Radius of single fluxon electron model identical with classical electron radius

U. Kayser-Herold

12 February 2017

Abstract

Analytical determination of the magnetic flux included in the electron's dipole field - with consideration of magnetic flux quantization - reveals that it precisely comprises one magnetic flux quantum Φ_0 . The analysis further delivers a redefinition of classical electron radius r_e by a factorized relation among electron radius r_e , vacuum permeability μ_0 , magneton μ_B and fluxon Φ_0 , exclusively determined by the electron's quantized magnetic dipole field:

 $r_e = \mu_0 \mu_B (\Phi_0)^{-1} = e^2 / 4\pi \epsilon_0 m_e c^2$

The single fluxon electron model further enables analytical determination of its vector potential at r_e : $\vec{A}_{re} = \vec{\Phi}_0/2\pi r_e$ and canonical angular momentum: $e\vec{A}_{re} 2 \pi r_e = \hbar/2$.

Consideration of flux-quantization supports a toroidal electron model.

1 Introduction

QFT uncertainty relations generally restrict a precise definition of whatsoever electron structure. Nonetheless it is possible to define and interpret mathematical or statistical structure elements like r_e or λ_C without violating QFT-rules. Among the deficiencies of existing electron models is the unknown magnetic flux Φ_{el} associated its magneton μ_B . [1], [2]

At the other hand, if flux quantization was a universal principle it should generally apply to all microphysical magnetic fields like that of the electron's dipole field. [3], [4] Following logical reasoning it might thus be justified to postulate flux quantization as an axiomatic basis for heuristic assignment of at least 1 fluxon (or an integer multiple) to the electron' vacuum dipole field.

In this article, r_e designates the classical (electrostatically) and r_m the QFT (magnetostatically) determined electron radius.

As there exists no unambiguous relationship among magnetic momentum and magnetic flux, a "try and error" method based on flux quantization could lead to a precise solution. In addition, such approach would substantially simplify determination and interpretation of r_m , vector-potential A_m and spin angular momentum $\hbar/2$.

Thus let us start with a general determination of magnetic flux Φ of a dipole-field traversing its own equatorial plane p_e , as a function of a delimiting circle with variable radius r. Hence r will act as lower integration limit and ∞ as hypothetical upper limit. The aim is to identify a characteristic radius r_m for which precisely one fluxon passes through p_e , outside of delimiting $r_m : (r > r_m)$. (Note that this definition of r_m only makes sense in the equatorial plane p_m .) Thus r_m should not be confused with a spherical radius.

If Parson's toroidal electron model was considered, r_m might be identical with the main toroidal radius which offers the possibility to determine the vector potential \vec{A}_m at r_m as well as canonical angular momentum \vec{L}_{cm} . [5], [6], [7]

2 The dipole field of μ_B

Let us start with an analysis of a classical dipole induction field $\vec{B}_{(\vec{\Theta},\vec{r})}$, to approximate the electron's dipole (vacuum) field outside of a hypothetical microscopic current loop generating its magneton μ_B .

$$\vec{B}_{(\vec{\Theta},\vec{r})} \approx \mu_0 \left(\frac{2\,\mu_B \cos\Theta}{4\,\pi\,r^3} \,\hat{\mathbf{r}} + \frac{\mu_B \sin\Theta}{4\,\pi\,r^3} \hat{\boldsymbol{\Theta}} \right) \tag{1}$$

In (1), $\hat{\mathbf{r}}$ designates the radius unit vector, r the radial distance, $\hat{\mathbf{\Theta}}$ the polar unit angle, Θ the polar angle, μ_b Bohr's magneton and μ_0 vacuum permeability. Within the scope of our analysis we can restrict ourselves to the equatorial (x-y) plane p_e , where the \vec{B} -field perpendicularly crosses p_e along the z-axis. Hence in p_e the following simplifications are justified for all points in $p_e : \Theta = \pi/2 = \text{const.} \rightarrow \cos \Theta = 0$, $\sin \Theta = 1$. Thus the first term in brackets in (1) vanishes:

$$|\vec{B}(\vec{r})| = \frac{\mu_0 \,\mu_B}{4 \,\pi \,r^3} \tag{2}$$

Let $da = 2 \pi r dr$ denote a circular surface differential at radius r in p_e , then the magnetic flux differential $d\Phi$ through da is:

$$d\Phi = B(r) \, da = B(r) 2 \,\pi \, r \, dr \tag{3}$$

Let $\Phi(r)$ designate the flux through p_e from ∞ to a delimiting circle of radius r. Thus r acts as the lower integration limit for:

$$\Phi(r) = \int_{r}^{\inf} d\Phi = 2\pi \int_{r}^{\inf} B(r) r \, dr \tag{4}$$

Substitution with (2) in (4):

$$\Phi(r) = \frac{\mu_0 \,\mu_B}{2} \int_r^{\inf} \frac{dr}{r^2} = \frac{\mu_0 \,\mu_B}{2 \,r} \tag{5}$$

From (5) we obtain the desired function $r = f(\Phi)$:

$$r = \frac{\mu_0 \ \mu_B}{2 \ \Phi} \tag{6}$$

As the objective of this analysis is to determine the radius r_m delimiting one fluxons Φ_0 outside of $r = r_m$ let us substitute in (6) $\Phi = \Phi_0 = h/2e$ and rename r by r_m .

$$r_m = \frac{\mu_0 \,\mu_B}{2 \,\Phi_0} = \frac{\mu_0 \,\mu_B \,e}{h} = \,\mu_0 \,\mu_B \,(\Phi_0)^{-1} = \mu_0 \,\mu_B \,K_J \tag{7a}$$

 $(K_J = \text{Josephson's constant})$

Substitution in (7a) with $\mu_0 = 1/\epsilon_0 c^2$, $\mu_B = e h/4 \pi m_e$ and $\Phi_0 = h/2 e$ yields:

$$r_m = \frac{e^2}{4\pi\epsilon_0 m_e c^2} = r_e \tag{7b}$$

Thus $r_m = r_e$ is a magnetically determined equivalent of the classical electron radius r_e . [1, 3]

If above single fluxon electron model was combined with a toroidal electron model, one fluxon would be confined within a circle of radius r_m , as r_m would delimit the external $(r > r_m)$ from the internal $(r < r_m)$ dipole field.

3 Vector-potential at A_{rm}

is determined by the condition that one flux on $\Phi_0 = A_{rm} 2 \pi r_m$ confined within a circle of radius r_m :

$$A_{rm} = \Phi_0 / 2\pi r_m = \frac{h \,\epsilon_0 \, m_e \, c^2}{2 \,\pi e^3} \tag{8a}$$

4 Phase-shift

Toroidal electron models hypothesize that the charge e might propagate along a circular filament resembling a current-loop of main radius r_m with magnetic momentum μ_B . In above toroidal electron model the charge e would interact with the vector-potential A_{rm} along its circular pathway given by r_m . This implies that if a probability wave $\Psi(\vec{r})$ was assignable to e - propagating along a circle of radius r_m a phase-shift

$$\delta_{rm} = \frac{e}{\hbar} A_{rm} r_m \oint_0^{2\pi} d\varphi = \frac{e \Phi_0}{\hbar} = \pi$$
(9)

might occur. Full periodicity 2π would however require in (9) an upper integration limit of 4π or two fluxons (2 $\Phi_0 = \hbar/e$) as initially conjectured by F. London [3].

5 Canonical angular momentum $\hbar/2$

Consider a point-like charge q of mass m at location \vec{r} moving in the x-y plane with velocity \vec{r} , through a magnetostatic field with vector-potential \vec{A}_r in the x-y plane. Its Lagrangian \mathcal{L} would be:

$$\mathcal{L} = \frac{m}{2}\vec{r}^2 + q\,\vec{A}\,\vec{r} \tag{10}$$

corresponding to canonical momentum $\vec{p_c}$:

$$\vec{p}_c = \frac{\partial \mathcal{L}}{\partial \vec{r}} = m \, \vec{r} + q \, \vec{A}_{(r)} \tag{11}$$

Note that even a stationary charged particle $(m \vec{r} = 0)$ can have a non-zero canonical momentum $q \vec{A}_r$ in presence of a magnetic field. [7] (Canonical angular momentum of an electron immersed in a macroscopic magnetic field can become by orders of magnitude larger than its own spin angular momentum.)

Hence the term $q\vec{A}_r$ in (11) can be regarded as an invisible part of canonical momentum.

The mass m in (10) and (11) usually refers to the mass of a point-like charge moving through a uniform magnetic field with vector-potential $A_{(r)}$.

Canonical angular momentum \vec{L}_c of a charged mass in motion at \vec{r} generally is:

$$\vec{L}_c = \vec{r} \times \vec{p}_c \tag{12}$$

After substitution with (11) in (12) and q = e:

$$\vec{L}_{ce} = \vec{r}_m \times (m\vec{r} + e\,\vec{A}_{rm}) \tag{13}$$

Generally, the physical state inside r_m is unknown. The mass m in (12) presumably can't be regarded as classical inertial mass, as total inertial mass m_e is already included in the electromagnetic field essentially defined by relativistic criteria (Lorentz-Abraham). Moreover, the unknown mechanical stress condition and balance inside r_q (non-electromagnetic Poincaré stress) would require to consider the relativistic stress- energy-momentum tensor inside of r_m which could theoretically neutralize the inertia inside r_m . Hence in (13) both quantities m and \vec{r} are unknown.

However heuristic reasoning suggests that in (13) either m or \vec{r} or both are zero $(m \vec{r} = 0)$ thus further calculus can tentatively be restricted to the remaining term in (13): $r_m \times q \vec{A}_r$. Substitution in (13) with $r = r_m$ and $\vec{A}_{rm} = \Phi_0/2\pi r_m$:

$$\vec{L}_{1c} = e \, \vec{r_m} \times \vec{\Phi_0} / 2 \, \pi r_m = e \, \Phi_0 / 2\pi = \vec{\hbar} / 2 \tag{14}$$

(14) can be interpreted as electromagnetic field angular momentum represented by the Poynting-vector field $\vec{S}_{(r)} = \vec{E}_{(r)} \times \vec{H}_{(r)}$, and corresponding momentumdensity field \vec{S}/c^2 around *e* where the electron's Coulomb-field \vec{E} intermeshes with its own dipole-field $\vec{H}_{(r)}$.[7] The radius determined in [7] was slightly below the expected radius r_e , under the presumption that electromagnetic angular momentum should precisely amount $\hbar/2$. The mismatch presumably results from the conjectured spherical electron, instead of a toroidal model, which would deliver the correct electromagnetic angular momentum for a suitably adjusted small toroidal radius.

The relation $e \vec{A}_{rm} \times \vec{r_m} = e \vec{\Phi_0}/2\pi$ in (14) thus represents the spin-angular momentum incorporated in the electron's own electromagnetic field, as confirmed by substituting: $\Phi_0 = h/2e$:

$$L_{el} = \frac{1}{2\pi} e \Phi_0 = \frac{1}{2\pi} e \frac{h}{2e} = e \frac{\hbar}{2e} = \hbar/2$$
(15)

As the identical results of (14) and (15) precisely match up with the electron's spin angular momentum the initial conjecture $m \vec{r} = 0$ may be proven valid.

6 Alternative dual-fluxon electron model

Obviously above calculus would also apply for a dual-fluxon hypothesis using $\Phi = 2 \Phi_0 = h/e$. The respective ratios of results from dual- vs. single fluxon models are:

Electron-Radius = 0,5:1 - Vector-potential = 4:1 - Phase-shift = 2:1Canonical angular momentum = 2:1.

7 Synopsis/Conclusion

Magnetic flux qantization delivers alternative criteria for determination of electron radius $r_e = r_m$, vector-potential A_{rm} , phase-shift δ_{rm} and canonical angular momentum $\mathcal{L}_e = \hbar/2$. Results are identical and commensurable with established data.

It is conjectured that spin angular momentum $\hbar/2$ is included in the electron's electromagnetic field. Figuring out the term $e \vec{A}_{(rm)}$ of canonical angular momentum in (13) shows that it is identical with spin angular momentum $\hbar/2$. The results support a toroidal electron model. [5], [6]

References

- Rohrlich, F. Classical Charged Particles, World Scientific Pub Co Inc, 2007, ISBN: 9789812700049
- [2] Pearle, P. 1982 Classical electron models; Springer US, Online ISBN 978-1-4757-0650-5;
- [3] F. London, Superfluids, Macroscopic Theory of Superconductivity, Structure of Matter Vol. 1 (Wiley, New York, 1950), p. 152;

- [4] L. Onsager, Phys. Rev. Lett. 7,50 (1961);
- [5] Kurtnalty.com/The_Parson_Ring.pdf
- [6] http://research.omicsgroup.org/index.php/Toroidal_ring_model
- [7] http://isites.harvard.edu/fs/docs/icb.topic1327064.files/143bF2013Sec10.pdf
- Blinder, S M: Singularity-free electrodynamics for point charges and dipoles: a classical model for electron self-energy and spin, Eur. J. of Phys.24 (2003) 271-275;