Primality Criterion for Safe Primes

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

February 12, 2017

Abstract: Polynomial time primality test for safe primes is introduced . Keywords: Primality test , Polynomial time , Prime numbers . AMS Classification: 11A51 .

1 Introduction

In 1750 Euler stated following theorem

Theorem 1.1. Let $p \equiv 3 \pmod{4}$ be prime, then 2p + 1 is prime iff $2p + 1 \mid 2^p - 1$.

In 1775 Lagrange gave a proof of the theorem . In this note we provide a proof to the theorem that is similar to the Euler-Lagrange theorem .

2 The Main Result

Theorem 2.1. Let $p \equiv 5 \pmod{6}$ be prime, then 2p + 1 is prime iff $2p + 1 \mid 3^p - 1$.

Proof. Suppose q = 2p + 1 is prime. $q \equiv 11 \pmod{12}$ so 3 is quadratic residue module q and it follows that there is an integer n such that $n^2 \equiv 3 \pmod{q}$. This shows $3^p = 3^{(q-1)/2} \equiv n^{q-1} \equiv 1 \pmod{q}$ showing 2p + 1 divides $3^p - 1$.

Conversely, let 2p+1 be factor of 3^p-1 . Suppose that 2p+1 is composite and let q be its least prime factor. Then $3^p \equiv 1 \pmod{q}$ and so we have $p = k \cdot \operatorname{ord}_q(3)$ for some integer k. Since p is prime there are two possibilities $\operatorname{ord}_q(3) = 1$ or $\operatorname{ord}_q(3) = p$. The first possibility cannot be true because q is an odd prime number so $\operatorname{ord}_q(3) = p$. On the other hand $\operatorname{ord}_q(3) \mid q-1$, hence p divides q-1. This shows q > p and it follows $2p+1 > q^2 > p^2$ which is contradiction since p > 3, hence 2p + 1 is prime.

Q.E.D.