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Abstract

A two-dimensional vector can be made from a constant signal compo-
nent plus a randomly oriented noise component. This simple model can
exploit detection and post-selection loopholes to produce Bell correlations
within 0.01 of the theoretical cosine expected from quantum mechanics.
The model is shown to be in accord with McEachern’s hypothesis that
quantum correlations are associated with processes which can provide
only one bit of information per sample.

McEachern’s Polarized Coin

A classical model for producing “quantum correlations” was recently introduced
by McEachern [1]. The model involves two polarized coins, with a cloud of noise
spread over the surface of each coin. A trial consists of sending one coin to Alice
who uses an instrument to perform a measurement of the coin’s polarity at a
random angle, α, and sending the other coin to Bob who also measures at a
random angle, β. Polarity varies continuously with the setting of the angle, but
the measurement procedure is limited to reporting +1 if the polarity is positive,
−1 if the polarity is negative, or 0 to indicate that the magnitude of the polarity
fails to meet a preset threshold. The magnitude of both measurements must
exceed this threshold in order for a trial to be counted in the analysis, which
consists of reducing the observations to four totals (N

++
, N

+− , N−+
, N−−) of

detected polarity pairs reported by Alice and Bob for each instance of angular
difference, θ = α − β. For example, N+− is the number of trials, for a given
angular difference between measurement settings, that Alice reports a positive
polarity while Bob reports a negative polarity.

The correlation is defined as
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(1)

Values for noise amplitude and threshold can be found so that the cloud of
noise influences the distribution of correlations against angular difference to
approximate C(θ) ≈ − cos(θ) expected from quantum theory, as demonstrated
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by a computer program [2]. Fig. 1 was produced by a similar program and
shows the correlation vs angular difference for 10 million trials. It is clear that
the model does not fit the cosine perfectly, with an error of 2% at the maximum.
There is a consistent pattern in the difference between the model and the cosine.
The pattern becomes clearer as the number of trials is increased, but substantial
computation is required.

The Noisy Vector Model of McEachern’s Coin

The computational load can be reduced by considering a simpler model which
exhibits similar characteristics. The first step in simplifying the noisy coin model
is to imagine that the cloud of noise can be replaced by a single random vector
corresponding to the centroid of the cloud. This conceptual step of vectorization
is then applied to the coin (the signal). Each of McEachern’s polarized coins
has a positive half and a negative half. This symmetry prevents vectorization
of the coin because only the zero vector would be allowed. The way to get
around this obstacle to vectorization is to cut the coins in half, discarding the
negative halves, then sending one positive half (aligned with the instrument’s
zero-setting) to one observer, and sending the positive half of the other coin
(pointing in the opposite direction) to the other observer. The image of each
half-coin can be replaced by its centroid in the form of a vector.

The vectorized coin model then consists of two parts: a constant signal vector
aligned with the x-axis, added to a randomly oriented noise vector. The coor-
dinates of the signal vector sent to Alice are (−R, 0), while the signal sent to
Bob is (R, 0). The signal amplitude is taken to be R = 1. The standard devi-
ation of the noise and the threshold were found empirically to be rather close
to σr = 1/3 and ε = 1/4 respectively by a least squares fit to the theoretical
cosine.

Alice’s measurement process consists of setting an angle, α, on the instrument,
evaluating the projection onto the x-axis in the rotated coordinate system, then
determining whether the magnitude of the projection exceeds the threshold, ε,
before reporting the polarity as positive or negative. For example, the projection
of Alice’s noiseless signal would be calculated using the following geometry.

Three versions of the noisy vector model are considered – the only difference is
the nature of the randomness of the noise part of the vector. In all versions, the
angle, γ, of the noise vector for Alice’s instrument is randomly selected for each



trial, all angles being equally probable. The projection onto the x-axis is given
by

PAlice = −R cos(α) + r cos(γ) (2)

where the magnitude, r, of the noise vector is either a normal variable with
standard deviation, σr = 1/3, or is a constant, r = 1/3.

Similarly, the angle, δ, of the noise vector for Bob’s instrument is randomly
selected for each trial, and the projection onto the x-axis is given by

PBob = R cos(β) + r cos(δ) (3)

where the magnitude, r, of the noise vector is either a normal variable (indepen-
dent of Alice’s noise vector) with standard deviation, σr = 1/3, or is a constant,
r = 1/3.

Polarity in McEachern’s coin model is determined by a polarized mask rotated
to the measurement angle, and varies linearly with angle. In the vector model,
polarity is determined by projection and varies with the cosine of the angle,
although linear polarity can be made to work too. Despite these differences, both
the coin model and noisy vector model 1 produce the same sort of correlations
at 10 million trials. Even the error is distributed similarly, as can be seen by
comparing Figures 1 and 2. See [3] for a computer program which uses the noisy
vector model to produce Bell correlations.

In model 1, Alice and Bob are each presented with an independent random
variable1 as the magnitude of the noise vector, with only the standard deviation
common to both of their random variables. Fig. 3 shows the correlation and
error after one billion trials, which is sufficient to reveal a pattern in the error.

Model 2 has either Alice or Bob with a random variable and the other with a
noise vector of constant magnitude. Fig. 4 shows that the error between the
model and cosine for this hybrid model is noticably reduced. The error can be
approximately reproduced by a simple linear combination of cos(θ) and cos(5θ)
where θ = α − β. These components can be inferred from visually inspecting
the error curves from any of the models after a sufficient number of trials.

Model 3 has both Alice and Bob with noise vectors of constant magnitude, This
model is simplest, fastest and best fits the cosine. It can be seen from Figs. 5
and 6 that the difference between the model and the cosine is the smallest,
about 1% at the maximum. When Alice’s instrument is set to zero, perfectly
in line with the negative signal component but in the opposite direction, there
is no possibility that a positive polarity will be reported, or that the trial will
be nullified because the magnitude of the measured polarity falls beneath the
threshold. This is not the case for the other two models, where the randomness
of the magnitude of the vector could reverse the detected polarity even when
alignment is perfect.

1 A pseudo-random approximation to a normal variable with zero mean and standard
deviation equal to σr is used.



As mentioned previously, there are two variants of the method for determining
polarity. The cosine projection was selected over linear simply because it results
in a signal to noise ratio which is closer to an integer. The threshold was similarly
selected because ε = 1/4 is a simple fraction, and quite close to optimal (least
squared error) in fitting the cosine. These values result in a simple recipe for
producing correlations: 1 part signal, 1/3 part noise, 1/4 threshold. Model 3
is very slightly favoured by the chosen values of noise and threshold, but not
so much as to change the appearance of the figures, or any numerical estimates
presented, if the optimal values for noise amplitude and threshold were used
instead for each model. Those values were found from an iterative grid search
with 10 million trials at each point on the grid.

Concordance with the Single Bit Hypothesis

McEachern bases his technique on Shannon’s Capacity Theorem, and the very
interesting idea that quantum correlations come from a sampling process that
can provide only one bit of information2 per sample,

I =
1

2
log2(1 + S/N) (4)

where S = 1 would be signal amplitude, and N = 1/3 would be noise amplitude
for all of the noisy vector models presented. In that case, I = 1, so there is one
bit of information available per sample, precisely in accord with McEachern’s
hypothesis concerning quantum correlations.

Discussion

There is a great deal of literature concerning local hidden variables, and dealing
with detection and post-selection loopholes. These loopholes allow a classical
process to exhibit what appears to be quantum correlations, and are present
in the coin and noisy vector models. The noisy vector model is a rudimentary
version of the locally deterministic, detector-based model of quantum measure-
ment presented by La Cour [5, 6], who has applied it to examples such as the
CHSH inequality and Mermin-Peres magic square.

It is clear that a classical process can almost duplicate the sinusoidal correlations
expected from quantum theory. It is not clear how the small differences, on
the order of 0.01, might affect the processing power of classical systems with
many artificial qubits. On the other hand, it may be appropriate to compare
the classical models to observed data rather than quantum theory. After all,
there is the possibility that the processes underlying quantum mechanics can be
understood as fundamentally classical, which might be revealed through analysis
of experimental data.

2As pointed out to me by Rob McEachern, in the first version of this article I confused
information per second with information per sample, and missed the factor of 1/2. See Eq.(1)
in [4] for example.
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Coin model with 10 million trials

0 90 180 270 360
Phase (degrees)

-1

0

1

C
o
rr

e
la

ti
o
n

Theoretical cosine

McEachern's coin

Difference (x20)

Figure 1: Correlation against angular difference between detector settings
for McEachern’s coin model after 10 million trials, and program parameters
NoiseAmp=6.4, Threshold=1100. The phase (angular difference) is θ =
α− β where α is the setting for the angle of rotation on Alice’s instrument,
and β is the setting on Bob’s instrument. The correlation fits to within about
±0.02 of the theoretical cosine, and there is a pattern to the difference.



Noisy vector model 1 with 10 million trials
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Figure 2: Noisy vector model 1 after 10 million trials and parameters
σr = 1/3, ε = 1/4. The vector model with 10 million pairs of measurements
gives a result similar to the coin model with the same number of trials.
Notably, the error in the fit to the cosine appears to be distributed similarly
to the coin model.



Noisy vector model 1 with 1 billion trials
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Figure 3: Noisy vector model 1 after 1 billion trials, and parameters σr =
1/3, ε = 1/4. This model has a random variable as the magnitude of the
noise vector for both Alice and Bob. Increasing the number of trials has
not improved the fit of the correlation to the cosine which remains at about
±0.02. The higher number of trials has reduced the scatter, revealing a clear
pattern in the difference between the cosine and the measured correlation.
This pattern has cos(θ) and cos(5θ) as its major components, and a least-
squares fit of these two components to the error is shown.



Noisy vector model 2 with 1 billion trials
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Figure 4: Noisy vector model 2 after 1 billion trials, and parameters r = 1/3
(or σr = 1/3), ε = 1/4. In model 2, if either Alice or Bob has a noise
vector of constant magnitude, then the other has a random variable for the
magnitude. The fit of the correlation to the cosine lies within approximately
±0.015. The components cos(θ) and cos(5θ) fit the pattern in the difference
between the cosine and the measured correlation rather well, in comparison
to the other models.



Noisy vector model 3 with 1 billion trials
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Figure 5: Noisy vector model 3 after 1 billion trials, and parameters r =
1/3, ε = 1/4. Model 3, where both Alice and Bob are presented with noise
vectors of constant magnitude, provides the closest fit of the correlation to
the cosine, at about ±0.01.



Noisy vector model 3 with 1 billion trials

Output from Matlab version of program

Figure 6: Noisy vector model 3 after 1 billion trials, and parameters r =
1/3, ε = 1/4. This sample output from the companion Matlab program [3]
shows a result nearly identical to Fig 5, which was produced by a C program
with a different set of random numbers.


