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Abstract

This note very brie�y describes or sketches the general ideas of some applications of
the Gp;q Geometric Algebra (GA) of a complex vector space Cp;q of signature (p; q),
which is also known as the Cli�ord algebra C`(p; q). Complex number scalars are only
used for the anisotropic dilation (directed scaling) operation and to represent in�nite
distances, but otherwise only real number scalars are used. The anisotropic dilation
operation is implemented in Minkowski spacetime as hyperbolic rotation (boost) by
an imaginary rapidity �'= atanh 1¡ d2

p
for dilation factor d> 1, using +' in the

Minkowski spacetime of signature (1; n) and ¡' in the signature (n; 1).

The Gk(p+q+2);k(q+p+2) Mother Algebra of CGA (k-MACGA) is a generalization
of Gp+1;q+1 Conformal Geometric Algebra (CGA) having k orthogonal Gp+1;q+1 :
p>q Euclidean CGA (ECGA) subalgebras and k orthogonal Gq+1;p+1 anti-Euclidean
CGA (ACGA) subalgebras with opposite signature. Any k-MACGA has an even 2k
total count of orthogonal subalgebras and cannot have an odd 2k+1 total count of
orthogonal subalgebras.

The more generalized Gl(p+1)+m(q+1);l (q+1)+m(p+1) : p> q k-CGA algebra, for even
or odd k = l + m, has any l orthogonal Gp+1;q+1 ECGA subalgebras and any m
orthogonal Gq+1;p+1 ACGA subalgebras with opposite signature. Any 2k-CGA with
even 2k orthogonal subalgebras can be represented as a k-MACGA with di�erent
signature, requiring some sign changes.

All of the orthogonal CGA subalgebras are corresponding by representing the same
vectors, geometric entities, and transformation versors in each CGA subalgebra,
which may di�er only by some sign changes.

A k-MACGA or a 2k-CGA has even-grade 2k-vector geometric inner product null
space (GIPNS) entities representing general even-degree 2k polynomial implicit
hypersurface functions F for even-degree 2k hypersurfaces, usually in a p-dimen-
sional space or (p + 1)-spacetime. Only a k-CGA with odd k has odd-grade k-
vector GIPNS entities representing general odd-degree k polynomial implicit hyper-
surface functions F for odd-degree k hypersurfaces, usually in a p-dimensional space
or (p+ 1)-spacetime. In any k-CGA, there are k-blade GIPNS entities representing
the usual Gp+1;q+1 CGA GIPNS 1-blade entities, but which are representing an
implicit hypersurface function F k with multiplicity k and the k-CGA null point
entity is a k-point entity. In the conformal Minkowski spacetime algebras Gp+1;2
and G2;p+1, the null 1-blade point embedding is a GOPNS null 1-blade point entity
but is a GIPNS null 1-blade hypercone entity.

Keywords: conformal geometric algebra, mother algebra, k-vector entities

MSC2010: 15A66, 14H50, 53A30

1



1 Introduction

This note very brie�y describes or sketches the general ideas of some applications of the
Gp;q Geometric Algebra (GA) [9] of a complex vector space Cp;q of signature (p; q), which
is also known as the Cli�ord algebra C`(p; q). For any Cli�ord geometric algebra Gp;q, the
conformal Cli�ord geometric algebra (CGA) is Gp+1;q+1 [10]. Complex number scalars
are only used for the anisotropic dilation (directed scaling) operation and to represent
in�nite distances, but otherwise only real number scalars are used.

The anisotropic dilation operation is implemented in Minkowski spacetime as hyperbolic
rotation (boost) by an imaginary rapidity �'= atanh 1¡ d2

p
for dilation factor d > 1,

using +' in the Minkowski spacetime of signature (1; n) and ¡' in the signature (n; 1).
See paper [5] on the Double Conformal Space-Time Algebra (DCSTA) for an example of
the anisotropic dilation operation on general quadric surface entities.

In the conformal Cli�ord algebra G1;3+1 of the 3-D anti-Euclidean complex vector space
C0;3, denoted CS [5], the distance function d = 2PCS �QCS

p
for distance between con-

formal points PCS and QCS is imaginary when either one of the two points is the in�nity
point entity e1CS of CS. In the conformal geometric algebra (CGA) G3+1;1 of the 3-D
Euclidean real vector space R0;3, denoted CE [4], the distance function d= ¡2PCE �QCE

p

for distance between conformal points PCE and QCE is valid only for �nite points, and
then imaginary numbers are avoided entirely if the anisotropic dilation operation is not
required.

The k-MACGA is the Mother Algebra [1] of Conformal Geometric Algebra [10], an
algebra formed as the product of even 2k orthogonal CGAs, with k CGAs of signature
(p + 1; q + 1) and k CGAs of opposite signature (q + 1; p + 1). All 2k CGAs are
corresponding, having the same basis-blade coe�cients and corresponding entities and
operations, with sign changes as required. The k-CGA generalizes on k-MACGA to allow
a product of any k= l+m CGAs, with l corresponding CGAs of signature (p+1; q+1)
and m corresponding CGAs of opposite signature (q+1; p+1).

A k-MACGA or a 2k-CGA has even-grade 2k-vector geometric inner product null space
(GIPNS) entities representing general even-degree 2k polynomial implicit hypersurface
functions F for even-degree 2k hypersurfaces, usually in a p-dimensional space or (p+1)-
spacetime. Only a k-CGA with odd k has odd-grade k-vector GIPNS entities repre-
senting general odd-degree k polynomial implicit hypersurface functions F for odd-degree
k hypersurfaces, usually in a p-dimensional space or (p + 1)-spacetime. In any k-CGA,
there are k-blade GIPNS entities representing the usual Gp+1;q+1 CGA GIPNS 1-blade
entities, but which are representing an implicit hypersurface function F k with multiplicity
k and the k-CGA null point entity is a k-point entity. In the conformal Minkowski
spacetime algebras Gp+1;2 and G2;p+1, the null 1-blade point embedding is a geometric
outer product null space (GOPNS) null 1-blade point entity but is a GIPNS null 1-blade
hypercone entity.

2 k-MACGA

The k-MACGA is the k Mother Algebra of Conformal Geometric Algebra (MACGA) for
representing general even-degree 2k polynomial hypersurface entities, and also certain
other speci�c degree (2k+1):::4k polynomial (cyclide or roulette) hypersurface entities.
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The Gk(p+q+2);k(q+p+2) Mother Algebra of CGA (k-MACGA) is a generalization of
Gp+1;q+1 Conformal Geometric Algebra (CGA) having k orthogonal Gp+1;q+1 : p > q
Euclidean CGA (ECGA) subalgebras and k orthogonal Gq+1;p+1 anti-Euclidean CGA
(ACGA) subalgebras with opposite signature. Each of the 2k orthogonal CGAs are cor-
responding copies, having the same scalar coe�cients on all corresponding canonical
basis-blades [11], except for some required sign changes due to opposite signatures such
that all entities and operations are corresponding.

Any k-MACGA has an even 2k total count of orthogonal subalgebras and cannot have
an odd 2k+1 total count of orthogonal subalgebras.

3 k-CGA

More general than the k-MACGA is the k-CGA. The k-CGA is the k Conformal Geo-
metric Algebra (CGA) for representing general even-degree or odd-degree k polynomial
hypersurface entities, and also certain other specific degree (k + 1):::2k polynomial
(cyclide or roulette) hypersurface entities.

The more general Gl(p+1)+m(q+1);l (q+1)+m(p+1) : p > q k-CGA algebra, for even or odd
k = l + m, has any l orthogonal Gp+1;q+1 ECGA subalgebras and any m orthogonal
Gq+1;p+1 ACGA subalgebras with opposite signature. Each of the k orthogonal CGAs are
corresponding copies, having the same scalar coe�cients on all corresponding canonical
basis-blades [11], except for some required sign changes due to opposite signatures such
that all entities and operations are corresponding.

Any 2k-CGA with even 2k orthogonal subalgebras can be represented as a k-MACGA
with di�erent signature, requiring some sign changes.

4 Monomial extraction operators

Amonomial extraction operator Ts extracts the monomial s (acting also as symbolic index
s) from a k-CGA k-vector entityX as s=Ts �X by inner product. The Ts are derived from
the k-CGA k-blade point embedding entity PK=K(p) =

Q
Ci(p) =

Q
PCi : i= 1:::k as

combinations of inverse basis k-blades that extract coe�cient monomials from the point
entity.

An entity X is formed as a linear combination of monomial extraction operators for
di�erent monomials s and represents a polynomial implicit hypersurface function F for
an implicit hypersurface equation F =0. X is called a geometric inner product null space
(GIPNS) k-vector entity.

In any k-CGA, it should be possible to de�ne, perhaps by an algorithm or formulas, the
inner product null space k-vector monomial extraction operators Ts, similar to those in
DCGA [4] and DCSTA [5], and also as in the forthcoming paper on TCGA (�10), which
were de�ned manually by simple means.
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5 Algebraic di�erential operators

The monomial extraction operator Txk for the monomial term xk is a k-blade with an
inverse. Since general degree k hypersurfaces are representable, the extraction operator
for Txk¡1 can also be de�ned as a k-vector, but it may not have an inverse. Using these
two extraction operators, it is possible to form the product Dx = kTxk¡1Txk

¡1, which is
clearly a di�erential operator on Txk. It can be shown that, using the commutator product
�, de�ned for any multivectors A and B as A � B = (AB ¡ BA) / 2 = ¡B � A, the
di�erential operator Dx is a di�erential operator on all of the extraction operators Ts as
@xTs=Dx� Ts, where @Ts is another combination of extraction operators that correctly
represents the directional derivative in the x direction. There are similar di�erential
operators Dy, Dz etc. for each independent variable of the space that is embedded in the
k-CGA.

The di�erential operators provide a standard method for entity analysis of the k-vector
geometric entities of the k-CGA. Entity analysis includes extracting the center position
and other parameters of a k-vector geometric entity.

6 GIPNS k-blade entities

In any k-CGA (more generally than k-MACGA), there are k-blade GIPNS entities rep-
resenting the usual Gp+1;q+1 CGA GIPNS 1-blade entities, but which are presenting an
implicit hypersurface function F k with multiplicity k. The k-CGA null point entity is
a k-point entity. In the conformal Minkowski spacetime algebras Gp+1;2 and G2;p+1, the
null 1-blade point embedding is a GOPNS null 1-blade point entity but is a GIPNS null
1-blade hypercone entity. For examples, see the papers [4] and [5].

The k-blade entities XK=
Q
XCi : i= 1:::k are simply the product (geometric or outer)

of the corresponding CGA entities XCi in each of the k CGAs of the k-CGA. The k-CGA
null point entity is the k-blade point PK=

Q
PCi which embeds a point p of the embedded

vector space. For an inner product null space k-blade entity XK, F k(p)'PK �XK, where
' means �up to a homogeneous scalar factor�. Since the implicit hypersurface functions
F of algebraic geometry are homogeneous, representing an implicit hypersurface equation
F = 0, scalar factors do not a�ect hypersurface representation. Metrical results are
a�ected by scalar factors, and for metrical results there must be a chosen homogeneous
normalized form for each entity from which to obtain metrical results of the expected
scale. Otherwise, the k-blade entities are just the analogs of the 1-blade CGA entities.

7 GIPNS k-vector entities

A k-MACGA or a 2k-CGA has even-grade 2k-vector geometric inner product null space
(GIPNS) entities [11] representing general even-degree 2k polynomial implicit hypersur-
face functions F for even-degree 2k hypersurfaces, usually in a p-dimensional space or
(p+1)-spacetime. For examples, see the papers [4] and [5].

Only a k-CGA with odd k has odd-grade k-vector GIPNS entities representing general
odd-degree k polynomial implicit hypersurface functions F for odd-degree k hypersur-
faces, usually in a p-dimensional space or (p+1)-spacetime. For example an of odd-grade
k-CGA, see TCGA (�10).
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In a k-CGA, the geometric inner product null space (GIPNS) k-vector entities [11] are
linear combinations of the k-vector extraction operators Ts, as described in �4 and as
exempli�ed in [4] and [5]. The extraction operators include terms for general degree k
hypersurface entities and certain other speci�c degree (k + 1):::2k (cyclide or roulette)
hypersurface entities.

A k-CGA GIPNS k-vector hypersurface entity 
 represents an implicit hypersurface
function F (p)'PK �
, up to scale. The entity 
 must have a certain normalized form
to represent F at a desired or standard scale. Note that, for the k-blade entities we have
F k (k power), not F . Using a di�erential operator Dx on the k-vector entity 
 gives
@xF (p) =PK � (Dx�
). Using a di�erential operator Dx on the GIPNS k-blade entity
XK gives kF k¡1(p)@xF (p) ' PK � (Dx � XK). This is consistent with the chain rule of
di�erentiation. An entity can be di�erentiated in succession in any sequence (e.g., as
@xy
=

d2


dxdy
=Dy� (Dx�
) etc.) for mixed partial derivatives.

8 k-versors and 2k-versors

In a Gp+1;q+1 CGA, the GIPNS 1-blade hypersphere or hyperpseudosphere (in a space-
time) entity SC is the 1-versor for inversion (inversor) in the hypersphere. The inversion
of a CGA entity XC in SC is XC0 =SCXCSC. The GIPNS 1-blade hyperplane entity �C is
the 1-versor for re�ection (re�ector) in the hyperplane. The re�ection of a CGA entity
XC in �C is XC0 =�CXC�C.

The CGA 2-versors are the following. The translation operator (translator) T =�C�C
is just successive re�ections in two parallel hyperplanes that are separated by half the
translation vector displacement d. The rotation operator (rotor) R = �C�C is just
successive re�ections in two non-parallel spatial hyperplanes subtending half the rotation
angle. The hyperbolic rotation operator (boost) B =�C�C is just successive re�ections
in a time-like hyperplane followed by re�ection in a space-like hyperplane subtending
half the hyperbolic angle (this also makes an anisotropic dilation operator for imaginary
hyperbolic angle '). The isotropic dilation operator (dilator) D=SCSC is just successive
inversions of two hyperspheres, �rst of radius r1 then of radius r2, for dilation by factor
d= r2

2/r1
2, often choosing r1=1 and r2= d

p
.

In k-CGA, the corresponding CGA 1-versors for an operation are multiplied together by
geometric or outer product as the k-CGA k-versor for the same e�ective operation on k-
CGA entities.

In k-CGA, the corresponding CGA 2-versors for an operation are multiplied together by
geometric or outer product as the k-CGA 2k-versor for the same e�ective operation on
k-CGA entities.

For e�cient operation of the k-CGA k-versors or 2k-versors, each of the k individual
CGA 1-versors or 2-versors VCi+1 : i=0:::(k¡ 1) is used in succession on a k-CGA entity

=
0 as 
i+1=VCi+1
iVCi+1

¡1 to obtain the transformed entity 
 0=
k. This operation
is known as outermorphism. The direct operation of high-grade k-CGA k-versors or 2k-
versors on high-grade k-vector entities, without successive CGA versor operations, can
be very ine�cient for computations.
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9 Exemplary 1-MACGAs

The Mother Algebras of Conformal Geometric Algebras (k-MACGAs) have an even 2k
count of k orthogonal ECGA subalgebras and k corresponding orthogonal ACGA subal-
gebras of opposite signature, with 2k corresponding entities and operations. Prior work
on Double Conformal Geometric Algebra (DCGA) [7][3][6][4][2] and Double Conformal
Space-Time Algebra [5][8] are both 2-CGAs and each can be represented as a 1-MACGA,
requiring only some sign changes.

9.1 MACST

The G4;8 Double Conformal Space-Time Algebra (DCSTA) [5] uses two orthogonal G2;4
Conformal Space-Time Algebra (CSTA) subalgebras. The G4;2 Conformal Time-Space
Algebra (CTSA) is an alternative form of G2;4 CSTA with opposite signature, requiring
some sign changes. The G8;4 Double Conformal Time-Space Algebra (DCTSA) is an
alternative form of G4;8 DCSTA with opposite signature that uses two orthogonal G4;2
CTSA subalgebras.

The G6;6 Mother Algebra of Conformal Spacetime (MACST) uses one G4;2 CTSA subal-
gebra and one corresponding orthogonal G2;4 CSTA subalgebra. MACST has all of the
same entities and operations as DCTSA or DCSTA with di�erent signature, requiring
some sign changes.

9.2 MACS

The G8;2 Double Conformal Geometric Algebra (DCGA) [4] uses two orthogonal G4;1
Conformal Geometric Algebra (CGA) subalgebras. The G1;4 Conformal Space Algebra
(CSA) is an alternative form of G4;1 CGA with opposite signature, requiring some sign
changes. The G2;8 Double Conformal Space Algebra is an alternative form of G8;2 DCGA
with opposite signature and uses two orthogonal G1;4 CSA subalgebras.

The G5;5 Mother Algebra of Conformal Space (MACS) uses one G4;1 CGA subalgebra and
one corresponding orthogonal G1;4 CSA subalgebra. MACS has all of the same entities
and operations as DCGA or DCSA with di�erent signature, requiring some sign changes.

G5;5 MACS is the spatial subalgebra of the G6;6 MACST spacetime algebra. Any MACST
entity or operation can be projected onto MACS as a MACS entity or operation. Exam-
ples of this projection are found in [5] and [8] in the discussion of the anisotropic dilation
operation on general quadric spatial surface entities. The projection is a subalgebra unit
pseudoscalar projection PI.

10 An exemplary 3-CGA

A paper on the G3(2+1);3 Triple Conformal Geometric Algebra for Cubic Plane Curves
(TCGA) is in preparation for publication. TCGA is an exemplary k-CGA, using three
corresponding orthogonal G2+1;1 CGAs, with odd-grade (k = 3)-vector entities repre-
senting general cubic polynomial implicit hypersurface (plane curve) functions F for
general cubic hypersurfaces (plane curves) in a 2-dimensional space. TCGA also has 3-
vector entities representing certain other speci�c degree 4; 5; 6 polynomial (cyclide or
roulette) hypersurfaces (plane curves).
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The TCGA paper, which is in preparation for publishing, provides the full details of the
TCGA GIPNS 3-vector monomial extraction operators Ts that form the basis for all of
the TCGA GIPNS 3-vector entities. Algebraic di�erential operators Dx and Dy are also
given, which are valid on all of the extraction operators (e.g., as Dx� Ts etc.) using the
commutator product �. The TCGA paper also includes the full details of the anisotropic
dilation operation on the TCGA GIPNS 3-vector general cubic plane curve entities.

11 Conclusion

This note has described a sketch of the general ideas of some applications of the Gp;q
Geometric Algebra (GA) [9] of a complex vector space Cp;q of signature (p; q), which is
also known as the Cli�ord algebra C`(p; q). For any Cli�ord geometric algebra Gp;q, the
conformal Cli�ord geometric algebra (CGA) is Gp+1;q+1 [10].

Complex number scalars are only used for the anisotropic dilation (directed scaling)
operation and to represent in�nite distances, but otherwise only real number scalars
are used. The anisotropic dilation operation is implemented in Minkowski spacetime as
hyperbolic rotation (boost) by an imaginary rapidity �' = atanh 1¡ d2

p
for dilation

factor d > 1, using +' in the Minkowski spacetime of signature (1; n) and ¡' in the
signature (n; 1). See paper [5] for examples.

The k-MACGA is the k Mother Algebra of Conformal Geometric Algebra (MACGA) for
representing general even-degree 2k polynomial hypersurface entities, and also certain
other speci�c degree (2k+1):::4k polynomial (cyclide or roulette) hypersurface entities.

More general than the k-MACGA is the k-CGA. The k-CGA is the k Conformal Geo-
metric Algebra (CGA) for representing general even-degree or odd-degree k polynomial
hypersurface entities, and also certain other specific degree (k + 1):::2k polynomial
(cyclide or roulette) hypersurface entities.

As examples, G4;8 DCSTA [5] is represented by G6;6 MACST with di�erent signature,
requiring some sign changes. G8;2 DCGA [4] is represented by G5;5 MACS with di�erent
signature, requiring some sign changes.

Gn;n Mother Algebras (MA) [1] for representing general even-degree polynomial hyper-
surfaces with conformal versor operations for translation, rotation, and isotropic dilation
are achieved. Furthermore, in the superalgebra Gn+1;n+1 MA of a spacetime it is possible
to form the hyperbolic rotor (boost versor) for the anisotropic dilation (directed scaling)
operation on the general degree k polynomial hypersurfaces represented in the subalgebra
Gn;n MA of a space. After the directed scaling operation, the resulting entity in Gn+1;n+1
MA can be projected back onto the Gn;n MA as an entity in Gn;n MA.

In the k-CGA of k corresponding orthogonal CGAs for space with k-vector entities
representing general degree k spatial hypersurfaces, the anisotropic dilation operation
on the general degree k spatial hypersurface entities is available as the spacetime boost
(hyperbolic rotation) operation in the larger k-CGA of k corresponding orthogonal CGAs
for spacetime. This is demonstrated in the forthcoming paper on TCGA (�10).
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In conclusion, this note1 contains a sketch of ideas that answer or solve many research
goals. These goals have included Mother Algebra representations of general degree k
polynomial hypersurfaces having all of the usual CGA conformal operations and also an
anisotropic dilation operation. However, one goal of some researchers, to �nd k-blades
(not k-vectors) that represent general degree k hypersurfaces, is not met here in this
note, and may not be a possible goal. Other goals, of other researches, that are not met
here include operations for shearing and other operations for projective geometry in
computer graphics. However, some operations for the projections of plane curves have
been demonstrated in [6][2], and these projection operations may generalize into other k-
CGAs for the projections of general degree k plane curves in a (n > k)-space where the
plane curves are represented as GIPNS intersections (wedges) of GIPNS k-vector general
degree k surface entities with GIPNS k-blade plane entities.

Future papers may elaborate further on the ideas presented in this note.
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