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Using the Friedman-Lemaitre-Robertson-Walker (FLRW) universe as a background metric, purely
General relativistic (classical) scalar metric perturbations are investigated for small bodies. For the
approximation of a point-like perturbing mass in the closed FLRW universe, the scalar perturbation
may be written in a form obeying precisely the Dirac equation up to a factor playing the role
of Planck’s constant. A physical interpretation suggests the scalar perturbation in this form is the
wavefunction of quantum mechanics. Such an interpretation indicates the nonlocality of gravita-
tional energy/momentum in General relativity leads naturally to the indeterminacy of quantum
mechanics. Some physical consequences and predictions are discussed and briefly explored.

INTRODUCTION

In General Relativity there is a very-well-known prob-
lem originating with the equivalence principle. In defin-
ing the energy/momentum density of the gravitational
field at a point in space and time, one must resort to use
of a gravitational pseudotensor.

The energy/momentum densities associated with the
pseudotensor are decidedly unphysical as they may be
chosen to take on any number of values at a given point in
space. Instead for physical values, such quantities are de-
fined en-total, by integrating said densities globally over
an appropriate 3-volume. In this manner a total energy
and momentum may be obtained. Such behavior is gen-
erally referred to as the non-local nature of gravitational
energy and momentum [1–3].

Meanwhile in quantum mechanics, one may not, with
any physical meaning, specify momentum/energy at a
point in space/time. Instead for physical quantities, one
integrates such momenta/energy (written as densities)
globally, such that a total (average) energy/momentum
is obtained. This is, at it’s most general, referred to
as quantum indeterminism (as often embodied by the
Heisenberg uncertainty principle).

Regarding the gravitational energy/momentum, the
principle of equivalence demands that a noninertial ob-
server will witness a non-zero gravitational pseudotensor.
Such a situation will come about even when there are
no gravitational sources present (as first pointed out by
Bauer [3]). In this manner a non-inertial (accelerating)
observer necessarily calculates a non-zero energy in the
space around them. By contrast, for any inertial frame,
the equivalence principle requires the local vanishing of
the gravitational pseudotensor.

The physical interpretation of this non-local behavior
was a matter of some debate at general relativity’s incep-
tion.

Meanwhile in quantum field theory, one has that a non-
inertial (accelerating) observer must necessarily witness
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a thermal energy in the surrounding space (often referred
to as “Unruh radiation” or the “Unruh effect”) [4, 5, 34].
It is the case however; that for any inertial observer the
intensity of such radiation (as the Unruh) is observed to
be zero.

The physical interpretation of this has been a matter
of some debate among physicists.

There are clear parallels between these phenomena.
On the General relativistic side, one has such behavior
being ascribed to the non-local nature of the gravitational
field; while on the other hand one refers to corresponding
phenomena as being ultimately a result of the inherent
indeterminacy of quantum physics.

The precise nature of the aforementioned gravitational
phenomena necessarily depends upon the background
metric and ultimately the global spacetime geometry.

It is natural then to consider the possibility of a space-
time geometry in which the two phenomena manifest in
precisely the same way. Should such a spacetime (or class
of spacetimes) exist, it then seems reasonable to enter-
tain the notion that this could correspond to the physical
spacetime of our universe.

The current paper is an (albeit imperfect) attempt to
further explore this notion. The focus will be on attempt-
ing to find a formalism for writing the gravitational en-
ergy and momentum of a body, that coincides with that
of a particle in quantum theory.

PROCEDURE

Historically physicists have tended to formulate the
equations of General Relativity in terms of quantities
which suppress or otherwise circumvent the non-local na-
ture of the gravitational field. Some examples of this in-
clude Komar quantities, the ADM formalism, and various
proposed notions of quasilocal mass/energy (a thorough
introduction is given in [3].

For the current approach integral quantities of the met-
ric (and it’s perturbations) will be considered physical.
In this respect the current treatment bears an initial sim-
ilarity to those mentioned above.

A standard first order linearization of Einstein’s field
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equation is used. This necessitates choosing a defi-
nite background metric. In the interest of large scale
homogeneity and isotropy, the Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe is chosen.

The eigenfunction series expansions inherent in quan-
tum theory and such procedures as the box quantization
(in second quantization) which yield quantum field the-
ory, lead the author naturally to consider spatial bound-
ary conditions that are periodic. To correspond to this
condition, the closed FLRW universe is chosen.

In considering a point-like mass in the closed FLRW
universe, it is found that the scalar metric perturbation
may be written in a form that obeys precisely the Dirac
equation (up to the factor }).

A physical interpretation necessitates that the scalar
perturbation in this form is the wavefunction of quantum
mechanics. This leads to a natural relationship between
the nonlocality of gravitationial energy/momentum and
the indeterminism of quantum physics. Physical conse-
quences of such a relationship are briefly discussed and
predictions mentioned.

Throughout this paper the (− + ++) metric conven-
tion is adhered to. For the sake of brevity, four-volume
elements of a manifold M will often be expressed as dΩ
and three-volume elements of foliations (∂M) of M will
be denoted by dΣ. The Einstein summation convention
is utilized unless specified otherwise. Finally, for reasons
that will become apparent, all physical constants will be
kept in their standard form (i.e. not set equal to unity).

THE EINSTEIN-HILBERT ACTION.

The starting point for deriving the Einstein field equa-
tion (EFE) is the well-known Einstein-Hilbert action:

S =

ˆ

M

(
c4

16πGN
R+ LM )

√
−gd4x (1)

Where R is the Ricci scalar curvature (the trace of
the Ricci tensor Rµ

µ which itself is the contraction of the
Riemann tensor Rαµαν) and LM is the Lagrangian density
of the matter/fields. When varied with respect to gµν ,

δS =

ˆ

M

(
c4

16πGN

δ

δgµν
[
R
√
−g
]

+
δ

δgµν
[
LM
√
−g
])

d4xδgµν

(2)
(1) is known to yield the famous Einstein field equa-

tion, written here as an integrand:

0 =

ˆ

M

[
c4

8πGN
Gµν − Tµν

]√
−gd4xδgµν (3)

Where Hilbert’s stress energy tensor is defined to be
Tµν
√
−g = δ

δgµν [LM ]
√
−g+LM

δ
δgµν [

√
−g], and the Ein-

stein tensor Gµν = Rµν − 1
2gµνR. Upon introducing a

small perturbation (3) can be written as:

0 =

ˆ

M

[
c4

8πGN
{Gµν + δGµν} − {Tµν + δTµν}

]√
−gd4xδgµν

By subtracting equation (3) from this we obtain our
Einstein equation for a perturbation:

0 =

ˆ

Ms

[
c4

8πGN
δGµν − δTµν

]√
−gd4xδgµν (4)

As (4) will hold for any variation δgµν , one may write
this as:

0 =

ˆ

M

[
c4

8πGN
δGµν − δTµν

]√
−gd4x (5)

Equation (5) kept within the integral, will be our start-
ing point in considering perturbations to the metric.

Part I

The perturbed FLRW
metric
Let us consider a perturbation to first order in the metric
of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
Universe. As is standard, we consider a metric ḡuv of
the form:

ḡuv = (guv + huv) and ḡuv = (guv − huv) (6)

Where guv is the background metric (FLRW for our
case), and huv is a small perturbation such that | huv |�
1. Such a system has been thoroughly studied in the lit-
erature. The general perturbation is known to be of the
form [6]:

hµν =

[
2g00φ ωµ

ωµ 2γµνψδ
µ
ν +Hµν

]
(7)

Where φ and ψ are genuine scalar perturbations and
γµν refers to spatial components of the metric. The vec-
tor perturbation, ω = ω⊥ + ω‖ consists of rotational ω⊥
and irrotational ω‖ parts, andHµν represent the traceless
tensor perturbations.

A. The Lorenz/harmonic Gauge

Choosing the Lorenz or harmonic gauge ∂ν h̄µν = 0
and utilizing the trace-reversed perturbation h̄µν = hµν−
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1
2gµνh. The linearized Einstein field equation (EFE) is
known [7, 8], to be of the form:

ˆ

M

{ c4

16πGN
(�h̄µν + 2Rµ ν

α β h̄
αβ) + Tµν} dΩ = 0 (8)

Where the field equation has been kept within the in-
tegral over the full spacetime manifold (M), as derived
by varying the Einstein-Hilbert Action.

Equation (8), in flat space (Rµ ν
α β = 0), is a typical

starting point for demonstrating that General relativity
reduces to Newtonian gravity in the appropriate weak-
field and nonrelativistic approximation [23].

Since we are considering scalar perturbations, it is con-
venient to work with the trace of (8), which is of the form:

ˆ

M

{ c4

16πGN
(gµν�h̄

µν + 2gµνR
µ ν
α β h̄

αβ) +Tµµ} dΩ = 0 (9)

Note that in taking the trace, the linearized Einstein
equation is written entirely in terms of the trace of both
the perturbed Einstein tensor δG, and the stress energy
tensor of the perturbation source T . In this manner equa-
tion (9) deals only with gauge invariant quantities (as
discussed by Bardeen in [33]).

Let us examine the first term of (9) separately, one has:

gµν�h̄
µν = gµν∂µ∂

µh̄µν (10)

This may be written as:

gµν∂µ∂
µ =

[
∂µ −

1

4
gµν (∂µgµν)

]
gµν∂

µ

Where the covariant metric gµν has been moved to the
other side of the partial derivative. Similarly, one can
also write:

gµν∂µ∂
µ =

[
∂µ −

1

4
gµν (∂µgµν)

] [
∂µ − 1

4
gµν (∂µgµν)

]
gµν

Utilizing this expression in equation (10), one obtains:

−∂µ∂µ
(
h̄µµ
)
+

1

4
gµν (∂µgµν) (∂µgµν) h̄µν−∂µ

[
(∂µgµν) h̄µν

]
Finally taking the trace h̄µµ = h̄ = −h and enforcing

the gauge condition ∂µh̄µν = 0 this becomes:

= − (∂µ∂
µh)−

[
(∂µ∂

µgµν)− 1

4
gµν (∂µgµν) (∂µgµν)

]
h̄µν

Which can be written as:

= − (∂µ∂
µh)−

[
(∂µ∂

µgµν)− 1

4
(∂νgµν) (∂µgµν)

]
h̄µν

For the condition of harmonic coordinates, the term
in square brackets simplifies drastically (see Chow and
Knopf [32]):

= − (∂µ∂
µh) + 2Rµν h̄

µν

Utililzing this, equation (9) then takes the form:

ˆ

M

{
c4

16πGN

(
−∂µ∂µh+ 4Rµν h̄

µν
)

+ T

}
dΩ = 0

Examining the background Ricci tensor, one expects
from observation of the universe that Rµν � 1 (i.e. the
universe is extremely large). One can justify ignoring this
term (since Rµν h̄µν �� 1), leaving:

ˆ

M

(
c4

16πGN

)
∂µ∂

µhdΩ =

ˆ

M

T dΩ (11)

Application of the divergence theorem on the left-
hand-side of (11) takes the integral to a bounding three-
surface M −→ ∂M .

˛

∂M

(
c4

16πGN

)
∂µhnµ dΣ =

ˆ

M

T dΩ (12)

Where nµ is the unit basis normal to ∂M .
In specifically considering the closed expanding FLRW

universe, any closed spacelike surface ∂M at some par-
ticular time naturally encloses all of M up to that time.
In the spirit of general covariance, we will refrain from
choosing an explicit 3-slice.The above can be rewritten
as:

˛

∂M

(
c4

16πGN

)
gµα∂αhnµ dΣ =

ˆ

M

T dΩ (13)

Examining the left hand side of (13), the contravariant
metric gµα can be pulled through the partial derivative
such that the above becomes:

˛

∂M

{
(

c4

16πGN

)[
∂α −

1

4
gµα(∂αg

µα)

]
gµαhnµ dΣ (14)

Because we are only dealing with the trace of the per-
turbation (h) , it is clear (from equation 7) only the scalar
perturbation will enter into equation (14). In the rest
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frame h is simply 4φ (where φ is the Newtonian poten-
tial divided by c2)[15, 18]. Accordingly we will denote:
h = 4φ.

=

˛

∂M

{ c4

4πGN

[
∂α −

1

4
gµα(∂αg

µα)

]
gµαφnµ dΣ (15)

Choosing a spacelike bounding surface with normal n0
and writing the metric in the form gµα = eµ · eα one
obtains:

=

˛

∂M

{ c4

4πGN

[
∂α −

1

4
gµα(∂αg

µα)

]
φ

1

c
eα dΣ

As with the metric earlier, eα can be pulled through
the derivative leaving a connection type term behind:

=

˛

∂M

{ c3

4πGN
eα
[
∂α +

1

2
eα(∂αe

α)− 1

4
gµα(∂αg

µα)

]
φ dΣ

Where we have used the fact that eµeµ = −1 + 1 + 1 +
1 = 2, thus we obtain:

=

˛

∂M

{ c3

4πGN
eα
[
∂α +

1

2
eα(∂αe

α)− 1

4
gµα(∂αg

µα)

]
φ dΣ

For brevity, let us denote.

Γα =
1

2

[
eα(∂αe

α)− 1

2
gµα(∂αg

µα)

]
(16)

The scalar metric perturbation (equation (11)) is then
represented by:

˛

∂M

{ c3

4πGN
eα{∂α + Γα}φ dΣ =

ˆ

M

T dΩ (17)

B. A brief note on the three-sphere, or closed
FLRW universe

On can consider the 3-sphere of radius a as being em-
bedded in a four-dimensional Euclidean space. One has
in this view the condition for any coordinate system with
origin at the center of the 3-sphere:

a2 = gµνx
µxν

Note that the metric here is Riemannian (not pseu-
doriemannian). In Cartesian coordinates for example this
reads:

a2 = x2 + y2 + z2 + w2

This is simply the condition that the coordinates lie
somewhere on the 3-sphere. For a 3-sphere of changing
radius a, one can write this infinitesimally as:

da2 = gµνdx
µdxν

Where it is clear that a will be a function of some exter-
nal parameter (time or conformal time). Let us consider
the integral over the 3- ball (M) of which the 3-sphere
is the boundary (∂M). For the closed and expanding
FLRW universe, this is equivalent to the integral over
all space and time (due to the parameterization of a by
time). For some arbitrary function f(xµ) one has then
that:

ˆ

M

f(xµ) dΩ

This can be written as an integral over ∂M which is
then integrated over the radial coordinate da:

ˆ

M

f(xµ) dΩ =

aˆ

0

˛
∂M

f(xµ)dΣ

 da
For the FLRW universe, after integration, a may be

replaced by it’s time parameterization. While this may
appear entirely trivial, it will be found useful in the fol-
lowing section.

C. a Point-Like Particle

Considering the latter half of (17) now, let us consider
our perturbing mass to be point-like. The Lagrangian
density Lparticle then has the standard form:

Lparticle = mc
√
−gµν ẋµẋνδ3(xµ −Xµ) (18)

Which we can write as the total Lagrangian Lparticle.

Lparticle =

˛

∂M

Lparticle dΣ = mc
√
−gµν ẋµẋν

Being a scalar, the action Sparticle must be an invariant
quantity.

Sparticle =

ˆ
Lparticlecdt (19)
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This is clearly seen by examining the square root por-
tion:

= mc

ˆ √
−gµν

∂xµ

∂(ct)

∂xν

∂(ct)
cdt

= mc

ˆ √
−gµν∂xµ∂xν = mc

ˆ
| ds |

One observes parameterization independence and the
integral is just the invariant interval between the limits
of integration.

Utilizing now the definition for Hilbert’s stress energy
tensor (varying (19) with respect to gµν):

ˆ

M

TµνdΩδgµν =

ˆ

M

(
2
δLM
δgµν

+ gµνLM

)√
−gd4xδgµν

one obtains:

=

ˆ

M

−mcẋµẋνδ3(xµ −Xµ)√
−gαβ ẋαẋβ

√−gd4xδgµν
Taking the trace of Tµν , the latter half of (17) becomes

simply:

ˆ

M

TdΩ =

ˆ

M

mc −gµν ẋµẋν√
−gµν ẋµẋν

δ3(xµ −Xµ)

√−gd4x

=

ˆ

M

mcδ3(xµ −Xµ)

√
−gµν

∂xµ

∂(t)

∂xν

∂(t)
cdtdΣ

The integral over the hypersurface ∂M is a constant,
hence one can separate the integrals:

=

ˆ ˛
∂M

mcδ3(xµ −Xµ) dΣ

√−gµν∂xµ∂xν
Once again we have that our integral may be written

in terms of the invariant interval | ds |:

=

˛
∂M

mcδ3(xµ −Xµ) dΣ

ˆ | ds | (20)

In general, a parameterization of ds may be given in
terms of the scale factor | ds |= dS(a), which in turn (for
the FLRW universe) may be given by solutions to the

Friedmann equations [14]. Note that from a geometric
point of view, S is the path interval between the singu-
larity and any point on the three sphere at some later
time. In this respect, for the comoving frame, S is nec-
essarily independent of position at a given cosmological
time.

. Equation (20) then becomes:

ˆ

M

TdΩ =

˛
∂M

mcδ3(xµ −Xµ) dΣ

 aˆ

0

dS(a)

Note that
¸
∂M

δ3(xµ − Xµ) dΣ = 1 so that the a de-
pendence of dΣ does not come into play here.

ˆ

M

TdΩ = S(a)

˛

∂M

mcδ3(xµ −Xµ) dΣ (21)

Where we have denoted the quantity:

S(a) =

aˆ

0

dS(a)

S(a) has units of length and the character S is chosen to
reflect that it is in fact measuring the absolute invariant
interval (from the onset of expansion to the present).

Using equation (21) we can write the equation for our
metric perturbation (17) entirely on ∂M :

˛

∂M

[
c3

4πGN
eα{∂α + Γα}φ− S(a)cρ

]
dΣ = 0

Where ρ = mδ3(xµ−Xµ). Because the scale parameter
a represents the radius of curvature of spacetime (for the
closed FLRW universe), R is chosen here to denote a.

˛

∂M

[
c3

4πS(R)GN
eα{∂α + Γα}φ− ρc] dΣ = 0 (22)

Equation (22) will be our starting point for further
developments. Note that one can (not quite appropri-
ately) expand the rest mass density out in terms of four-
momentum density components ρc =

√
−pαgαβpβ =√

−eαpαeβpβ = ieαpα. In this manner, one can iden-
tify the scalar perturbation with components of the total
four-momentum:

Pα =

˛

∂M

[
c3

4πS(R)GN
(−ieα){∂α + Γα}φ dΣ (23)

Where there is no summation over α. Because the
energy/momentum density of the perturbation φ is un-
physical, only the integral quanties are physically rele-
vant. Equation (23) is notably similar in form to the
pseudotensor formula for 4-momentum [1].
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D. The Landau-Lifshitz approach

Equation (22) may be motivated from an entirely dif-
ferent perspective, that of the gravitational pseudoten-
sor. That such an entity is nonunique is well-known. The
gravitational energy-momentum pseudotensor of Landau
and Lifshitz for example, is given by:

tµν =
−c4

8πGN
Gµν+

−c4

16πGN (−g)
{(−g)(gµνgαβ−gµαgνβ)},αβ

(24)
In accordance with the equivalence principle tµν must

vanish in a local inertial frame, thus it contains only first
derivatives of the metric. Together with the stress-energy
tensor of the source energy/matter a conservation law is
well-known [1]:

∂

∂xν
[−g(tµν + Tµν)] = 0 (25)

Enforcing this over the entirety of a spacetime manifold
M , and writing the above as an integrand one obtains:

ˆ

M

∂

∂xν
[−g(tµν + Tµν)] dΩ = 0

Utilizing the divergence theorem this can be expressed
on a three-slice ∂M bounding M with volume element
dΣ and unit normal nν .

˛

∂M

−g(tµν + Tµν)nν dΣ = 0 (26)

Choosing a spacelike surface and thus timelike normal:

˛

∂M

(tµ0 + Tµ0) dΣ = 0

tµ0 + cP 0 = 0

˛

∂M

(
1

c
tµν + Pµ)eµ dΣ = 0

iPµeµ = +
√
−PµeµPνeν = +

√
−PνP ν = ρc

˛

∂M

(itµ0e
µ + ρc) dΣ = 0 (27)

Because tµ0 contains only first derivatives of the met-
ric, a form of tµ0 may be chosen so that (27) coin-
cides with (22) (after performing an appropriate first
order linearization). Furthermore, because the en-
ergy/momentum densities associated with the gravita-
tional pseudotensor have no proper physical interpreta-
tion [5] [3], one expects only integral quantities in (27)
to be physically relevant.

E. Orthogonal Series Expansions & Fredholm
Theory

A well-behaved function Φ(xµ) subject to periodic
boundary conditions (as one finds in a spatially closed
universe) may be expressed as an infinite series of or-
thogonal functions ψ(xµ)n weighted by coefficients an
(a simple Fourier series expansion or “inverse Fourier
transform”). For three dimensions, each with a periodic
boundary condition, this takes the form:

Φ(xµ) =
∑
n,l,m

anlmψ(xµ)nlm (28)

In considering the mass density ρ in (22), it is clearly
subject to the physical requirement that ρ ≥ 0 every-
where (the dominant energy condition). Without alter-
ing any physics, one may specify a class of functions Φ
exist such that ρ =| Φ |2 everywhere. In the most gen-
eral case Φ will be complex. One can expand Φ into an
orthogonal series expansion as in equation (28) such that:

ρ = Φ†Φ = {
∞∑
nlm

a†nlmψ
†(x)nlm}{{

∞∑
nlm

anlmψ(x)nlm}

(29)
Where Ψ† is the Hermitian adjoint of Ψ. Clearly Ψ is

not uniquely specified, something we will address shortly.
One may always choose ψ(x)nlm to be an orthonormal set
of basis such that:

˛

∂M

ψ†nlmψnlm dΣ = 1 (30)

(Note: For the particular case of the 3-sphere, Alertz
[13] does a thorough job in discussing explicit orthonor-
mal basis.)

Φ can also always be rescaled such that ρ = mΦ†Φ.
Under such a rescaling, Φ†Φ necessarily possesses units
of 3-density and contains all information regarding the
distribution of m on ∂M .

m =

˛

∂M

ρdΣ = m

˛

∂M

Φ†Φ dΣ (31)

For this choice of basis one has the following conditions:
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˛

∂M

Φ†Φ dΣ = 1 and

∞∑
n,l,m

| anlm |2= 1 (32)

While this procedure may seem entirely ad − hoc, for
the case of the point-like particle one may demonstrate
this explicitly. From both Fredholm theory and math-
ematical physics, it is known that the Dirac delta and
delta Kronecker functions may be written as [14, 15]:

δ(x−X) =

∞∑
n

ānanψ̄n(x)ψn(X) (33)

δmn = ānam

aˆ

b

ψ̄n(x)ψm(x)dx

Where the ψs are any complete and orthogonal set of
functions and the an are normalization coefficients. Gen-
eralized to three dimensions the first equation is written
as:

δ3(xµ −Xµ) =

∞∑
n,l,m

ānlmanlmψ̄nlm(x)ψnlm(X)

Examining this expression under the integral and tak-
ing into account the second part of (33), it is clear that:

1 =

ˆ
δ3(xµ −Xµ) =

ˆ
Φ̄Φ dΣ

=

ˆ
{
∞∑
nlm

a†nlmψ
†(x)nlm}{

∞∑
nlm

anlmψ(x)nlm} dΣ

Here Φ has the same definition as in (28) above. Cross
terms vanish due to orthogonality and we can use the full
independently summed series. Note that the conditions
chosen in (32) are automatically fulfilled.

Inserting ρ back into equation (22), one obtains:

˛

∂M

[
c3

4πS(R)GN
eα{∂α + Γα}φ−mcΦ†Φ] dΣ = 0 (34)

Using the same method as with ρ, φ is then expanded
out as the absolute value squared of an orthonormal set
(In fact any positive (or negative) definite, function may
be expanded out this way [29]).

It is stressed that this changes nothing physically; how-
ever, the freedom to choose Φ, and Ψ (i.e. their non
uniqueness) proves of great utility.

φ = Ψ†Ψ = {
∞∑
nlm

b†nlmψ
†
nlm}{

∞∑
nlm

bnlmψnlm} (35)

Where we have chosen the same orthonormal basis ψnlm
as for Φ. Note that Ψ is unitless, in contrast to Φ which
is a three-density. Substituting (35) into (34) now:

˛

∂M

[
c3

4πS(R)GN
eα{∂α + Γα}Ψ†Ψ−mcΦ†Φ] dΣ = 0 (36)

(36) may be written as four equations by expanding
out mc in terms of four-momentum components:

mc =
√
−PµgµνPν =

√
−PµeµPνeν = ieµPµ (37)

Using this in (36) one obtains:

˛

∂M

[
c3

4πS(R)GN
eα{∂α + Γα}Ψ†Ψ− ieαPαΦ†Φ

]
dΣ = 0

(38)
It is evident that eα∂α = eα∂

α is self-adjoint. Together
with the completeness of ψ, this indicates our operator
is Hermitian (which of course would be required anyway
for real physical eigenvalues). Hence we must have that:

Ψ†eα∂αΨ = (eα∂αΨ†)Ψ (39)

Using the above, (44) can be rewritten as:

˛

∂M

[
Ψ†
(

c3

4πS(R)GN

)
eα{2∂α + Γα}Ψ− ieαPαΦ†Φ

]
dΣ = 0

Factoring out the 2, the above becomes:

˛

∂M

[
Ψ†
(

c3

2πS(R)GN

)
eα{∂α +

1

2
Γα}Ψ− ieαPαΦ†Φ

]
dΣ = 0

Let us absorb the 1
2 into the connection term (equation

(16)) 1
2Γα =⇒ Γα, such that the equation of motion for

our perturbation can be written as:

˛

∂M

eα
[
Ψ†
(

c3

2πS(R)GN

)
{∂α + Γα}Ψ− iPαΦ†Φ

]
dΣ = 0

(40)
We will now consider just one of the four α components

(no summation over α). Being orthogonal and linearly
independent, we can examine just a single term of the
series expansion:
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eα
[

c3

2πS(R)GN
kα(nlm) | bnlm |2 −iPα | anlm |2

]
= 0

(41)
Here the derivative term has been replaced with it’s

eigenvalue kα(nlm) on the left side (note this requires that
our basis ψnlm now must be eigenfunctions to the opera-
tor {∂α+Γα}). Ψ and Φ have been written as their series
expansions (equations (28), and (35) respectively).

The term in brackets must vanish, allowing one to solve
for the eigenvalue of any term n, l,m in the series.

c3

2πS(R)GN
kα(nlm)b

†
nlmbnlm − iPαa

†
nlmanlm = 0

kα(nlm) = i

[
Pα
| anlm |2

| bnlm |2

]
(

c3

4πS(R)GN
)−1 (42)

Let us denote the quantity in square brackets by:

Pα
| anlm |2

| bnlm |2
=
Pα(nlm)

1
(43)

Where dimensional analysis requires 1 to have units of
3-volume (denoted in bold to reflect this property).

One then has for (42) that Pα(nlm) takes on the role of
the eigenvalue.

kα(nlm) = iPα(nlm)

(
1c3

2πS(R)GN

)
−1

It is interesting to observe that there is a natural rela-
tion between the wavenumber kα(nlm) and corresponding
four-momentum component Pα(nlm) such that:

(
1c3

2πS(R)GN

)
kα(nlm) = iPα(nlm)

Making use of the relation Pα(nlm) | bnlm |2= 1Pα |
anlm |2 from (43), equation (40) may then be written
entirely in terms of the scalar perturbation:

˛

∂M

eα
[
Ψ†

1c3

2πS(R)GN
{∂α + Γα}Ψ− iPα(nlm) | Ψ |2

]
dΣ = 0

It is important to note here that the total physical
momentum in the α direction for our particle is then of
the form:

Pα =

∞∑
nlm

Pα(nlm)b
†
nlmbnlm

Note also, that for any given mode nlm, one can spec-
ify the condition that

√
−Pα(nlm)P

α
(nlm) = mc (this fol-

lows from the nonuniqueness of Φ and Ψ). This has the
immediate consequence that:

mc = ieαPα =

∞∑
nlm

ieαPα(nlm) | bnlm |2= mc

∞∑
nlm

| bnlm |2

Which implies a normalization condition
∑∞
nlm |

bnlm |2= 1.

˛

∂M

Ψ†[

(
1c3

2πS(R)GN

)
eα{∂α + Γα}−mc]Ψ dΣ = 0 (44)

Which is subject to the conditions:

Γα =
1

4
[eα(∂αeα) + eσΓσαµe

µ]

˛

∂M

Ψ†Ψ dΣ = 1 (45)

The perturbation in this form should be familiar; it
greatly resembles the Dirac equation. Though the form
of the integrand has been changed, the integral (physical)
quantities of (44), are precisely the same as for (22).

F. The Dirac Equation

Using the tetrad hypothesis, gµν = eaµe
b
νηab, we can

examine (44) in a local frame. As is standard, mani-
fold indices are denoted by Greek letters and Lorentzian
indices by Latin. We have then locally: eα =⇒ eαb γ

b,
where the γa are the standard gamma matrices satisfy-
ings {γa, γb} = −2ηabI4 (via our choice of the (−+ ++)
metric). Examining Γα :

Γα =
1

4
[eα(∂αe

α)− gµαΓαασg
µσ] (46)

Locally this becomes:

Γα =
1

4

[
eaαγa(∂αe

α
b γ

b)− eaµebα {γaγb}Γαασe
µ
c e
σ
d

{
γcγd

}]

=
1

4

[
eαaγ

a(∂αe
α
b γ

b)− ebα {γaγb}Γαασe
σ
d

{
γaγd

}]
With a bit of rearranging, and making use of the re-

lations eaµeµc = δac and γbγ
a = δba , one may write this

as:
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Γα =
1

4

[
eµa(∂αe

b
µ)− eνaΓσανe

b
σ

]
γaγb

The term in brackets can be recognized as none other
than the spin-connection ωabµ .

Γα =
1

4
ωabα γaγb =

1

8
ωabα σab (47)

Where σab = [γaγb − γbγa]. Equation (47) can be rec-
ognized as the spin vector term [16, 17] making it evident
that Ψ transforms as a spinor. One is left with the set of
conditions:

Ψ†
[(

1c3

2πS(R)GN

)
eαb γ

b{∂α +
1

8
ωabα σab} −mc

]
Ψ = 0

(48)

˛

∂M

Ψ†Ψ dΣ = 1

Up to the value of the factor 1c3

S(R)2πGN , (48) is precisely
the Dirac equation.

I. INTERPRETATION

It is evident that the scalar metric perturbation (in the
form of Ψ) has assumed characteristics typically associ-
ated with the quantum mechanical wavefunction, includ-
ing momentum-position and energy-time uncertainty re-
lations (required by the Dirac-like structure of 48). Such
properties have come about as a direct result of the non-
local nature of the energy/momentum of the metric per-
turbation. It becomes then entirely redundant to have
an independent quantum hypothesis, the two phenom-
ena appear to be one and the same.
Any physical interpretation of (48) unavoidably de-

mands a relationship with the Dirac equation such that:

} =

(
1c3

2πS(R)GN

)
(49)

Where } is the Planck constant divided by 2π. Only
when equation (49) holds can one make physical sense
of the scalar perturbation in the form of equation (48).
One has then in this interpretation that the quantum
wavefunction must be a manifestation of the metric per-
turbation of the particle.

Let us examine this qualatatively. In considering a
point particle, one can say that the metric perturbation is
inextricably associated with it’s source particle. Yet one
also has that the energy/momenta of the perturbation are
necessarily non-local. Writing the energy and momentum

of the particle in terms of the perturbation then must lead
to non local or “quantum-like” characteristics.

One has here indeterminacy arising from nonlocality,
which itself is a direct result of the equivalence principle.
In this respect, there is a certain (much needed) satisfac-
tion within this explanation of the quantum wavefunc-
tion.

The current paper has approached this problem from
the consideration of some equivalence between gravita-
tional nonlocality and quantum indeterminism (though
no assumption was made until the conjecture of equation
(49)).

Equation (49) however, posesses the strongly dissatis-
fying assertion that the Planck constant for some massive
particle is dependent upon it’s path history S. One can
approximate a path history as being comoving, as spatial
momenta of massive particles are redshifted towards the
comoving frame in the expanding universe. There would
remain the issue though, that two particles would have
a Plancks constant that diverged from one another on a
level many orders of magnitude below the value of ~ itself
(which is reminiscent of Weyl’s theory {ref}).

It would appear that pursuing this formalism begin-
ning with the pseudotensor approach (as mentioned in
section D) might leave the value of ~ dependent only
upon R. This comes about because the pseudotensor
portion of equation (26) to first order should only be
dependent upon R. Being an invariant related to the
scalar curvature this dependence would possess none of
the drawbacks of the current approach.

Previous mentions in the literature.

The notion that Planck’s constant and/or quantiza-
tion may be related to global spacetime geometry is not
unprecedented in the literature. As far back as 1939
Schrodinger writes [18]:

“Wave mechanics imposes an a priori reason
for assuming space to be closed; for then and
only then are it’s proper modes discontinuous
and provide an adequate description of the
observed atomicity of matter and light.”

As the father of the wavefunction, Schrodinger’s view
merits consideration (Incidentally, it was a similar line of
thought which led the author to Schrodinger’s paper and
eventually the present article).

Later, mathematicians Folland and Stein [19] demon-
strated that a pseudo-elliptic operator on a real hyper-
surface is best approximated not by the unitary group
but rather the Heisenberg group.

Further building upon Folland and Stein, Buliga, indi-
cates (in a comprehensive article [20]) that:

“A measurement process should correspond
to trying to make an Euclidean chart of this
dynamical system..... Planck constant might
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be the effect of this fact, namely it could mea-
sure the distance from the (metric profile or
dilatation profile) and best Euclidean approx-
imations. After reading this paper one can
be sensible to the idea that the Planck con-
stant could measure a distance between cur-
vatures.”

Most recently Lipovka [32], has utilized a wholly indepen-
dent approach involving adiabatic invariants. Lipovka’s
analysis ends concluding that the Planck’s constant (h) is
necessarily an adiabatic invariant of the expanding uni-
verse. He derives a relationship such that the Planck
constant is necessarily inversely proportional to the cube
of the radius of curvature of spacetime (h ∝ R−3).

II. THE FORM OF S(R)

In order to for the current interpretation to be valid
S(R) must follow certain criteria. For example we ex-
pect that the Planck constant has maintained the level
of consistency in it’s value as determined by observations
of our universe.

In order to check that this is indeed the case (and also
to proceed with an analysis) we must know the form of
S(R). This requires knowing the form of it’s parame-
terization. For the closed FLRW universe, the form of
the metric in terms of the scale parameter is given by
solutions to the Friedmann equations [14]:

−ds2 =

(
3c4

8πGN

)
−dR2

(ρr0R4
0) /R2 + (ρm0R3

0) /R−
(

3c4

8πGN

)+R2dΣ2

(50)
Where the ρ′s denote the density of radiation and mat-

ter respectively at some value of the scale parameter (de-
noted R0). Let us denote the quantities ρr0R4

0 = Erl
and ρm0R3

0 = Em, which refer to the total radiation en-
ergy and mass/energy respectively. We have also that
dΣ indicates an object moving over the three sphere as
it expands. One then has that equation (50) takes the
form:

ds2 =

(
3c4

8πGN

)
(R)2dR2

Erl + REm −
(

3c4

8πGN

)
R2

The total (absolute) interval is then:

S =

(
3c4

8πGN

)1/2
Rpˆ

0

R
√√√√ 1

Erl + aEm −
(

3c4

8πGN

)
R2
dR

Where Rp is the scale parameter in the present time.
For simplicity, let us denote the constant 8πGN

3c4 = C, the
solved integral is then of the form:

S(R) =

(
Em
2C

)
arcsin

(
R− (Em/2C)√

(Erl/C) + (Em/2C)2

)Rp

0

−
{√
−R2 + R(Em/C) + (Erl/C)

}Rp

0

At the current time tp, the interval Sp must be on the
order of 1068 meters (from (49)). In this manner we can
write:

S(R) = Sp
[
S(R)

Sp

]
= SpS′(R) (51)

Where S′p = 1 in the present. We are now in a position
to proceed in seeing how the Planck “constant” would
evolve with the scale parameter.

If we suppose (as observation suggests) that the mass
density has been much greater than the radiation den-
sity for most of the universe’s lifetime; then we may ap-
proximate the scale parameter R by solutions to matter
dominated Friedmann’s equations [14] (we could alterna-
tively use the radiation dominated solution for the early
universe).

R(η) =
Rmax

2
(1− cos(η)) (52)

In this manner, the Planck “constant” may be written
in terms of conformal or cosmological time.

} =

(
1c3

2πS(η)GN

)
Using this with (52) and (51) we may graph the general

form of the Planck constant in cosmological time:

Where, for ease of viewing, the amplitude of ~ has
been over-represented by a factor of ∼ 1032. Figure 1.
indicates that the value of ~ remains quite consistent over
most of the lifetime of the closed universe ( in agreement
with observation).
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III. SOME CONSEQUENCES AND POTENTIAL
EXPERIMENTAL VERIFICATIONS THEREOF.

The above relationship between General Relativity and
quantum mechanics offers many consequences, the most
immediately evident of which is the geometrical nature
of Planck’s constant and consequent dependence upon
the scale factor a(η). Thus an atom for example would
not be exempt from energy loss in an expanding universe
but should rather experience diminishment in a manner
similar to that of a propagating electromagnetic wave.
Let us examine this from an observational point of view.
The following sections should be considered crude models
in that any experiment would necessarily need to perform
a more in-depth analysis to check results

A. The Dirac equation over cosmological time
periods

While under the present interpretation } possesses a
dynamic geometric meaning, in quantum physics it is
considered strictly constant. This can be shown to be
merely a matter of choosing how to manage the time de-
pendence of ~. Examining equation (48):

{}(η)eα(η)(∂α +
1

8
ωabα σab)−mc}Ψ = 0 (53)

Denoting ~(η) in the present as ~p, the above may be
written as:

{}p
(
~(η)

~p

)
eα(η)(∂α +

1

8
ωabα σab)−mc}Ψ = 0 (54)

This may be rewritten as:

{}peα(η)(∂α +
1

8
ωabα σab)−mc

(
~p
~(η)

)
}Ψ = 0

After rearranging, the above is written as:

{
}peα(η)(∂α +

1

8
ωabα σab)−mc

}
Ψ−mc

(
~p
~(η)

− 1

)
Ψ = 0

(55)
It becomes convenient here to write the entirety of (55)

in terms of conformal time. Let us write the scale param-
eter as R(η) = Rpa(η), where a(η) is the unitless scale
parameter.

Then a(η) chosen as unity in the present, sets Rp as
the Radius of curvature of space in the present. The
scale parameter a(η) is given by solutions to the Fried-
mann equations. as we are considering a closed (matter
dominated) universe, such solutions are known to be of
the form [14]:

a(η) =
amax

2
(1− cos(η)) (56)

For simplicity, let us take our frame as the comoving
one. Pulling the scale factor out eα(η)→ a(η)−1eα (note
that pulling a(t)out of the metric automatically resets
the metric to conformal time η), We have that we can
write (55) as:

{
}peα(∂α +

1

8
ωabα σab)−mc

}
Ψ−mca(η)

(
~p
~(η)

− 1

)
Ψ = 0

The term is curly brackets is simply the Dirac equation
as encountered in quantum mechanics. The latter term,
required to be zero in the present, acts as an effective
potential V1(η) for times varying from the present.

V1(η) = −mca(η)

(
~p
~(η)

− 1

)
Ψ

{}peα(∂α +
1

8
ωabα σab)−mc}Ψ− V1Ψ = 0 (57)

Within the Spin connection component, for the comov-
ing frame one has a term on the order of ∼ ȧ(η)

a(η) (the
Hubble constant) [30]. the Dirac equation takes on the
form:

{
}peα(∂α +

1

8
ωabα σab)−mc

}
Ψ+

{
∼ }p

ȧ(η)

a(η)
+ V1

}
Ψ = 0

Using equation (52) the “connection potential” is of the
form:

}p
ȧ(η)

a(η)
=

sin(η)

1− cos(η)
= V0

Where we’ve denoted this term V0. One has then that
(53) may be written as:

{
}eα(∂α +

1

8
ωabα σab)−mc

}
Ψ + {V0 + V1}Ψ = 0 (58)

The first term is clearly the standard Dirac equation
expressed in conformal time η, while the latter terms acts
as an effective potential V (η) = V0 + V1.

V (η) = }
Sin(η)

(1− cos(η))
−mca(η)

(
~p
~(η)

− 1

)
As required,V (η) vanishes in the present (aside from

a small Hubble term). Let us examine the form of this
potential as it varies with cosmological time η.
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Examining V (η) (Figure 2) first very close to the origin
(expanded in the inset), we see that the potential (domi-
nated by V0) diverges to +∞ as one approaches ever near
the onset of expansion (the singularity). While our per-
turbation analysis surely fails very near the singularity,
one might qualatatively say that the term V0 acts as a
strong potential, rapidly dropping towards zero roughly
on the order of η ∼ 10−34. Such a potential is highly
reminiscent of the so-called inflationary field, which is
theorized to appear on a very similar time scale in the
early universe.

Away from the origin V1 dominates as viewed in the
main body of Figure 1 (The amplitude of V1 and V0 are
both over-represented for ease of viewing). The profile is
interesting in that it starts out flat and at some period
well after the onset of expansion begins to drop signifi-
cantly.

Interpreted as a real potential, V (η) would indicate
that at some period into it’s life the universe began to
accelerate in it’s expansion.

This is in agreement with recent observations indicat-
ing that our universe began accelerating in it’s expansion
some time in the recent past. A proper analysis using
observed data could ascertain whether this potential is a
proper fit to observation or not.

One has in both of these cases that requiring } to
be fixed leads an observer to require that there exists
a potential acting to drive accelerated expansion of the
universe. This complements well the constant } inter-
pretation of the redshift which indicates an accelerating
expansion of the universe as discussed in in the previous
section.

It is clear however, that V (η) should be considered
as merely a coordinate artifact resulting from one’s in-
sistence on utilizing the current radius of curvature Rp
within Planck’s constant for times differing significantly
from the present. In this manner,V (η) can be interpreted
as a ficticious field in the same sense that the centrifu-

gal or even gravitational force itself are ficticious forces
resulting from choice of coordinates.

B. The cosmic rate of expansion as inferred by the
redshift of distant bodies

We will begin by considering the Hubble redshift of dis-
tant galaxies. Generally this is interpreted as indicating
an expansion rate of the universe. The redshift factor for
a given light source is determined by finding the atomic
spectra corresponding to known elements and figuring
out how much said spectra have been shifted. The spec-
tra of hydrogen, for example, are well-known to be given
(sufficiently for our purposes) by the Rydberg formula.

1

λ
=

mee
4

8ε20h
3c

(
1

n21
− 1

n22

)
(59)

Where λ is the wavelength of radiation emit-
ted/absorbed, n1 and n2 are any positive integers n1 6=
n2 ; n1 < n2 and n2 < n1 implying absorption and emis-
sion respectively.

In light of equation (55) however; one can no longer re-
gard h as constant over cosmic time-scales. The spectra
of an atom will necessarily be dictated by the Cosmo-
logical scale factor of spacetime at the moment (denoted
then) of absorption/emmission. The Rydberg formula
then becomes:

1

λthen
=
mee

4

8ε20c

(
GNSthen

c3

)3(
1

n21
− 1

n22

)
(60)

For convenience, let us absorb all of (57) except R3

into a factor, denoted λ0 such that:

λthen = λ0S−3then (61)

One may now follow the standard prescription used to
determine the Hubble factor from the redshifting of light.
Prior to any calculation, it is evident that the obtained
Hubble factor will be much different. In the present time
(denoted now), we have that the emission spectra from
the same atomic species will follow:

λnow = λ0S−3now where : Snow > Sthen (62)

The equation used for determining cosmic redshift is
given by[24]:

z + 1 =
λnow
λthen

=
anow
athen

(63)

However, λthen is considered in all redshift surveys, to
be the same as the spectra that an atom has now (λnow).
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Under the present treatment however, this is not the case.
One can correct for this:

λthen = λnow

[
λthen
λnow

]
= λnow

[
Snow
Sthen

]3
(64)

When substituted into (63) this yields:

λarriving
λnow

[
Snow
Sthen

]−3
=
anow
athen

(65)

and rearranged:

z + 1 =
λarriving
λnow

=

[
anow
athen

] [
Snow
Sthen

]3
(66)

Because S is of first order or greater in R, it becomes
evident that in observing the redshift of distant bodies
and assuming the constancy of atomic spectra, one would
be forced to conclude the universe is expanding at an
accelerated rate. It may be however that the universe
slowing in it’s acceleration and the former interpretation
is but a mirage brought about by the changing of atomic
spectra over cosmological timescales. Using the proce-
dure very roughly outlined here, one could potentially
check the fit here against known observational data. Note
that this complements well the discussion in the previous
section.

C. Macroscopic wavefunctions; a local experiment

The former two sections are both complimentary and
require observations on a cosmological scale. It would be
more satisfying to have a local test of this paper’s main
point.

Let us consider a localized mass density ρa subject to a
Newtonian potential ϕ. The differential element of force
is given as:

−−→
dFa = ρadvol(−

−→
∇ϕ) (67)

Consider now the presently posited relationship be-
tween the wavefunction and the scalar metric perturba-
tion. We will denote the source mass of ϕ as mb. Near
the rest frame of mb, the Newtonian potential is of the
form ϕ = −c21 | Ψb |2 (where Ψb is the wavefunction of
mb). The mass density ρa may be similarly written in
terms of it’s own wavefunction ρa = ma | Ψa |2. 67 is
then written as:

−−→
dFa =| Ψa |2

−→
∇ | Ψb |2 (68)

Integrating 68, we arrive at an expression for the total
force:

~Fa = 1mac
2

ˆ
| Ψa |2

−→
∇ | Ψb |2 dΣ (69)

For a wavefunction possessing a non-zero gradient, one
ought observe a Newtonian-like potential acting upon an-
other mass (ma) immersed within it. A proper calcula-
tion of the total force necessitates an overlap integral
involving the two wavefunctions.

Given a single particle perturbation source, such an
effect would be infinitesimal. The most feasable experi-
ment would necessarily involve a gradient induced within
a macroscopic wavefunction such as a superfluid, super-
conductor, or some other manifestation of Bose-Einstein
Condensate.

For this case in particular, the high absolute-value of
the wavefunction coupled with the relative ease of manip-
ulating said wavefunction over a macroscopic distance,
one might hope to obtain an observable result.

In such a situation, it would appear that the superfluid
wavefunction is effectively altering the geodesics of the
background metric (locally). Under a proper analysis of
vector and tensor perturbations more interesting effects
could, in principle, result.

FURTHER THOUGHTS AND REMARKS

The scalar perturbation in reality is but a part of the
metric perturbation, whose full analysis would require a
similar treatment of the vector and tensor perturbation
components (Of course the linear perturbation itself is
but a first order approximation to the full Einstein field
equation). Such an analysis could have terms contribut-
ing to the proposed physical phenomena mentioned in
the former sections. A similar treatment of the vector
and tensor components might shed light on the origin of
other quantum phenomena. It would be of great interest
to see if other components of the standard model could
be thus derived.

If one proceeds in so-called second quantization using
the present formalism several interesting points arise:

1. One has in the present article that the wavefunction
is a perturbation to the background metric. In the
context of field theory, the vacuum state would nec-
essarily correspond to the background metric (or
rather it’s factored harmonic expansion). In this
manner a creation operator corresponds to adding
a set of weighted harmonics to the background met-
ric. One can contrast this with typical QFT in
which the vacuum is quantized at each point as a
set of harmonic oscillators.

2. The vacuum state energy density would necessarily
correspond to the Ricci scalar of the background
metric. In terms of harmonic expansions, the se-
ries expansion for vacuum energy would have to
converge on the Ricci scalar (times a factor). In
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this way there is a natural suppression of higher
order modes, thus avoiding ultraviolet divergences.

It would be of great interest to pursue such a formulation
(the pseudotensor approach being the most promising).

AFTERWORD

The present article has presented a case that the non-
local nature of gravitational energy and momentum is
directly responsible for quantum indeterminacy. In par-
ticular it has been posited that the quantum mechanical
wavefunction of a massive particle can be interpreted as

a manifestation of the scalar spacetime metric perturba-
tion. Further analysis appears to be warranted.

After reading this paper, one might begin to under-
stand why attempts at quantizing gravity have proven
largely intractible. Global spacetime structure appears
to bequeath quantization (to paraphrase Schrodinger),
but is not in and of itself quantized.

It is nostalgic to consider here Eratosthenes of Cyrene
(circa ∼240BC). Using his knowledge of geometry and
the observation of shadows cast by the sun, Eratosthenes
was able accurately ascertain the scale of the earth’s cir-
cumference (from within ancient Egypt) [31]. In an anal-
ogous manner perhaps the Planck constant is a means
through which one might glimpse the true scale and ge-
ometry of the cosmos.
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