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Abstract

We discuss finite quantum theory (FQT) developed in our previous publica-
tions and give a simple explanation that standard quantum theory is a special
case of FQT in the formal limit p → ∞ where p is the characteristic of the
ring or field used in FQT. Then we argue that FQT is a more natural basis for
quantum computing than standard quantum theory.
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1 Motivation

Classical computer science is based on discrete mathematics for obvious reasons. Any
computer can operate only with a finite number of bits, a bit represents the minimum
amount of information and the notions of one half of the bit, one third of the bit etc.
are meaningless. Continuous mathematics can be used in computer science only as
a technique for approximate numerical calculations but the foundation of computer
science does not involve continuous mathematics.

However, quantum computing is based on the notion of qubit which is a
quantum superposition of bits with complex coefficients. As a consequence, quantum
computing automatically becomes a theory involving standard notions of continuous
mathematics (infinitely small/large, continuity etc.). Is this situation natural? For
understanding the answer to this question the following historical remarks might be
useful.

Historically the notions of infinitely small/large, continuity etc. have
arisen from a belief based on everyday experience that any macroscopic object can
be divided into arbitrarily large number of arbitrarily small parts. Classical physics
is based on classical mathematics developed mainly when people did not know about
existence of elementary particles. However, from the point of view of the present
knowledge those notions look problematic.

For example, a glass of water contains approximately 1025 molecules. We
can divide this water by ten, million, etc. but when we reach the level of atoms and
elementary particles the division operation loses its meaning and we cannot obtain
arbitrarily small parts. So, any description of macroscopic phenomena using conti-
nuity and differentiability can be only approximate. In nature there are no continuous
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curves and surfaces. For example, if we draw a line on a sheet paper and look at this
line by a microscope then we will see that the line is strongly discontinuous because
it consists of atoms.

Analogously, in computer science a bit is an analog of elementary particle
and, as noted above, a bit is indivisible. Therefore in computer science standard
division can be used only for approximate calculations in situations when the number
of bits is large but in the general case standard division cannot be treated as a
fundamental operation.

Classical mathematics is not in the spirit of the philosophy of quantum
theory and the Viennese school of logical positivism that ”A proposition is only cog-
nitively meaningful if it can be definitively and conclusively determined to be either
true or false”. This mathematics proceeds from axioms the validity of which can-
not be verified. For example, it cannot be determined whether the statement that
a+ b = b+ a for all natural numbers a and b is true or false.

Another example follows. Let us pose a problem whether 10+20 equals
30. Then we should describe an experiment which will solve this problem. Any
computer can operate only with a finite number of bits and can perform calculations
only modulo some number p. Say p = 40, then the experiment will confirm that
10+20=30 while if p = 25 then we will get that 10+20=5. So the statements that
10+20=30 and even that 2 ·2 = 4 are ambiguous because they do not contain explicit
information on how they should be verified. On the other hand, the statements

10 + 20 = 30 (mod 40), 10 + 20 = 5 (mod 25), 2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such an information. So only operations
modulo some number are well defined. This example shows that classical mathemat-
ical is based on the implicit assumption that in principle one can have any desired
amount of resources and, in particular, one can work with computers having as many
bits as desired.

The official birth of quantum theory is 1925, and even the word ”quan-
tum” reflects a belief that nature is discrete. The founders of this theory were highly
educated physicists but they knew only classical mathematics because even now math-
ematical education at physics departments does not involve discrete and finite math-
ematics.

In view of the above remarks it is reasonable to think that in quantum
theory classical mathematics might be used for solving special problems but ultimate
quantum theory should not be based on classical mathematics. At present, in spite
of efforts of thousands of highly qualified physicists and mathematicians to construct
such a theory on the basis of classical mathematics, this problem has not been solved.
In particular, quantum gravity contains infinities which cannot be removed by renor-
malization. Nevertheless the following question arises. If classical mathematics is not
natural in quantum theory then why is it proven to be so successful for solving many
quantum problems?

One of the key principles of physics is the correspondence principle. It
means that at some conditions any new theory should reproduce results of the old
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well tested theory with a good accuracy. Usually the correspondence principle is
applied such that the new theory contains a parameter and reproduces results of
the old theory in a formal limit when the parameter is infinitely large or infinitely
small. Known examples are that nonrelativistic theory is a special case of relativistic
one in the formal limit c → ∞ and classical (i.e. nonquantum) theory is a special
case of quantum one in the formal limit h̄ → 0. In view of the above remarks it is
reasonable to think that standard continuous quantum theory is a special case of a
quantum theory based on other mathematics in the formal limit when some parameter
becomes zero or infinity. So a problem arises what mathematics should be used in
ultimate quantum theory and what parameter describes a correspondence between
the new quantum theory and standard one.

Classical mathematics starts from natural numbers and the famous Kro-
necker’s expression is: ”God made the natural numbers, all else is the work of man”.
However here only addition and multiplication are always possible. In order to make
addition invertible we introduce negative integers. They do not have a direct physi-
cal meaning (e.g. the phrases ”I have -2 apples” or ”this computer has -100 bits of
memory” are meaningless) and their only goal is to get the ring of integers Z.

However, if instead of all natural numbers we consider only a set Rp of p
numbers 0, 1, 2, ... p− 1 where addition and multiplication are defined as usual but
modulo p then we get a ring without adding new elements. If, for example, p is odd
then one can consider Rp as a set of elements {0,±i} (i = 1, ...(p− 1)/2). If elements
of Z are depicted as integer points on the x axis of the xy plane then it is natural to
depict the elements of Rp as points of the circumference in Fig. 1.

Figure 1: Relation between Rp and Z

Let f be a function from Rp to Z such that f(a) has the same notation in
Z as a in Rp. Then for elements a ∈ Rp such that |f(a)| � p, addition, subtraction
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and multiplication are the same as in Z. In other words, for such elements we do not
feel the existence of p. Indeed, for elements aj ∈ Rp (j = 1, 2) such that |f(aj)| <
[(p−1)/2]1/2 we have that f(a1±a2) = f(a1)±f(a2) and f(a1a2) = f(a1)f(a2) which
shows that f is a local isomorphism of some vicinities of zero in Rp and Z.

As explained in textbooks, both Rp and Z are cyclic groups with respect
to addition. However, Rp has a higher symmetry because, in contrast to Z, Rp has a
property which we call strong cyclicity: for any fixed a ∈ Rp any element of Rp can
be obtained from a by successively adding 1.

When p increases, the bigger and bigger part of Rp becomes the same as
Z. Hence Z can be treated as a degenerate case of Rp in the formal limit p → ∞
because in this limit operations modulo p disappear and strong cyclicity is broken.
Therefore, at the level of rings standard mathematics is a degenerate case of finite
one when formally p→∞.

The transition from Rp to Z is similar to the procedure, which in group
theory is called contraction. This notion is used when the Lie algebra of a group with
a lower symmetry can be treated as a formal limit of the Lie algebra of a group with
a higher symmetry when some parameter goes to zero or infinity. Known examples
are the contraction from the de Sitter to the Poincare group and from the Poincare
to the Galilei group.

The above construction has a well-known historical analogy. For many
years people believed that the Earth was flat and infinite, and only after a long
period of time they realized that it was finite and curved. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature. Analogously one might think that the set of numbers describing physics
in our Universe has a ”curvature” defined by a very large number p but we do not
notice it when we deal only with numbers much less than p.

One might argue that introducing a new fundamental constant p is not
justified. However, as noted above, history of physics tells us that more general
theories arise when a parameter, which in the old theory was treated as infinitely
small or infinitely large, becomes finite. Therefore, it is natural to think that in
quantum physics the quantity p should be not infinitely large but finite.

From mathematical point of view standard quantum theory can be treated
as a theory of representations of special real Lie algebras in complex Hilbert spaces.
In Refs. [1, 2, 3, 4] and other publications we have proposed an approach called FQT
(Finite Quantum Theory) when Lie algebras and representation spaces are over a
finite field or ring with characteristic p. It has been shown that in the formal limit
p → ∞ FQT recovers predictions of standard continuous theory. Therefore classical
mathematics describes many experiments with a high accuracy as a consequence of
the fact that the number p is very large.

In Sec. 2 we explicitly describe the correspondence between FQT and
standard quantum theory and in Sec. 3 we argue that FQT is a natural basis for the
theory of quantum computing.
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2 Correspondence between FQT and standard quan-

tum theory

In standard quantum theory one starts from the choice of the space-time background.
The background has the symmetry group and the operators characterizing the system
under consideration should satisfy the commutation relation of the Lie algebra for this
group. However, as argued in Ref. [4], the approach should be opposite to standard
one. Every quantum system is described by a set of operators which somehow com-
mute with each other and the rules of their commutation define the symmetry algebra.
Therefore in quantum theory one should start not from the space-time background,
which is the classical notion, but from the symmetry algebra. Then every physical
system is described by a representation of this algebra by Hermitian operators in a
separable Hilbert space H. We will use a ”tilde” to denote elements of Hilbert spaces
and complex numbers.

Let (ẽ1, ẽ2, ...) be a basis in H. This means that x̃ can be represented as

x̃ = c̃1ẽ1 + c̃2ẽ2 + ... (1)

where (c̃1, c̃2, ...) are complex numbers. It is assumed that there exists a complete
set of commuting selfadjoint operators (Ã1, Ã2, ...) in H such that each ẽi is the
eigenvector of all these operators: Ãj ẽi = λ̃jiẽi. Then the elements (ẽ1, ẽ2, ...) are
mutually orthogonal: (ẽi, ẽj) = 0 if i 6= j where (...,...) is the scalar product in H. In
that case the coefficients can be calculated as

c̃i =
(ẽi, x̃)

(ẽi, ẽi)
(2)

Their meaning is that |c̃i|2(ẽi, ẽi)/(x̃, x̃) represents the probability to find x̃ in the
state ẽi. In particular, when x̃ and the basis elements are normalized to one, the
probability equals |c̃i|2.

Let us note that the Hilbert space contains a big redundancy of elements,
and we do not need to know all of them. Indeed, with any desired accuracy we can
approximate each x̃ ∈ H by a finite linear combination

x̃ = c̃1ẽ1 + c̃2ẽ2 + ...c̃nẽn (3)

where (c̃1, c̃2, ...c̃n) are rational complex numbers. This is a consequence of the known
fact that the set of elements given by Eq. (3) is dense in H. In turn, this set is
redundant too. Indeed, we can use the fact that Hilbert spaces in quantum theory are
projective: ψ and cψ (c 6= 0) represent the same physical state. Then we can multiply
both parts of Eq. (3) by a common denominator of the numbers (c̃1, c̃2, ...c̃n). As
a result, we can always assume that in Eq. (3) c̃j = ãj + ib̃j where ãj and b̃j are
integers.

The meaning of the fact that Hilbert spaces in quantum theory are pro-
jective is very clear. The matter is that not the probability itself but the relative
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probabilities of different measurement outcomes have a physical meaning. We be-
lieve, the notion of probability is a good illustration of the Kronecker expression
about natural numbers (see Sect. 1). Indeed, this notion arises as follows. Suppose
that conducting experiment N times we have seen the first event n1 times, the second
event n2 times etc. such that n1+n2+... = N . We define the quantities wi(N) = ni/N
(these quantities depend on N) and wi = limwi(N) when N →∞. Then wi is called
the probability of the ith event. We see that all the information about the exper-
iment is given by a finite set of natural numbers, and all those numbers are finite.
However, in order to define probabilities, people introduce additionally the notion of
rational numbers and the notion of limit. Another example is the notion of mean
value. Suppose we measure a physical quantity such that in the first event its value
is q1, in the second event - q2 etc. Then the mean value of this quantity is defined
as (q1n1 + q2n2 + ...)/N if N is very large. Therefore, even if all the qi are integers,
the mean value might be not an integer. We again see that rational numbers arise
only as a consequence of our convention on how the results of experiments should be
interpreted.

Consider now how quantum states are described in FQT. In Sect. 1 we
described the ring Rp. It is well known that if p is prime then Rp becomes not only
the ring but also the field Fp if division is defined as usual but modulo p. We can
introduce a formal element i such that i2 = −1. Then we can consider the ring
Rp2 = Rp + iRp which consists of elements a+ bi, a, b ∈ Rp.

Analogously, one might think that it is possible to define the field Fp2 =
Fp + iFp which consists of elements a + bi, a, b ∈ Fp. However, this is not obvious
for the following reason. The definition of division as (a + bi)−1 = (a− bi)/(a2 + b2)
can be consistent only if (a2 + b2) 6= 0 in Fp if a 6= 0 or b 6= 0. A well known fact in
number theory is that this is the case if p = 3 (mod 4) while if p = 1 (mod 4) this is
not the case. A simple example is that 22 + 12 = 0 in F5.

However, a well known fact in number theory is that the field Fp2 of p2

elements can be constructed as follows. Let the equation x2 = −a0 (a0 ∈ Fp) has
no solutions in Fp. Then Fp2 can be formally defined as the set of elements a + bκ
where a, b ∈ Fp, and κ satisfies the condition κ2 = −a0. In the special case when
p = 3 (mod 4), a0 = 1 one can choose κ = i but in other cases it is always possible
to find a pair (κ, a0). In what follows for simplicity we will consider only this special
case.

In FQT one can describe quantum states by elements in a linear space V
over Rp2 or Fp2 and operators of physical quantities as operators in this space. Since
complex conjugation is the automorphism of Rp2 = Rp + iRp and the automorphism
of Fp2 = Fp + iFp if p = 3 (mod 4) then, by analogy with conventional quantum
theory, in FQT it is possible to consider situations when V is supplied by a scalar
product (...,...) such that for any x, y ∈ V and a ∈ Rp2 , (x, y) is an element of Rp2

and the following properties are satisfied:

(x, y) = (y, x), (ax, y) = ā(x, y), (x, ay) = a(x, y) (4)

Then in the space V one can choose a basis (e1, e2, ...) consisting of mutually orthog-
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onal elements such that any element x ∈ V can be represented as

x = c1e1 + c2e2 + ...cnen (5)

where the coefficients are elements of Rp2 or Fp2 . One can also formally define Her-
mitian operators A in V such that (Ax, y) = (x,Ay).

The correspondence between FQT and standard quantum theory can now
be described as follows. As noted above, every element of the Hilbert space can
be approximated with any desired accuracy by elements x̃ in Eq. (3) such that
c̃j = ãj + ib̃j where ãj and b̃j are integers. Consider now the elements x in Eq. (5)
where cj = aj + ibj. Then, as follows from the discussion in Sec. 1, for elements such
that f(aj) = ãj, f(bj) = b̃j, |f(aj)| � p, |f(bj)| � p ∀j = 1, 2, ...n the description in
terms of Hilbert spaces and spaces over Rp2 or Fp2 are practically indistinguishable.
Therefore if p is very large then for a large number of elements FQT and standard
quantum theory give practically the same results. The theories essentially differ from
each other only in the description of elements x in Eq. (5) for which some of the
numbers |f(aj)|, |f(bj)| are comparable to p. Therefore standard quantum theory
can be treated as a special case of FQT in the formal limit p→∞.

3 Discussion and conclusion

It follows from the above discussion that in FQT probabilistic interpretation can be
only approximate in situations when the coefficients in Eq. (5) are much less than p.
A difference between FQT and standard quantum theory is also as follows. As follows
from the Zassenhaus theorem [5], all irreducible representations of Lie algebras with
nonzero characteristics are finite-dimensional. As a consequence, elementary particles
in FQT are described by finite-dimensional representations, not infinite-dimensional
ones as in standard quantum theory. It is also obvious that since the ring Rp2 and
the field Fp2 are finite, infinities in FQT cannot exist in principle, in contrast to the
situation in standard quantum theory.

One can pose a problem whether the ultimate quantum theory will in-
volve FQT based on a ring or on a field. Known facts from standard algebra are
that invariance of dimension, basis and linear independence are well defined only in
spaces over a field or body. In addition, existence of division is often convenient for
calculations. At the same time, as argued in Sec. 1, in quantum theory division is
not fundamental. History of physics tells us that it is desirable to construct physical
theories with the least required notions. Therefore a problem arises whether ultimate
quantum theory can be constructed without using division at all. For the first time
this possibility has been discussed in Ref. [6]. A discussion of this problem can be
also found in Ref. [7].

We now argue why the theory of quantum computing should be based
on FQT rather than standard quantum theory. As noted in Sec. 1, the notions
of standard division, continuity etc. are fully unnatural in computer science and
when we define qubit as a quantum superposition of bits with complex coefficients we
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bring those unnatural notions to quantum computing. Then in numerical quantum
computations a problem always arises how to approximate complex numbers by a
finite set because in such calculations we can work only with such sets. This again
shows that by using complex numbers in quantum computing we create additional
artificial difficulties.

Therefore it is much more natural to define qubit as a quantum superpo-
sition of bits with coefficients from Rp2 or Fp2 . Then a question arises what value of p
should be taken for this purpose. As discussed in Refs. [4, 7], gravity can be treated
as a consequence of the fact that physics in our Universe is described by a finite ring or
field with a very large characteristic such that lnp is of the order of 1080 and therefore
p is a huge number of the order of exp(1080). However, in quantum computing there
is no need to work with such a huge number. By analogy with classical computing
problem where each computer cannot work with numbers described by a number of
bits exceeding the computer capacity, for each problem in quantum computing the
number p should be chosen such that the total number of states should not exceed
the number of states available in the quantum computer under consideration.
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