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 Abstract. The analogy of electromagnetism for gravity was proposed by O. Heaviside in 1893 and 

applied by O. Jefimenko at the end of last millennium. In one intriguing example of two falling 

masses in a gravity field, he found that the two masses are mutually over-accelerating, more than 

the gravity acceleration field. I find here the result of his example in the form of a relativistic equa-

tion of velocity stabilization in that gravity field, related to the distance of the two masses. When I 

look for the conditions for the upper limit velocity, the speed of light, I deduce that the distance be-

tween the two masses at that relativistic speed equals the Planck length. Hence, this gives the first 

physical meaning of Planck length in a practical application, i.e. that very small particles such as 

gravitons and neutrinos with a rest mass can propagate in a gravity field at the speed of light with-

out being just a wave that is propagated by the specific natural constants of a medium. 
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Introduction 

Oliver Heaviside (1850-1925), an electrical engineer, self-

educated specialist in Maxwellian electromagnetism and mathe-

matician, was able to greatly simplify Maxwell's 20 equations in 

20 variables, replacing them by four equations in two variables. 

Today we call these 'Maxwell's equations' forgetting that they are 

in fact 'Heaviside's equations'.  

Maxwell's theory predicts “electromagnetic waves” that tra-

vel with the speed of light. Heaviside reasoned that electromag-

netic waves could travel on a telegraph cable too. Heaviside’s 

equations, based on Maxwell's electromagnetic waves, worked 

for cables of all lengths. 

Heaviside predicted that there was an conducting layer in the 

atmosphere which allowed radio waves to follow the Earth's cur-

vature. Furthermore, Heaviside's operational calculus was rated 

as one of the three most important discoveries of the late 19th 

Century.  

Heaviside was elected a Fellow of the Royal Society in 1891, 

perhaps the greatest honor he received. However it is doubtful if 

many people understand the greatness and significance of the 

achievements of this sad misunderstood genius. 

One of Heaviside’s ideas was that since Newton’s gravity law 

and Coulomb’s law are alike, it should be analyzed if there is a 

further analogy. This resulted in his brilliant 1893 paper: “A gra-

vitational and electromagnetic analogy”. 

In the end of last millennium, Oleg Jefimenko picked up Hea-

viside’s paper, and developed the theory further in several out-

standing books, by observing that Maxwell’s equations are valid 

locally, but should be understood as provoked by electric charges 

at a distance. Hence, the retardation of the fields by the speed of 

light is a crucial element to describe electromagnetic events, and 

should be formulated mathematically. 

 
1. Causal gravity with retarded time quantities 

Since electromagnetism and gravity are causal, an equation 

describing a general event cannot express at the same time the 

cause and the effect. Jefimenko defines the “retarded” time in his 

equations that describes the effect of an event at a time 

t t r c′ = −  in which r  is the distance between cause and ef-

fect, and c  the propagation velocity of the fields. Also the 



 2 

2017 Feb 12, 2017 

present position vector 0r  can be expressed in terms of the re-

tarded position: 0 r c= −r r v . (1) 

Herein, the quantities r  and v  are retarded quantities.  

Jefimenko  found the gravity field created by a point mass in 

arbitrary motion as follows in the section 5-4: 

( )
2

3 2 23
1

1

m r v r
G

c c c cr rc

        =− − − + × − ×      
   −     

v v v
g r r r

r v

ɺ

i

 (2) 

This gravity field is measured for a point mass with instant veloc-

ity v  and instant acceleration vɺ  at a distance r . 

Heaviside’s gravity equation, found in 1893, is the same as 

above for non-accelerating masses. It can be written in terms of 

the present position, as defined in eq.(1):  
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2. Two masses falling in a gravity field 

In the Example 13-2.8, Jefimenko takes two masses m  and m′  

that are falling in a gravity field. When one mass is released, it 

falls with the acceleration of the gravity field. The second mass 

that is released however will also exert an acceleration upon the 

first mass, which is described by the eq.(2). 

If the masses are sufficiently close to each-other, the retarda-

tion can be neglected and the eq.(2) can be written as : 
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Herein r  is the distance between the masses. We use a less ap-

proximate equation as Jefimenko to analyze the example further 

than he did. Eq.(3) can be written as: 
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The two first terms represent the attraction of the masses m  

and m′ , which can here be regarded outside the scope of inves-

tigation, since the analysis concerns here the falling in the exter-

nal gravity field, represented by a .  

It is however clear that the first term will in many cases be 

larger than the third term. The second term is zero if the masses 

fall from the same height, but the last two terms vanish if the 

masses are both in line with the fall direction. In that case, both 

masses will fall at the same acceleration except that they will at-

tract each-other by the first term. After an infinite time, the veloc-

ity becomes the speed of light.  

In the case that the two masses are falling at the same height, 

one can investigate the last term of eq.(5) and disregard the two 

first terms for the time being. 

The acceleration by the last term must be added to the origi-

nal acceleration a , and in the starting position, this results in:  
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Since we can also write: 
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or with eq.(5) and when considering that : 

0 1 ... nv v v c< < < <  for a large n , and the distance r  is con-

sidered a constant, it results that, under certain conditions : 
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The velocity for a large n  depends from the field retardations 

between the masses m  and m′ , and so, from the distance r  

between the masses and the actual speeds. If the speeds are very 

high, the communication speed of the fields between the masses 

decreases.  

It follows that the acceleration in eq.(7) tends to increase as 

long as the velocity remains below the velocity nv Gm r< . If  

nv Gm r> , the acceleration tends to reduce. (8)(9) 

Hence, I have proven that the equation v Gm r=   (10) 

is an intrinsic gravity equation and that in gravity fields, the fall-

ing velocity stabilizes to a limited value, in principle after an infi-

nite time. Remark also that this velocity has nothing to do at all 

with the orbital velocity in a circular orbit, because the value of 

r  id the distance between the masses m  and m′ , and not the 

height in a gravity field.  

It is thus expectable that when objects are falling, the value 

that is found is dependent from the communication between 

gravity masses, but the result of eq.(10) is surprising. 

 
3. Planck length found by gravitomagnetism  

If the masses m  and m′  are elementary de Broglie half-

particles that can be represented by a wave with wavelength λ  , 

the distance between them is then assumed to be 2r λ= . 

The well-known equation of energy equivalence 

 
2mc hν=  (11) 

can then be used in the eq.(10), of which the velocity is then c , 

and then becomes, after some elementary manipulations:  

 
32Gh cλ =  (12) 

It can be concluded that the Planck length can be deduced 

from the physical situation of falling elementary masses in a 

gravity field, stabilizing by self-acceleration at the speed of light. 

Remark that an important difference here with the transmis-

sion of light is that we have masses and not waves. Hence, the 

propagation speed is not that of a wave in a medium, but that of 

rest masses at the speed of light.  
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In the case of half-particles or even particles falling at the 

same height at the speed of light, the first term eq.(4) has also 

become zero, which means that eq.(12) becomes an exact solu-

tion. 

 

4. Conclusion 

In this paper, it has been found that two particles, freely fall-
ing at the same height in a gravity field, will get self-accelerated 
beyond the acceleration value of the gravity field in which the 
masses fall. The velocity is however limited by a stabilization 
velocity given by eq.(10). 

When the finding is applied to small particles for a velocity at 
the speed of light, we find that the distance between the masses 
in order to obtain that speed must be given as a Planck length. 

Hence, some very small particles such as maybe gravitons or 
neutrinos could well be described by the Planck dimensions and 
represent a reality, as found in this paper. They could propagate 

as fast as the speed of light without being propagated waves, but 
real particles with a rest mass. 
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