1.b.

2.2. Why the preferential orientation of the Earth’s par-
ticles is attractive

Why is the preferential orientation of the Earth’s particles
attractive? Imagine several particles side by side that are
oriented upwards or downwards: 1]|1. The particles that are
oriented differently, — or « , do not affect this reasoning be-
cause they don’t interact much with 1 and | (thus, the reason-
ing for 1|1 is similar to that of {«—|«|—1). As we saw earlier
[2], opposite oriented particles attract and like oriented par-
ticles repel. The final situation of the example is given by 1] |1.
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Between the two downwards oriented particles of this exam-
ple, the space between them increased and some room is
created for another particle to fill it. We have a probability of at
least 1/6 that this will be a 1, because 1 is attracted by | , re-
sulting in a double attraction (left side and right side). In this
example, we obtain a higher probability for 11|17, which glo-
bally is a group that is oriented upwards A. The same reason-
ing is possible for groups: VA AV will resultin VA AV,
and then in a higher distribution probability of ¥ A| AV or
V AV AV, which here gives a downwards super-group. These
super-groups on their turn form hyper-groups the same way.
However you look at it, one always gets a majority of attrac-
tion-oriented compositions.

Now we know why the heavenly bodies are attractive, de-
spite the fact that the Coriolis Gravity Theory allows both at-
traction and repulsion of particles. We also found the first rea-
son why the Gravitational Constant isn’t identical everywhere,
because the super-groups’ orientations are random after all and
don’t allow new settings if they became solid or crystallized.

Hereafter, we will see how the Earth’s rotation can also af-
fect the Gravitational Constant value.

3. The internal gyrotation field of a rotating
body [1]

3.1. Global Gyrotation fields of the Earth

Rotation creates a field in addition to gravity. I called this
second field: gyrotation, which is the 'magnetic'-analog equiva-
lence in gravitomagnetism. The gyrotation of a rotating body
provides a magnetic-like field that acts internally on the indi-
vidual particles of the spinning body.
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Figure 2. Internal gyrotation equipotentials Q of a spinning
body at a spinning rate w.

In the figure 4, the internal gyrotation-equipotentials Q of a
spinning body at a spinning rate w are shown. The gyrotation
fields are parallel and oriented like the rotation vector [1].

3.2. Detailed Gyrotation fields of the Earth

The actual Earth rotates at a certain rate, which creates a
gyrotation field. (This rotation probably comes from the expul-
sion process out of the Sun, as I explained in my Solar Protu-
berance Theory in earlier papers.)

Hereafter, I will analyze the possible outcome of the Gravi-
tational Constant issue.

© 2010

We found in [1] that the internal gyrotation Q of a sphere
is given by:

- 3Gm( (2 , R*) F(F-@)
Q. =- o| =t -— |-—- 1
int C2R3( [57 3] 5 ()

wherein R is the radius of the sphere, r the local radius of a
point inside the sphere and @ its angular velocity.

The “vertical” (y-) and "horizontal” (x-) components are giv-
en by the following expressions, derived from (1).

__3Gma) 2 2 _p2
V=Te (222 +y*-R?) )
and
3Gmw
Q =———x 3
« =AY ®)

These equations are visualized in the figure 3.

Figure 3.a. Vector topology of the gyrotation along the spin
axis of a spinning sphere. The spin axis contains the highest
amplitude of gyrotation. At the latitude of 35°16’, the gyro-
tation becomes zero. At the equator, gyrotation is inversed,
and one gets a local increase of the global attraction!

Figure 3.b. Rotating vector topology of the gyrotation along
the equatorial axis of a spinning sphere. At the longitude of
45°, the gyrotation is maximal. Near the center, the gyrota-
tion is zero. Since particles continuously rotate with the
Earth’s spin, their original spin orientation will not be af-
fected that easily.
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The gyrotational vector topology along the spin axis shows a
maximal gyrotation near the spin-axis and the center of the
globe (figure 3.a). Near the latitude of 35°16’, the gyrotation
becomes zero. In the equatorial direction, gyrotation is maxim-
al at a latitude of 45° and zero near the center of the sphere
(figure 3.b). However, since particles continuously rotate with
the Earth’s spin, the gyrotational orientation is spinning as well
in a plane that is parallel to the equator and their original spin
orientation will not be affected that easily.

3.3. The preferential orientation of particles under a
gyrotation field

The Earth’s spin is responsible of the formation of gyrota-
tion equipotential lines as shown in the figure 2. In analogy
with electromagnetism, particles will have the tendency to
orientate along the equipotentials of gyrotation. After time, the
particles will have the tendency to re-orientate along the spin
axis, parallel to it, at the amplitudes represented in figure 3.a.
The gyrotation field shown in figure 3.b will almost not affect
the particles, but a more detailed study should be done to con-
firm this.

Inversely, opposite spinning particles will be repulsive.
These proprieties are valid for large bodies as well as for small-
er particles, as shown in [2]. In order to meet this latter condi-
tion, we need to consider particles as being spinning, which is
met if we accept the concept of matter that consists of trapped
light.

4. Conclusions

In my former papers, I found that the gravitation funda-
ments are relational. That was expressed in the Coriolis Gravity
Theory.

The first important discovery in this paper is the fact that,
spites the alike occurrence of attracting and repelling particles
at the origin of the Earth, attraction became the main pattern
due to the creation of new space between the repelling par-
ticles, which is preferentially filled up by particles with an op-
posite spin. Groups of particles are randomly distributed,
which causes local changes of the Gravitational Constant. Crys-
tallized and solid matter will stop reorganize its attracting par-
ticles” distribution. Only liquids and gasses can still continue
adapting its structure.
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It follows that the values of the Gravitational Constant are
also determined by the location where the materials have been
mined from, and whereof the measuring equipment is built.

A second important discovery is that the Earth’s spin
changes bit by bit the particles’ orientation distribution in the
fluid parts of the Earth. About the Earth’s axis, the strongest
repel gyrotation field is generated, which has effects upon the
value of the internal Gravitational Constant, where the Gravita-
tional Constant increases or decreases with depth, especially in
the deeper liquid and gas zones near the poles. The increase or
decrease don’t only depend from the value of the local par-
ticles” spin orientation, but also from the interacting orienta-
tions between large hyper-groups of different layers in the
Earth. Near the Earth’s surface, this latter interaction is pre-
ponderant.

The consequence is that the Earth expands with time in the
whole central region and along the whole spin axis. The poles
are an excellent probe region to evaluate the progress of the
value decrease of the Gravitational Constant.

At the equator, the global attraction effect between the sur-
face and the inner layers is slightly augmented, with can create
an slightly increased Gravitational Constant value between
hyper-groups over time.

Finally, I can state that it must be possible to find a way to
‘distillate” particle spin-orientation groups that are oriented in a
particular way, in order to form an artificial attraction reduc-
tion, possibly a repel and consequently, weightlessness.
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Thierry De Mees

One day in 2002, I discovered in a newspaper that "dark
matter" is supposed to be responsible for the constancy of
the orbital velocity of the stars, and that velocity is
supposed to be in contradiction with the Kepler laws. I
was upset. We can travel to the moon and invent great
medicines, we have the supposed miracle-theory of
general relativity and nobody can explain it? Next hour, I
was rumbling in a slide of my old desk, where I stored old
papers from my university period, and I found back the
analogy 1 made between electromagnetism and
gravitation. I never trusted Einstein's relativity theory,
because it only calculates what is observed by using light,
but not what is really happening. Also the great Richard
Feynman once confessed that he didn't understand why
gravitation would be so different from other physical
theories. A few days later, I found the gravitational
consequences of the motion of masses. Month after
month, I steadily discovered that all the cosmic issues
that are not understood by mainstream, make sense
through gravitomagnetism. The shape of supernovae, the
disc and the spiral galaxies, the motion of asteroids, the
flatness of planetary systems, the tiny rings of Saturn,
black holes, the expanding Earth and Sun, etc. I can't
find any cosmic issue that is in contradiction with
gravitomagnetism.
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