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Abstract

Analytical determination of the magnetic flux included in the elec-
tron’s dipole field - with consideration of magnetic flux quantization -
reveals that it precisely comprises one magnetic flux quantum Φ0. The
analysis further delivers a redefinition of classical electron radius re by
a factorized relation among electron radius re, vacuum permeability µ0,
magneton µB and fluxon Φ0, exclusively determined by the electron’s
quantized magnetic dipole field:

re = µ0µB (Φ0)−1 = e2/4πε0mec
2

The single fluxon electron model further enables analytical determination
of its vector potential at re: ~Are = ~Φ0/2πre and canonical angular mo-
mentum: e ~Are 2 πre = ~/2.
Consideration of flux-quantization supports a toroidal electron model.

1 Introduction

QFT uncertainty relations generally restrict a precise definition of whatsoever
electron structure. Nonetheless it is possible to define and interpret mathemat-
ical or statistical structure elements like re or λC without violating QFT-rules.
Among the deficiencies of existing electron models is the unknown magnetic flux
Φel associated its magneton µB . [1], [2]
At the other hand, if flux quantization was a universal principle it should gener-
ally apply to all microphysical magnetic fields like that of the electron’s dipole
field. [3], [4] Following logical reasoning it might thus be justified to postulate
flux quantization as an axiomatic basis for heuristic assignment of at least 1
fluxon (or an integer multiple) to the electron’ vacuum dipole field.
In this article, re designates the classical (electrostatically) and rm the QFT
(magnetostatically) determined electron radius.
As there exists no unambiguous relationship among magnetic momentum and
magnetic flux, a ”try and error” method based on flux quantization could lead
to a precise solution. In addition, such approach would substantially simplify
determination and interpretation of rm, vector-potential Am and spin angular
momentum ~/2.
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Thus let us start with a general determination of magnetic flux Φ of a dipole-field
traversing its own equatorial plane pe, as a function of a delimiting circle with
variable radius r. Hence r will act as lower integration limit and ∞ as hypo-
thetical upper limit. The aim is to identify a characteristic radius rm for which
precisely one fluxon passes through pe, outside of delimiting rm : (r > rm).
(Note that this definition of rm only makes sense in the equatorial plane pm.)
Thus rm should not be confused with a spherical radius.
If Parson’s toroidal electron model was considered, rm might be identical with
the main toroidal radius which offers the possibility to determine the vector
potential ~Am at rm as well as canonical angular momentum ~Lcm. [5], [6], [7]

2 The dipole field of µB

Let us start with an analysis of a classical dipole induction field ~B(~Θ,~r), to

approximate the electron’s dipole (vacuum) field outside of a hypothetical mi-
croscopic current loop generating its magneton µB .

~B(~Θ,~r) ≈ µ0

(2 µB cosΘ

4 π r3
r̂ +

µB sinΘ

4 π r3
Θ̂
)

(1)

In (1), r̂ designates the radius unit vector, r the radial distance, Θ̂ the polar
unit angle, Θ the polar angle, µb Bohr’s magneton and µ0 vacuum permeability.
Within the scope of our analysis we can restrict ourselves to the equatorial (x-y)

plane pe, where the ~B-field perpendicularly crosses pe along the z-axis. Hence
in pe the following simplifications are justified for all points in pe : Θ = π/2 =
const. → cosΘ = 0, sinΘ = 1. Thus the first term in brackets in (1) vanishes:

| ~B(~r)| = µ0 µB
4 π r3

(2)

Let da = 2 π r dr denote a circular surface differential at radius r in pe, then
the magnetic flux differential dΦ through da is:

dΦ = B(r) da = B(r)2 π r dr (3)

Let Φ(r) designate the flux through pe from ∞ to a delimiting circle of radius
r. Thus r acts as the lower integration limit for:

Φ(r) =

∫ inf

r

dΦ = 2π

∫ inf

r

B(r) r dr (4)

Substitution with (2) in (4):

Φ(r) =
µ0 µB

2

∫ inf

r

dr

r2
=
µ0 µB

2 r
(5)
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From (5) we obtain the desired function r = f(Φ):

r =
µ0 µB

2 Φ
(6)

As the objective of this analysis is to determine the radius rm delimiting one
fluxons Φ0 outside of r = rm let us substitute in (6) Φ = Φ0 = h/2e and rename
r by rm.

rm =
µ0 µB
2 Φ0

=
µ0 µB e

h
= µ0 µB (Φ0)−1 = µ0 µB KJ (7a)

(KJ = Josephson’s constant)

Substitution in (7a) with µ0 = 1/ε0 c
2

, µB = e h/4 π me and Φ0 = h/2 e yields:

rm =
e2

4 π ε0 me c2
= re (7b)

Thus rm = re is a magnetically determined equivalent of the classical electron
radius re. [1, 3]
If above single fluxon electron model was combined with a toroidal electron
model, one fluxon would be confined within a circle of radius rm, as rm would
delimit the external (r > rm) from the internal (r < rm) dipole field.

3 Vector-potential at Arm

is determined by the condition that one fluxon Φ0 = Arm2 π rm confined within
a circle of radius rm:

Arm = Φ0/2πrm =
h ε0 me c

2

2 πe3
(8a)

4 Phase-shift

Toroidal electron models hypothesize that the charge e might propagate along
a circular filament resembling a current-loop of main radius rm with magnetic
momentum µB . In above toroidal electron model the charge e would interact
with the vector-potential Arm along its circular pathway given by rm.This im-
plies that if a probability wave Ψ(~r) was assignable to e - propagating along a
circle of radius rm a phase-shift

δrm =
e

~
Arm rm

∮ 2π

0

dϕ =
eΦ0

~
= π (9)

might occur. Full periodicity 2π would however require in (9) an upper inte-
gration limit of 4π or two fluxons (2 Φ0 = ~/e) as initially conjectured by F.
London [3].
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5 Canonical angular momentum ~/2
Consider a point-like charge q of mass m at location ~r moving in the x−y plane
with velocity ~̇r, through a magnetostatic field with vector-potential ~Ar in the
x-y plane. Its Lagrangian L would be:

L =
m

2
~̇r2 + q ~A ~̇r (10)

corresponding to canonical momentum ~pc:

~pc =
∂ L
∂ ~̇r

= m~̇r + q ~A(r) (11)

Note that even a stationary charged particle (m~̇r = 0) can have a non-zero

canonical momentum q ~Ar in presence of a magnetic field. [7] (Canonical angular
momentum of an electron immersed in a macroscopic magnetic field can become
by orders of magnitude larger than its own spin angular momentum.)

Hence the term q ~Ar in (11) can be regarded as an invisible part of canonical
momentum.
The mass m in (10) and (11) usually refers to the mass of a point-like charge
moving through a uniform magnetic field with vector-potential A(r).

Canonical angular momentum ~Lc of a charged mass in motion at ~r generally is:

~Lc = ~r × ~pc (12)

After substitution with (11) in (12) and q = e:

~Lce = ~rm × (m~̇r + e ~Arm) (13)

Generally, the physical state inside rm is unknown. The mass m in (12) pre-
sumably can’t be regarded as classical inertial mass, as total inertial mass me is
already included in the electromagnetic field essentially defined by relativistic
criteria (Lorentz-Abraham). Moreover, the unknown mechanical stress condi-
tion and balance inside rq (non-electromagnetic Poincaré stress) would require
to consider the relativistic stress- energy-momentum tensor inside of rm which
could theoretically neutralize the inertia inside rm. Hence in (13) both quanti-

ties m and ~̇r are unknown.
However heuristic reasoning suggests that in (13) either m or ~̇r or both are zero

(m~̇r = 0) thus further calculus can tentatively be restricted to the remaining

term in (13): rm× q ~Ar. Substitution in (13) with r = rm and ~Arm = Φ0/2πrm:

~L1c = e ~rm × ~Φ0/2 πrm = eΦ0/2π = ~~/2 (14)

(14) can be interpreted as electromagnetic field angular momentum represented

by the Poynting-vector field ~S(r) = ~E(r) × ~H(r), and corresponding momentum-

density field ~S/c2 around e where the electron’s Coulomb-field ~E intermeshes
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with its own dipole-field ~H(r).[7] The radius determined in [7] was slightly below
the expected radius re, under the presumption that electromagnetic angular mo-
mentum should precisely amount ~/2. The mismatch presumably results from
the conjectured spherical electron, instead of a toroidal model, which would
deliver the correct electromagnetic angular momentum for a suitably adjusted
small toroidal radius.
The relation e ~Arm× ~rm = e ~Φ0/2π in (14) thus represents the spin-angular mo-
mentum incorporated in the electron’s own electromagnetic field, as confirmed
by substituting: Φ0 = h/2e:

Lel =
1

2π
eΦ0 =

1

2π
e
h

2 e
= e

~
2e

= ~/2 (15)

As the identical results of (14) and (15) precisely match up with the electron’s

spin angular momentum the initial conjecture m~̇r = 0 may be proven valid.

6 Alternative dual-fluxon electron model

Obviously above calculus would also apply for a dual-fluxon hypothesis using
Φ = 2 Φ0 = h/e). The respective ratios of results from dual- vs. single fluxon
models are:
Electron-Radius = 0, 5 : 1 - Vector-potential = 4 : 1 - Phase-shift = 2 : 1
Canonical angular momentum = 2 : 1.

7 Synopsis/Conclusion

Magnetic flux qantization delivers alternative criteria for determination of elec-
tron radius re = rm, vector-potential Arm, phase-shift δrm and canonical an-
gular momentum Le = ~/2. Results are identical and commensurable with
established data.
It is conjectured that spin angular momentum ~/2 is included in the electron’s

electromagnetic field. Figuring out the term e ~A(rm) of canonical angular mo-
mentum in (13) shows that it is identical with spin angular momentum ~/2.
The results support a toroidal electron model. [5], [6]
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