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Abstract. The Double Conformal Space-Time Algebra (DCSTA) is a high-dimensional 12D Geometric Algebra G4,8
that extends the concepts introduced with the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) G8,2
with entities for Darboux cyclides (incl. parabolic and Dupin cyclides, general quadrics, and ring torus) in spacetime
with a new boost operator. The base algebra in which spacetime geometry is modeled is the Space-Time Algebra (STA)
G1,3. Two Conformal Space-Time subalgebras (CSTA) G2,4 provide spacetime entities for points, flats (incl. worldlines),
and hyperbolics, and a complete set of versors for their spacetime transformations that includes rotation, translation,
isotropic dilation, hyperbolic rotation (boost), planar reflection, and (pseudo)spherical inversion in rounds or hyper-
bolics. The DCSTA G4,8 is a doubling product of two G2,4 CSTA subalgebras that inherits doubled CSTA entities and
versors from CSTA and adds new bivector entities for (pseudo)quadrics and Darboux (pseudo)cyclides in spacetime that
are also transformed by the doubled versors. The “pseudo” surface entities are spacetime hyperbolics or other surface
entities using the time axis as a pseudospatial dimension. The (pseudo)cyclides are the inversions of (pseudo)quadrics in
rounds or hyperbolics. An operation for the directed non-uniform scaling (anisotropic dilation) of the bivector general
quadric entities is defined using the boost operator and a spatial projection. DCSTA allows general quadric surfaces to
be transformed in spacetime by the same complete set of doubled CSTA versor (i.e., DCSTA versor) operations that are
also valid on the doubled CSTA point entity (i.e., DCSTA point) and the other doubled CSTA entities. The new DCSTA
bivector entities are formed by extracting values from the DCSTA point entity using specifically defined inner product
extraction operators. Quadric surface entities can be boosted into moving surfaces with constant velocities that display
the length contraction effect of special relativity. DCSTA is an algebra for computing with quadrics and their cyclide
inversions in spacetime. For applications or testing, DCSTA G4,8 can be computed using various software packages, such
as Gaalop, the Clifford Multivector Toolbox (for MATLAB), or the symbolic computer algebra system SymPy with the
GAlgebra module.

Introduction

The Double Conformal Space-Time Algebra (DCSTA)1 G4,8 [1] is a high-dimensional Geometric Algebra
[2][3][4][5] over the twelve-dimensional (12D) vector space2 R4,8, that extends the concepts introduced with
the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) G8,2 [6][7][8][9][10] with entities for

1We use the expression geometric algebra for Clifford algebra, and the notation Gp,q for Cl(p, q).
2Only in one instance do we use complex numbers, when we use a boost operation (37) to create a Lorentz dilation d > 1 as, e.g.,

in Fig. 2. The resulting dilation (15) is still real, but at an intermediate stage of the computation a complex value for the natural speed
β (11) is introduced. This is clearly not physical, but (as described in the paper) a useful method for computer graphics. Only for this
application, an implementation of the complex field C will be needed.
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Figure 1. Quadric and ring torus surfaces Q and their inversions in sphere S as cyclides Ω = SQS∼.

Darboux cyclides (including parabolic and Dupin cyclides, general quadrics, and ring tori) in space-time
R1,3 with a new boost (rotor) operator.

The base algebra in which space-time geometry is modeled is the Space-Time Algebra (STA) G1,3
[11][12]. Two isomorphic Conformal Space-Time subalgebras (CSTA) G2,4 = G1+1,3+1 [13] provide space-
time entities for points, flats (including flat points, lines, worldlines, planes, . . . , hyperplanes), and rounds
(including point pairs, circles, spheres, . . . , hyperspheres) and hyperbolics, and a complete set of versors
for their space-time transformations with rotation, translation, isotropic dilation, hyperbolic rotation (boost),
planar reflection, and (pseudo)spherical inversion in rounds or hyperbolics.

The double CSTA (DCSTA) G4,8 is a doubling product of two CSTA subalgebras G2,4, that inherits
doubled CSTA entities and versors from CSTA and adds new bivector entities for (pseudo)quadrics and
Darboux (pseudo)cyclides in space-time that are also transformed by the doubled versors. The “pseudo”
surface entities are space-time hyperbolics or other surface entities using the time axis as a pseudospatial
dimension. The (pseudo)cyclides are the inversions of (pseudo)quadrics in rounds or hyperbolics.

DCSTA allows general quadric surfaces to be transformed in space-time by the same complete set
of doubled CSTA versor (i.e., DCSTA versor) operations that are also valid on the doubled CSTA point
entity (i.e., DCSTA point) and the other doubled CSTA entities. Quadric surface entities can be boosted
into moving surfaces with constant velocities that display the length contraction effect of special relativity.
DCSTA also defines an operation for the directed non-uniform spatial scaling (anisotropic dilation) of the
bivector general quadric entities using the boost operator followed by a spatial projection.

The new DCSTA bivector entities for quadrics and Darboux cyclides are formed by extracting values
from the DCSTA point entity using specifically defined (inner product) extraction operators.

The DCSTA G4,8 D has a basis of twelve orthonormal vector elements ei, 1 ≤ i ≤ 12, with metric



(squares or signatures) mD:

m = mD = diag(1,−1,−1,−1, 1,−1, 1,−1,−1,−1, 1,−1) = [mi j] (1)
= diag(mC1 ,mC2 ) = diag(1,mCS1 , 1,mCS2 ) (2)
= diag(mM1 , 1,−1,mM2 , 1,−1) = diag(1,mS1 , 1,−1, 1,mS2 , 1,−1), (3)

mDS = diag(mCS1 ,mCS2 ), mi j = ei · e j. (4)

The above metric also includes the metrics of the following subalgebras:

• G2,4 CSTA1 C1: mC1

• G1,4 Conformal SA1 (CSA1) CS1: mCS1

• G1,3 STA1M1: mM1

• G0,3 Space Algebra 1 (SA1) S1: mS1

• G2,8 Double Conformal SA (DCSA)DS: mDS

• G2,4 CSTA2 C2: mC2

• G1,4 CSA2 CS2: mCS2

• G1,3 STA2M2: mM2

• G0,3 SA2 S2: mS2

Notation of Space-Time Algebra

The basis of the space-time algebra G1,3 STAM � G1,3 STA1M1 is {γ0,γ1,γ2,γ3} � {e1, e2, e3, e4}, and for
the second copy of the space-time algebra G1,3 STA2M2 we have the basis {γ0,γ1,γ2,γ3} � {e7, e8, e9, e10}.
The space algebra G0,3 SA S basis, included in the space-time algebra, is {γ1,γ2,γ3}. The STA unit four-
dimensional pseudoscalar is IM = γ0γ1γ2γ3, and for SA the unit three-dimensional pseudoscalar is IS =

γ1γ2γ3. Moreover, STA defines a space-time position with coordinates (w, x, y, z) by the four-dimensional
vector

p = pM = (w = ct)γ0 + xγ1 + yγ2 + zγ3 = wγ0 + pS, (5)

and four-dimensional space-time velocity

v = vM = cγ0 + vxγ1 + vyγ2 + vzγ3 = cγ0 + vS, (6)

with 4D STA vectors in bold italic, and 3D SA spatial vxγ1 + vyγ2 + vzγ3 vectors v = vS in bold.
The untranslated (at origin) observer worldline, in the rest frame of the observer3, is

ot = ctγ0 (7)

with proper time (coordinate time) t. See also, the CSTA line entity LC of (34).
STA versors include rotor ((n̂∗

S
)2 = −1, see (16))

R = exp
(
θn̂∗
S
/2

)
= e

1
2 θn̂

∗
S = cos (θ/2) + sin (θ/2) n̂∗

S
, (8)

and hyperbolic rotor (boost) ((v̂γ0)2 = +1)

B = (γv/o)
1
2 = exp

(
ϕv̂γ0/2

)
= cosh (ϕ/2) + sinh (ϕ/2) v̂γ0, (9)

where three-dimensional spatial speed v in physics is

v = βc = ‖v‖ =

√
v2

x + v2
y + v2

z , (10)

3Note that in special relativity an observer rest frame means, the observer continues to rest at the origin of the frame.



light speed is c, natural speed β is4

0 ≤ β = v/c ≤ 1, (11)

space-time velocity is by (6)

v = cγ0 + βcv̂, (12)

and rapidity (hyperbolic angle in (9)) is

ϕ = atanh(β). (13)

The Lorentz factor

γ = dt/dτ = 1/
√

1 − β2 = 1/d, (14)

is related to special relativity length contraction (from L0 to L) as5

L =

√
1 − β2L0 = L0/γ = dL0, (15)

and τ is proper time of the observable with space-time velocity v.
The SA spatial dualization

n̂∗
S

= −n̂SI−1
S

(16)

of an SA spatial unit vector rotation axis n̂ is the rotation plane bivector n̂∗ that is isomorphic to a pure unit
quaternion, where (n̂∗)2 = −1.

STA space-time dualization is

v∗
M

= vMI−1
M
. (17)

A versor operates on a vector using the versor “sandwich” operation

v′ = BvB̃, (18)

where the reverse is
B̃ = e

1
2 ϕγ0v̂ = e−

1
2 ϕv̂γ0 = B−1, (19)

which reverses the product of all vectors in any multivector (e.g., ĨM = γ3γ2γ1γ0).
The conjugate A† [14] of any STA multivector is (a composition of reversion with sandwiching between

γ0 factors)

A† = γ0Ãγ0, (20)

and for a vector v = cγ0 + βcv̂, its conjugate is (changing the sign of the spatial component)

v† = γ0vγ0 = cγ0 − βcv̂. (21)

4A possible negative sign of β is taken care of by the direction of v̂, the unit vector in the direction of vS.
5Note that in computer graphics applications we purposely go beyond physical limitations, and permit a complex value for β, in

order to achieve length contractions with d > 1.



Notation of Conformal STA

The basis of CSTA G2,4 C � CSTA1 G2,4 C
1, index γ = 1, is

{γ0,γ1,γ2,γ3, e+, e−} � {e1, e2, e3, e4, e5, e6}, (22)

and for the second copy CSTA2 G2,4 C
2, index γ = 2,

{γ0,γ1,γ2,γ3, e+, e−} � {e7, e8, e9, e10, e11, e12}. (23)

The six-dimensional CSTA unit pseudoscalar is

IC = γ0γ1γ2γ3e+e−. (24)

CSTA defines three geometric inner product null space (GIPNS) [14] 1-blade entities.
The CSTA GIPNS 1-blade null hypercone entity KC (growing sphere in time from a point), equal to the

null point embedding PC, is

KC = PC = C(pM) = pM + (1/2)p2
M

e∞γ + eoγ, P2
C = 0, (25)

centered at pM with null infinity point

e∞γ = e+ + e−, e2
∞γ = 0, (26)

and null origin point

eoγ = (e− − e+)/2, e2
oγ = 0, eoγ · e∞γ = −1, e+e− = eoγ ∧ e∞γ. (27)

The CSTA GIPNS 1-blade hyperplane (3D subspace) entity EC is

EC = nM + (pM · nM)e∞γ, (28)

normal to nM, passing through space-time position pM.
The CSTA GIPNS 1-blade hyperpseudosphere entity ΣC (growing pseudosphere) is

ΣC = PC + (1/2)r2
0e∞γ, (29)

centered at PC with initial radius r0, which can be real or imaginary (n.b., for r0 = 0, ΣC = PC). The outer
product of two to six of the above CSTA GIPNS 1-blade entities (null-hypercones KC, hyperplanes EC,
hyperpseudospheres ΣC) forms, by intersection, more CSTA GIPNS entities of higher grades.

CSTA dualization of a CSTA GIPNS k-vector entity XC gives its dual CSTA geometric outer product
null space (GOPNS) [14] (6 − k)-vector entity

X∗C = XCI−1
C . (30)

A CSTA point PC is on CSTA GIPNS entity XC iff

PC · XC = 0. (31)

A CSTA point PC is on the corresponding dual CSTA GOPNS entity X∗C iff

PC ∧ X∗C = 0. (32)



The outer product of up to six well-chosen CSTA points produces various CSTA GOPNS (1 . . . 6)-blade
space-time surface entities X∗C =

∧
PCi that the points span as surface points. The CSTA GOPNS null

1-blade point (embedding) PC equals the CSTA GIPNS null 1-blade hypercone PC = KC.
The CSTA GIPNS 2-blade plane entity

ΠC = D∗
M
− (pM · D∗

M
)e∞γ, (33)

in direction of unit bivector DM through pM, is the intersection (wedge) of two space-time hyperplanes (28).
The CSTA GIPNS 3-blade line entity

LC = d∗
M

+ (pM · d
∗
M

) ∧ e∞γ, (34)

in the direction dM through pM = pwγ0 + pS, is the intersection of three hyperplanes (28) and represents the
worldline of an observable with STA velocity v = d = cγ0 + βcv̂ and initial spatial CSTA GOPNS 2-blade
flat point6 [4] position

C(p0) ∧ e∞γ ' (γ0 ∧ LC)I−1
C (35)

at t = 0 (γ0 is t = 0 hyperplane EC). The boost, and the other CSTA versors, can operate on the line LC to
implement space-time transformations. A normed7 unit plane Π̂C and unit line L̂C have unit direction D̂∗M
and d̂∗M, respectively.

CSTA inherits the STA 2-versor rotor

RC = R = exp
(
θn̂∗
S
/2

)
= cos (θ/2) + sin (θ/2) n̂∗

S
, (36)

and STA 2-versor hyperbolic rotor (boost)

BC = B = exp
(
ϕv̂γ0/2

)
= cosh (ϕ/2) + sinh (ϕ/2) v̂γ0. (37)

CSTA introduces the CSTA 2-versor translator

TC = exp
(
e∞γdM/2

)
= 1 + (1/2)e∞γdM, (38)

which translates by dM. As versor compositions, CSTA also introduces the following three translated 2-
versors. The CSTA 2-versor translated-rotor is

LC = TCRCT−1
C = exp

(
−θγ0 · L̂C/2

)
= cos (θ/2) + sin (θ/2) L̂CS, (39)

which rotates by angle θ anticlockwise (by right-hand rule) around the spatial CSA line L̂CS through point
dM = dS in the rotor axis direction n̂S. The CSTA 2-versor translated-boost is

Bd
C = exp

(
ϕ(v̂γ0 − (dM · (v̂γ0))e∞γ)/2

)
= exp

(
ϕΠ̂C/2

)
= cosh (ϕ/2) + sinh (ϕ/2) Π̂C, (40)

centered on d = dM and with direction DM = (v̂γ0)IM. The CSTA 2-versor translated-isotropic dilator is

DC = exp
(
ln(d)P̂C ∧ e∞γ/2

)
= cosh (ln(d)/2) + sinh (ln(d)/2) P̂C ∧ e∞γ (41)

for isotropic dilation by factor d relative to normalized center point P̂C, i.e. P̂C · e∞γ = −1. By versor
outermorphism [14], all CSTA versors are valid on all CSTA GIPNS and dual CSTA GOPNS entities.

The projection (inverse of embedding) of a point PC = C(pM) to its embedded STA vector is

pM = C−1(PC) = (P̂C · IM)I−1
M

= (P̂C ∧ e+ ∧ e−)(e+ ∧ e−), (42)

which is geometrically projection onto IM or rejection from e+e− = e+ ∧ e− = e∞γ ∧ eoγ.

6Flat point PC ∧ e∞γ in [4] is called homogeneous point pM ∧ e∞γ + eoγ ∧ e∞γ in [14].
7This means, that the homongeneous factors of ΠC and LC are chosen, such that the Euclidean carrier blades D∗

M
and d∗

M
have

magnitude one.



Construction of Double CSTA

In double conformal space-time algebra (DCSTA), CSTA1 and CSTA2 are orthogonal subalgebras and their
geometric or outer product forms DCSTA as a doubling extension. Any CSTA1 entity or versor AC1 and
its double AC2 in CSTA2 (with the same scalar basis blade coefficients) can be multiplied to form the corre-
sponding DCSTA entity or versor AD = AC1 AC2 = AC1 ∧AC2 . By versor outermorphism, the DCSTA doubled
versors operate correctly on all DCSTA entities. The DCSTA point PD = D(pM) = PC1 PC2 is a quadratic
(squared, double) form of the CSTA embedding, and, as we will show, from it we can extract values that
construct polynomials which in turn represent Darboux cyclides as DCSTA entities.

Table 1. DCSTA bivector extraction elements Ts.

Tx = (e∞2 ∧ e2 + e8 ∧ e∞1)/2 Ty = (e∞2 ∧ e3 + e9 ∧ e∞1)/2 Tz = (e∞2 ∧ e4 + e10 ∧ e∞1)/2
Tx2 = e8 ∧ e2 Ty2 = e9 ∧ e3 Tz2 = e10 ∧ e4
Txy = (e9 ∧ e2 + e8 ∧ e3)/2 Tyz = (e10 ∧ e3 + e9 ∧ e4)/2 Tzx = (e8 ∧ e4 + e10 ∧ e2)/2
Txt2

M
= eo2 ∧ e2 + e8 ∧ eo1 Tyt2

M
= eo2 ∧ e3 + e9 ∧ eo1 Tzt2

M
= eo2 ∧ e4 + e10 ∧ eo1

T1 = −e∞ = −e∞1 ∧ e∞2 T t2
M

= eo2 ∧ e∞1 + e∞2 ∧ eo1 T t4
M

= −4eo = −4eo1 ∧ eo2

Tw = (e1 ∧ e∞2 + e∞1 ∧ e7)/2 Tw2 = e7 ∧ e1 Twt2
M

= e1 ∧ eo2 + eo1 ∧ e7

Twx = (e1 ∧ e8 + e2 ∧ e7)/2 Twy = (e1 ∧ e9 + e3 ∧ e7)/2 Twz = (e1 ∧ e10 + e4 ∧ e7)/2
Tt = Tw/c Tt2 = Tw2/c2 Tt t2

M
= Twt2

M
/c

Ttx = Twx/c Tty = Twy/c Ttz = Twz/c

The 27 inner product bivector extraction operators Ts for extraction of scalar value s (indicated by the
indices x, . . . , tz) from DCSTA test point TD = D(tM) in the form of

s = Ts · TD (43)

are all given in Table 1 (n.b., t , t: t is the time coordinate, and t = tM is the STA test point). The DCSTA
GIPNS bivector entities for quadrics and cyclides can be directly written as linear combinations of extraction
operators Ts. For example, an ellipsoid (centered at the origin, aligned along the SA axes γ1,γ2,γ3) is

ED = Tx2/a2 + Ty2/b2 + Tz2/c2 − T1, (44)

and a general point PD is on it iff PD · ED = 0. The DCSTA dualization of the bivector ED,

E∗D = EDI−1
D = ED(IC1 IC2 )−1, (45)

is a valid GOPNS 10-vector entity where PD is on it iff PD ∧ E∗
D

= 0. If time is always fixed as t = 0, then
the DCSTA GIPNS bivector entities formed from the Ts correspond to entities of G8,2 DCGA [6], up to some
sign differences in some scalar expressions, due to the different choice of signature. In DCSTA, the quadrics
gain the ability to be boosted into a velocity using the DCSTA 4-versor boost operator BD = BC1 BC2 .
Furthermore, inversion of quadrics in pseudospheres (circular hyperboloids) is also possible. The boost
natural speed for a length contraction factor d is by (14) β =

√
1 − d2. Boost of a quadric by an imaginary

β dilates by d > 1 and then the result can be projected to the spatial subalgebra G2,8 DCSA to discard time
components and achieve directed scaling in the direction of the boost.

Figure 2 visualizes [15] a DCSTA GIPNS bivector spherical ellipsoid E dilated in situ by factor d = 3
in the direction v̂ as E′ using a translated-boost operator Bd

D
centered on the position p = d of E and E′.

The G2,8 DCSA projection is

P(A) = (A · IDS)I−1
DS
, (46)
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Figure 2. Spherical ellipsoid E(r = 5) dilated by factor d = 3 in direction v̂ as ellipsoid E′ and then reflected in sphere
S as Darboux cyclide E′′.

where the DCSA unit pseudoscalar is

IDS = IS1 e5e6IS2 e11e12. (47)

E′ is reflected in a DCSTA GIPNS 2-blade (hyperpseudo)sphere S = Σ(t = 0, r0 = 15) = ΣC1ΣC2 as E′′,
which is a Darboux cyclide. All are at time t = 0.

Σ

E

Ω=ΣEΣ∼

yγ2xγ1

wγ0pseudospatial
time axis
(w= ct)-axis

xy-space

Figure 3. Ellipsoid E reflected in circular hyperboloid Σ, Ω = ΣEΣ∼.

Figure 3 shows a space-time “pseudocyclide”Ω, which is the reflection of the quadric E in a space-time
hyperboloid Σ(z = 0). For graphing, the time w-axis was mapped to a vertical z-axis and the γ3-axis was
suppressed. Figure 4 shows another space-time “pseudocyclide”Ω that is the reflection of the pseudoquadric
ellipsoid

E+
D = Tx2/a2 + Ty2/b2 + Tw2/c2 − T1 (48)

in a space-time hyperboloid.
The DCSTA differential elements are

Dw = 2TwT−1
w2 , Dx = 2TxT−1

x2 , Dy = 2TyT−1
y2 , Dz = 2TzT−1

z2 , Dt = 2TtT−1
t2 , (49)



E+

Σ

Ω
y

w

(c)(b)(a)

Figure 4. Pseudoquadric ellipsoid E+ reflected in circular hyperboloid Σ as Ω = ΣE+Σ∼.

and the commutator product × of multivectors A and B is

A × B = (AB − BA)/2 = −B × A. (50)

Using the commutator product, the DCSTA differential elements can be used as differential operators on
any bivector surface entity E that is formed as a linear combination of the DCSTA extraction elements Ts.
For example, the time t derivative of E is

Ė = ∂t E =
∂E
∂t

= Dt × E. (51)

For direction n with unit magnitude n · n† = 1, the n-directional derivative operator is

∂n =
∂

∂n
= Dn× = (nwDw + nxDx + nyDy + nzDz)× (52)

and the n-directional derivative of any bivector entity E is

∂nE = Dn × E. (53)

The entity E represents an implicit surface function F(w, x, y, z), and its n-directional derivative ∂nE repre-
sents the derivative implicit surface function ∂nF. Mixed partial derivatives are obtained by taking successive
derivatives in any order.

Conclusion

The DCSTA G4,8 extends Double Conformal Space Algebra (DCSA) G2,8, which is different in space sig-
nature from the DCGA G8,2 of [10], into a high-dimensional 12D embedding of Space-Time Algebra G1,3
that has quadric surface entities with a complete set of space-time transformation operations as versors and
projections.

DCSTA is an algebra for computing with quadrics and their cyclide inversions in space-time. For appli-
cations or testing, DCSTA G4,8 can be computed using various software packages, such as Gaalop [16] for
optimization, the Clifford Multivector Toolbox (for MATLAB) [17], the Clifford package for MAPLE [18],
or the free symbolic computer algebra system SymPy [19] with the GAlgebra [20] module.

The scheme can be generalized to any non-Euclidean geometry. It is possible to form higher order
Triple, Quadruple, etc. CGAs, for handling higher order algebraic curves and surfaces. There is the poten-
tial of applications in discretized geometry, topological computations, and to quadric and cyclidic surface
patches bounded by bi-CGA entities (via intersection), e.g. piece of cylinder bounded by intersection with
pair of planes, etc.



ACKNOWLEDGMENTS

E.H. wishes to thank God: Soli Deo Gloria, to thank his family and H. Suzuki for their kind support, R.E. for
excellent collaboration, and the ICNPAA session organizers Isabel Cacao and Joao Morais. In applications
of this research, please respect the Creative Peace License [21].

References

[1] R. B. Easter, “Double Conformal Space-Time Algebra,” (2016), preprint: vixra.org/abs/1602.0114.
[2] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus, A Unified Language for

Mathematics and Physics, Fundamental Theories of Physics, Vol. 5 (Dordrecht-Boston-Lancaster:
D. Reidel Publishing Company, a Member of the Kluwer Academic Publishers Group, 1984).

[3] P. Lounesto, Clifford Algebras and Spinors, 2nd ed. (Cambridge: Cambridge University Press,
2001), pp. ix + 338.

[4] L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science (Revised Edition):
An Object-Oriented Approach to Geometry, The Morgan Kaufmann Series in Computer Graphics
(Elsevier Science, 2009).

[5] E. Hitzer, SICE Journal of Control, Measurement, and System Integration 51, 338–350 (2012),
Preprint: arxiv.org/abs/1306.1660v1.

[6] R. B. Easter, “G8,2 Geometric Algebra, DCGA,” (2015), preprint: vixra.org/abs/1508.0086.
[7] R. B. Easter, “Conic and Cyclidic Sections in the G8,2 Geometric Algebra, DCGA,” (2015),

preprint: vixra.org/abs/1511.0182.
[8] R. B. Easter, “Differential Operators in the G8,2 Geometric Algebra, DCGA,” (2015), preprint:

vixra.org/abs/1512.0303.
[9] E. Hitzer, K. Tachibana, S. Buchholz, and I. Yu, Advances in Applied Clifford Algebras 19, 339–

364 (2009).
[10] R. B. Easter and E. Hitzer, “Double Conformal Geometric Algebra for Quadrics and Darboux

Cyclides,” in Proceedings of the 33rd Computer Graphics International Conference, Heraklion,
Greece, CGI ’16 (ACM, New York, 2016), pp. 93–96.

[11] D. Hestenes, Space-Time Algebra, Second ed. (Springer, 2015).
[12] E. Hitzer, “Relativistic Physics as Application of Geometric Algebra,” in Proceedings of the Inter-

national Conference on Relativity 2005 (ICR2005), University of Amravati, India, January 2005,
edited by K. Adhav (Department of Mathematics, Amravati University, Amravati 444602, India,
2005), pp. 71–90, Preprint: arxiv.org/abs/1306.0121.

[13] C. Doran and A. Lasenby, Geometric Algebra for Physicists, paperback reprint of the 2003 original
ed. (Cambridge: Cambridge University Press, 2007), pp. xiv + 578.

[14] C. Perwass, Geometric Algebra with Applications in Engineering, Geometry and Computing, Vol. 4
(Springer, 2009) Habilitation thesis, Christian-Albrechts-Universität zu Kiel.

[15] P. Ramachandran and G. Varoquaux, Computing in Science & Engineering 13, 40–51 (2011).
[16] D. Hildenbrand, Foundations of Geometric Algebra Computing, Geometry and Computing, Vol. 8

(Springer, 2013), pp. xxvii + 196.
[17] S. J. Sangwine and E. Hitzer, Advances in Applied Clifford Algebras 1–20 (2016).
[18] R. Ablamowicz and B. Fauser, “CLIFFORD - A Maple Package for Clifford Algebra Computa-

tions,” (2015), http://math.tntech.edu/rafal/ [Online; accessed 05 Sep. 2016].
[19] SymPy Development Team, SymPy: Python library for symbolic mathematics (2016).
[20] A. Bromborsky, Geometric Algebra Module for Sympy (2016).
[21] E. Hitzer, “Creative Peace License,” (2011), https://gaupdate.wordpress.com/2011/12/

14/the-creative-peace-license-14-dec-2011/ [Online; accessed 05 Sep. 2016].


