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Abstract

Fuzzy graph theory is used for solving real-world problems in different fields, including theoret-

ical computer science, engineering, physics, combinatorics and medical sciences. In this paper, we

present conepts of bipolar neutrosophic multigraphs, bipolar neutrosophic planar graphs, bipolar

neutrosophic dual graphs, and study some of their related properties. We also describe applications

of bipolar neutrosophic graphs in road network and electrical connections.
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1 Introduction

Fuzzy graph theory has a number of applications in modeling real time systems where the level of

information inherent in the system varies with different levels of precision. Fuzzy models are becom-

ing useful because of their aim in reducing the differences between the traditional numerical models

used in engineering and sciences and the symbolic models used in expert systems. Kaufmann defined

first fuzzy graph [12], then Rosenfeld [15] discussed several basic graph-theoretic concepts, including

bridges, cut-nodes, connectedness, trees and cycles. Bhattacharya [9] gave some remarks on fuzzy

graphs, and Sunitha and Vijayakumar [11] characterized fuzzy trees. Abdul-jabbar et al. [1] intro-

duced the concept of a fuzzy dual graph and discussed some of its interesting properties. Samanta

and Pal [16, 17] introduced and investigated the concept of fuzzy planar graphs and studied several

properties. On other hand, Alshehri and Akram [7] introduced the concept of intuitionistic fuzzy

planar graphs. Akram et al. [6] discussed the concept of bipolar fuzzy planar graphs. Dhavaseelan

et al. [11] defined strong neutrosophic graphs. Akram and Shahzadi [2] introduced the notions of

neutrosophic graphs and neutrosophic soft graphs. In this paper, we introduce the notions of bipo-

lar single-valued neutrosophic multigraphs, bipolar single-valued neutrosophic planar graphs, bipolar
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single-valued neutrosophic dual graphs, and investigate some of their interesting properties. We also

describe applications of bipolar neutrosophic graphs in road network and electrical connections.

2 Bipolar neutrosophic planar graphs

Smarandache [14] introduced neutrosophic sets as a generalization of fuzzy sets and intuitionistic fuzzy

sets.

Definition 2.1. [14] A neutrosophic set C on a non-empty set X is characterized by a truth mem-

bership function TC : X → [0, 1], indeterminacy membership function IC : X → [0, 1] and a falsity

membership function FC : X → [0, 1]. There is no restriction on the sum of TC(x), IC(x) and FC(x)

for all x ∈ X.

Deli et al. [10] defined bipolar neutrosophic (BN) sets a generalization of bipolar fuzzy sets.

Definition 2.2. [10] A BN set on a nonempty set X is an object of the form

C = {(y, TP
C (x), IPC (x), FP

C (x), TN
C (x), INC (x), FN

C (x)) : y ∈ X}

where, TP
C , IPC , FP

C : Y → [0, 1] and TN
C , INC , FN

C : Y → [−1, 0]. The positive values TP
C (x), IPC (x), FP

C (x)

denote respectively the truth, indeterminacy and false membership degrees of an element y ∈ Y

whereas TN
C (x), INC (x), FN

C (x) denote the implicit counter property of the truth, indeterminacy and

false membership degrees of the element y ∈ X corresponding to the bipolar neutrosophic set C.

We define BN multisets based on the concept of Ye and Ye [18].

Definition 2.3. Let X be a nonempty set with generic elements in X denoted by x. A BN mul-

tiset C drawn from X is characterized by the three positive functions: count truth-membership of

CTP
C , count indeterminacy-membership of CIPC , and count falsity-membership of CFP

C such that

CTP
C (x) : X → R+, CIPC (x) : X → R+, CFP

C (x) : X → R+ for x ∈ X, where R+ is the set of all real

number multisets in the real unit interval [0, 1], and three negative functions: count truth-membership

of CTN
C , count indeterminacy-membership of CINC , and count falsity-membership of CFN

C such that

CTN
C (x) : X → R−, CINC (x) : X → R−, CFN

C (x) : X → R− for x ∈ X, where R− is the set of all real

number multisets in the real unit interval [−1, 0],. Then, a bipolar single valued neutrosophic multiset

A is denoted by

A = {〈x, ((T 1)PC(x), (T
2)PC(x), . . . , (T

q)PC(x)), ((I
1)PC(x), (I

2)PC(x), . . . , (I
q)PC(x)), ((F

1)PC(x), (F
2)PC(x), . . . , (F

q)PC(x))

(T 1)NC (x), (T 2)NC (x), . . . , (T q)NC (x)), ((I1)NC (x), (I2)NC (x), . . . , (Iq)NC (x)), ((F 1)NC (x), (F 2)NC (x), . . . , (F q)NC (x))〉|x ∈

X}, where the positive truth, indeterminacy and falsity-membership sequences

((T 1)PC(x), (T
2)PC(x), . . . , (T

q)PC(x)), ((I
1)PC(x), (I

2)PC(x), . . . , (I
q)PC(x)), ((F

1)PC(x), (F
2)PC(x), . . . , (F

q)PC(x))

may be in decreasing or increasing order, and sum of (T i
C)

P (x), (Ii)PC(x), (F
i)PC(x) ∈ [0, 1] satisfies
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the condition 0 ≤ sup(T i)PC(x) + sup(Ii)PC(x) + sup(F i)PC(x) ≤ 3 for x ∈ X and i = 1, 2, . . . , q, the

negative truth, indeterminacy and falsity-membership sequences

((T 1)PC(x), (T
2)PC(x), . . . , (T

q)PC(x)), ((I
1)NC (x), (I2)NC (x), . . . , (Iq)NC (x)), ((F 1)NC (x), (F 2)NC (x), . . . , (F q)NC (x))

may be in decreasing or increasing order, and sum of (T i
C)

N (x), (Ii)NC (x), (F i)NC (x) ∈ [−1, 0] satisfies

the condition −3 ≤ inf(T i)NC (x) + inf(Ii)NC (x) + inf(F i)NC (x) ≤ 0 for x ∈ X and i = 1, 2, . . . , q. For

convenience, a BN multiset C can be denoted by the simplified form:

C = {〈x, (T )PC(x)i, (I)
P
C (x)i, (F )PC (x)i, (T )

N
C (x)i, (I)

N
C (x)i, (F )NC (x)i〉|x ∈ X, i = 1, 2, . . . , q}.

We now define the concept of bipolar neutrosophic graphs.

Definition 2.4. A bipolar neutrosophic graph on a nonempty set X is a pair G = (C,D), where C is

a bipolar neutrosophic set on X and D is a bipolar neutrosophic relation in X such that

(a) TP
D (yz) ≤ min(TP

C (y), TP
C (z)),

(b) IPD(yz) ≤ min(IPC (y), IPC (z)),

(c) FP
D (yz) ≤ max(FP

C (y), FP
C (z)),

(d) TN
D (yz) ≥ max(TN

C (y), TN
C (z)),

(e) IND (yz) ≥ max(INC (y), INC (z)),

(f) FN
D (yz) ≥ min(FN

C (y), FN
C (z))

for all y, z ∈ X. Note that D is called a BN relation on C.

Example 2.5. Consider a bipolar neutrosophic graph G = (C,D) on X = {x, y, z} as shown in Fig.

2.1.
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Figure 2.1: Bipolar neutrosophic graph
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Definition 2.6. Let C = (TP
C , IPC , FP

C , TN
C , INC , FN

C ) be a BN set on V and

let D = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈ V × V } be

a BN multiset of V × V such that

(g) TP
D (xy)i ≤ min{TP

C (x), TP
C (y)},

(h) TN
D (xy)i ≥ max{TN

C (x), TN
C (y)},

(i) IPD(xy)i ≤ min{IPC (x), IPC (y)},

(j) IND (xy)i ≥ max{INC (x), INC (y)},

(k) FP
D (xy)i ≤ max{FP

C (x), FP
C (y)},

(l) FN
D (xy)i ≥ min{FN

C (x), FN
C (y)}

for all i = 1, 2, . . . ,m. Then G = (C,D) is called a BN multigraph.

There may be more than one edge between the vertices x and y. The positive values TP
D (xy)i, I

P
D(xy)i,

FP
D (xy)i represent truth, indeterminacy and falsity of the edge xy in G, whereas the negative values

TN
D (xy)i, I

N
D (xy)i, F

N
D (xy)i represent the implicit counter property of the truth, indeterminacy and

false membership degrees of the edge xy in G. m denotes the number of edges between the vertices.

In BN multigraph G, D is said to be BN multiedge set.

Example 2.7. LetG∗ = (V,E), where V = {a, b, c, d}, E = {ab, ab, ab, bc, bd}. Let C = (TP
C , IPC , FP

C , TN
C , INC , FN

C )

be a BN set on V and D = (TP
D , IPD , FP

D , TN
D , IND , FN

D ) be a BN multiedge set on E ⊆ V × V defined

in Table 1 and Table 2.

Table 1: Single-valued neutrosophic

set C
C a b c d

TP
C 0.5 0.4 0.5 0.4

IPC 0.3 0.2 0.4 0.3

FP
C 0.3 0.4 0.3 0.4

TN
C −0.5 −0.4 −0.5 −0.4

INC −0.3 −0.2 −0.4 −0.3

FN
C −0.3 −0.4 −0.3 −0.4

Table 2: BN multiedge set D

D ab ab ab bc bd

TP
D 0.2 0.1 0.2 0.3 0.1

IPD 0.2 0.1 0.2 0.1 0.2

FP
D 0.2 0 0.2 0.3 0.2

TN
D −0.2 −0.1 −0.2 −0.3 −0.1

IND −0.2 −0.1 −0.2 −0.1 −0.2

FN
D −0.2 −0 −0.2 −0.3 −0.2

By direct calculations, we see from Fig. 2.2 that it is a BN multigraph.
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a(0.5, 0.3, 0.3,−0.5,−0.3,−0.3)
c(0.5, 0.4, 0.3,−0.5,−0.4,−0.3)

(0.2, 0.2, 0.2,−0.2,−0.2,−0.2)

(0.2, 0.2, 0.2,−0.2,−0.2,−0.2)

d(0.4, 0.3, 0.4,−0.4,−0.3,−0.4)

b(0
.4,

0.2
, 0.

4,−
0.4

,−
0.2

,−
0.4

)

(0.1, 0.2, 0.2,−0.1,−0.2,−0.2)

(0.1, 0.1, 0,−0.1,−0.1, 0)
b b b

b

(0.3, 0.1, 0.3,−0.3,−0.1,−0.3)

Figure 2.2: Neutrosophic multigraph

Definition 2.8. LetD = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈

V ×V } be a BN multiedge set in BN multigraph G. The degree of a vertex x ∈ V , denoted by deg(x),

is defined by

deg(x) = (

m
∑

i=1

TP
D (xy)i,

m
∑

i=1

IPD(xy)i,

m
∑

i=1

FP
D (xy)i,

m
∑

i=1

TN
D (xy)i,

m
∑

i=1

IND (xy)i,

m
∑

i=1

FN
D (xy)i).

Example 2.9. In Example 2.7, the degree of vertices a, b, c, d are deg(a) = (0.5, 0.5, 0.4,−0.5,−0.5,−0.4),

deg(b) = (0.9, 0.8, 0.9,−0.9,−0.8,−0.9), deg(c) = (0.3, 0.1, 0.3,−0.3,−0.1,−0.3) and

deg(d) = (0.1, 0.2, 0.2,−0.1,−0.2,−0.2).

Definition 2.10. LetD = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈

V × V } be a BN multiedge set in BN multigraph G. A multiedge xy of G is strong if the following

conditions are satisfied:

(m) 1
2 min{TP

C (x), TP
C (y)} ≤ TP

D (xy)i,

(n) 1
2 max{TN

C (x), TN
C (y)} ≥ TN

D (xy)i,

(o) 1
2 min{IPC (x), IPC (y)} ≤ IPD(xy)i,

(p) 1
2 max{INC (x), INC (y)} ≥ IND (xy)i,

(q) 1
2 max{FP

C (x), FP
C (y)} ≥ FP

D (xy)i,

(r) 1
2 min{FN

C (x), FN
C (y)} ≤ FN

D (xy)i

for all i = 1, 2, . . . ,m.

Definition 2.11. LetD = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈

V × V } be a BN multiedge set in BN multigraph G. A BN multigraph G is complete if the following

conditions are satisfied:
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(s) min{TP
C (x), TP

C (y)} = TP
D (xy)i,

(t) max{TN
C (x), TN

C (y)} = TN
D (xy)i,

(u) min{IPC (x), IPC (y)} = IPD(xy)i,

(v) max{INC (x), INC (y)} = IND (xy)i,

(w) max{FP
C (x), FP

C (y)} = FP
D (xy)i

(x) min{FN
C (x), FN

C (y)} = FN
D (xy)i

for all i = 1, 2, . . . ,m and for all x, y ∈ V .

Example 2.12. Consider a BN multigraph G as shown in Fig. 2.3. By routine calculations, it is easy

to see that Fig. 2.3 is a BN complete multigraph.
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(0.4, 0.3, 0.3,−0.4,−0.3,−0.3)b b b
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Figure 2.3: Bipolar neutrosophic complete multigraph.

Suppose that geometric insight for BN graphs has only one crossing between single valued neutrosophic

edges (ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) and

(cd, TP
D (cd)i, I

P
D(cd)i, F

P
D (cd)i, T

N
D (cd)i, I

N
D (cd)i, F

N
D (cd)i). We note that:

• If (ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) = (1, 1, 1,−1,−1,−1) and (cd, TP

D (cd)i, I
P
D(cd)i,

FP
D (cd)i, T

N
D (cd)i, I

N
D (cd)i, F

N
D (cd)i) = (0, 0, 0, 0, 0, 0) or (ab, TP

D (ab)i, I
P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i,

FN
D (ab)i) = (0, 0, 0, 0, 0, 0), (cd, TP

D (cd)i, I
P
D(cd)i, F

P
D (cd)i, T

N
D (cd)i, I

N
D (cd)i, F

N
D (cd)i) = (1, 1, 1,−1,−1,−1),

then BN graph has no crossing,

• If (ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) = (1, 1, 1,−1,−1,−1) and

(cd, TP
D (cd)i, I

P
D(cd)i, F

P
D (cd)i, T

N
D (cd)i, I

N
D (cd)i, F

N
D (cd)i) = (1, 1, 1,−1,−1,−1), then there ex-

ists a crossing for the representation of the graph.

Definition 2.13. The strength of the BN edge ab can be measured by the value

Sab = ((STP )ab, (SIP )ab, (SFP )ab, (STN )ab, (SIN )ab, (SFN )ab)

= (
TP
D
(ab)i

min(TP
C
(a),TP

C
(b))

,
IP
D
(ab)i

min(IP
C
(a),IP

C
(b))

,
FP
D
(ab)i

max(FP
C
(a),FP

C
(b))

,
TN
D

(ab)i
max(TN

C
(a),TN

C
(b))

,
IN
D
(ab)i

max(IN
C
(a),IN

C
(b))

,
FN
D

(ab)i
min(FN

C
(a),FN

C
(b))

).
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Definition 2.14. Let G be a BN multigraph. An edge ab is said to be a BN strong if (STP )ab ≥ 0.5,

(SIP )ab ≥ 0.5, (SFP )ab ≥ 0.5, (STN )ab ≤ −0.5, (SIN )ab ≤ −0.5, (SFN )ab ≤ −0.5 otherwise, we call

weak edge.

Definition 2.15. Let G = (C,D) be a BN multigraph such that D contains two edges

(ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) and (cd, TP

D (cd)j , I
P
D(cd)j , F

P
D (cd)j , T

N
D (cd)j , I

N
D (cd)j , F

N
D

intersected at a point P , where i and j are fixed integers. We define the intersecting value at the point

Q by

SQ = ((ST P )Q, (SIP )Q, (SFP )Q, (ST N )Q, (SIN )Q, (SFN )Q)

= (
(S

TP )ab+(S
TP )cd

2 ,
(S

IP
)ab+(S

IP
)cd

2 ,
(S

FP )ab+(S
FP )cd

2 ,
(S

TN )ab+(S
TN )cd

2 ,
(S

IN
)ab+(S

IN
)cd

2 ,
(S

FN )ab+(S
FN )cd

2 ).

If the number of point of intersections in a BN multigraph increases, planarity decreases. Thus for

BN multigraph, SQ is inversely proportional to the planarity. We now introduce the concept of a BN

planar graph.

Definition 2.16. Let G be a BN multigraph and Q1, Q2, . . . , Qz be the points of intersection between

the edges for a certain geometrical representation, G is said to be a BN planar graph with BN planarity

value f = (fTP , fIP , fFP , fTN , fIN , fFN ), where

f = (fTP , fIP , fFP , fTN , fIN , fFN )

= (
1

1 + {(STP )Q1
+ (STP )Q2

+ . . . + (STP )Qz}
,

1

1 + {(SIP )Q1
+ (SIP )Q2

+ . . .+ (SIP )Qz}

,
1

1 + {(SFP )Q1
+ (SFP )Q2

+ . . . + (SFP )Qz}
,

1

−1− {(STN )Q1
+ (STN )Q2

+ . . .+ (STN )Qz}

,
1

−1− {(SIN )Q1
+ (SIN )Q2

+ . . .+ (SIN )Qz}
,

1

−1− {(SFN )Q1
+ (SFN )Q2

+ . . . + (SFN )Qz}
).

Clearly, f = (fTP , fIP , fFP , fTN , fIN , fFN ) is bounded and 0 < fTP ≤ 1, 0 < fIP ≤ 1, 0 < fFP ≤ 1,

−1 < fTN ≤ 0, −1 < fIN ≤ 0, −1 < fFN ≤ 0.

If there is no point of intersection for a certain geometrical representation of a BN planar graph, then

its BN planarity value is (1, 1, 1,−1,−1,−1). We conclude that every BN graph is a BN planar graph

with certain BN planarity value.

Example 2.17. Consider a multigraph G∗ = (V,E) such that V = {a, b, c, d, e},

E = {ab, ac, ad, ad, bc, bd, cd, ce, ae, de, be}.

Let C = (TP
C , IPC , FP

C , TN
C , INC , FN

C ) be a BN set of V and let D = (TP
D , IPD , FP

D , TN
D , IND , FN

D ) be a BN

multiedge set of V × V defined in Table 3 and Table 4.
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Table 3: BN set C
A a b c d e

TP
C 0.5 0.4 0.3 0.6 0.6

IPC 0.5 0.4 0.3 0.6 0.6

FP
C 0.2 0.1 0.1 0.2 0.1

TN
C −0.5 −0.4 −0.3 −0.6 −0.6

INC −0.5 −0.4 −0.3 −0.6 −0.6

FN
C −0.2 −0.1 −0.1 −0.2 −0.1

Table 4: BN multiedge set D

B ab ac ad ad bc bd cd ae ce de be

TP
D 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

IPD 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

FP
D 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

TN
D −0.2 −0.2 −0.2 −0.3 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2

IND −0.2 −0.2 −0.2 −0.3 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2

FN
D −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1

The BN multigraph as shown in Fig. 2.4 has two point of intersections P1 and P2. P1 is a point

between the edges (ad, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1) and (bc, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1) and P2 is

between (ad, 0.3, 0.3, 0.1,−0.3,−0.3,−0.1) and (bc, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1).

For the edge (ad, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1), Sad = (0.4, 0.4, 0.5,−0.4,−0.4,−0.5),

For the edge (ad, 0.3, 0.3, 0.1,−0.3,−0.3,−0.1), Sad = (0.6, 0.6, 0.5,−0.6,−0.6,−0.5) and

for the edge (bc, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1), Sbc = (0.6667, 0.6667, 1,−0.6667,−0.6667,−1).

For the first point of intersection P1, intersecting value SP1
is (0.5334, 0.5334, , 0.75,−0.5334,−0.5334,−0.75)

and that for the second point of intersection P2,SP2
= (0.63335, 0.63335, , 0.75,−0.63335,−0.63335,−0.75).

Therefore, the BN planarity value for the BN multigraph shown in Fig. 2.4 is (0.461, 0.461, 0.4,−0.461,−0.461,−0.4).
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Figure 2.4: Neutrosophic planar graph

Theorem 2.18. Let G be a BN complete multigraph. The planarity value, f = (fTP , fIP , fFP , fTN , fIN , fFN )

of G is given by fTP = 1
1+nQ

, fIP = 1
1+nQ

and fFP = 1
1+nQ

such that fTP + fIP + fFP ≤ 3,

fTN = 1
−1−nQ

, fIN = 1
−1−nQ

and fFN = 1
−1−nQ

such that −3 ≤ fTN + fIN + fFN ≤ 0 where nQ is the

number of point of intersections between the edges in G.

Definition 2.19. A BN planar graph G is called strong BN planar graph if the BN planarity value

f = (fTP , fIP , fFP , fTN , fIN , fFN ) of the graph is fTP ≥ 0.5, fIP ≥ 0.5, fFP ≤ 0.5, fTN ≤ −0.5,

fIN ≤ −0.5, fFP ≥ −0.5 .

Theorem 2.20. Let G be a strong BN planar graph. The number of point of intersections between

strong edges in G is at most one.

Proof. Let G be a strong BN planar graph. Assume that G has at least two point of intersections P1

and P2 between two strong edges in G. For any strong edge

(ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i),

TP
D (ab)i ≥

1

2
min{TP

C (a), TP
C (b)}, IPD(ab)i ≥

1

2
min{IPC (a), IPC (b)}, FP

D (ab)i ≤
1

2
max{FP

C (a), FP
C (b)},

TN
D (ab)i ≤

1

2
max{TN

C (a), TN
C (b)}, IND (ab)i ≤

1

2
max{INC (a), INC (b)}, FN

D (ab)i ≥
1

2
min{FN

C (a), FN
C (b)}.

This shows that (STP )ab ≥ 0.5 , (SIP )ab ≥ 0.5, (SFP )ab ≤ 0.5, (STN )ab ≤ −0.5 , (SIN )ab ≤ −0.5,

(SFN )ab ≥ −0.5.

Thus for two intersecting strong edges (ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) and

(cd, TP
D (cd)j , I

P
D(cd)j , F

P
D (cd)j , T

N
D (cd)j , I

N
D (cd)j , F

N
D (cd)j),
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(STP )ab + (STP )cd
2

≥ 0.5,
(SIP )ab + (SIP )cd

2
≥ 0.5,

(SFP )ab + (SFP )cd
2

≤ 0.5,

(STN )ab + (STN )cd
2

≤ −0.5,
(SIN )ab + (SIN )cd

2
≤ −0.5,

(SFN )ab + (SFN )cd
2

≥ −0.5.

That is,

(STP )Q1
≥ 0.5, (SIP )Q1

≥ 0.5, (SFP )Q1
≤ 0.5, (STN )Q1

≤ −0.5, (SIN )Q1
≤ −0.5, (SFN )Q1

≥ −0.5.

Similarly,

(STP )Q2
≥ 0.5, (SIP )Q2

≥ 0.5, (SFP )Q2
≤ 0.5, (STN )Q2

≤ −0.5, (SIN )Q2
≤ −0.5, (SFN )Q2

≥ −0.5.

This implies that 1+(STP )Q1
+(STP )Q2

≥ 2, 1+(SIP )Q1
+(SIP )Q2

≥ 2, 1+(SFP )Q1
+(SFP )Q2

≤ 2,

−1 + (STN )Q1
+ (STN )Q2

≤ −2, −1 + (SIN )Q1
+ (SIN )Q2

≤ −2, −1 + (SFN )Q1
+ (SFN )Q2

≥ −2 .

Therefore,

fTP =
1

1 + (STP )Q1
+ (STP )Q2

≤ 0.5, fIP =
1

1 + (SIP )Q1
+ (SIP )Q2

≤ 0.5, fFP =
1

1 + (SFP )Q1
+ (SFP )Q2

≥ 0.5.

fTN =
1

−1 + (STN )Q1
+ (STN )Q2

≥ −0.5, fIN =
1

−1 + (SIN )Q1
+ (SIN )Q2

≥ −0.5, fFN =
1

−1 + (SFN )Q1
+ (SFN )Q2

≤ −0.5

It contradicts the fact that the BN graph is a strong BN planar graph. Thus number of point of

intersections between strong edges can not be two. Obviously, if the number of point of intersections

of strong BN edges increases, the BN planarity value decreases. Similarly, if the number of point of

intersection of strong edges is one, then the BN planarity value fTP > 0.5, fIP > 0.5, fIP > 0.5,

fTN < −0.5, fIN < −0.5, fIN < −0.5 . Any BN planar graph without any crossing between edges

is a strong BN planar graph. Thus, we conclude that the maximum number of point of intersections

between the strong edges in G is one.

Face of a BN planar graph is an important parameter. Face of a BN graph is a region bounded by BN

edges. Every BN face is characterized by BN edges in its boundary. If all the edges in the boundary of a

BN face have TP , IP , FP , TN , IN and FN values (1, 1, 1,−1,−1,−1) and (0, 0, 0, 0, 0, 0), respectively,

it becomes crisp face. If one of such edges is removed or has TP , IP , FP , TN , IN and FN values

(0, 0, 0, 0, 0, 0) and (1, 1, 1,−1,−1,−1), respectively, the BN face does not exist. So the existence of a

BN face depends on the minimum value of strength of BN edges in its boundary. A BN face and its

TP , IP , FP , TN , IN , and FN values of a BN graph are defined below.

Definition 2.21. Let G be a BN planar graph and

D = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈ V ×V }. A BN

face of G is a region, bounded by the set of BN edges E′ ⊂ E, of a geometric representation of G. The

truth, indeterminacy and falsity values of the BN face are:
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1. min
{

TP
D (xy)i

min{TP
C
(x),TP

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′
}

,

2. max
{

TN
D (xy)i

max{TN
C

(x),TN
C

(y)}
, i = 1, 2, . . . ,m|xy ∈ E′

}

,

3. min
{

IPD(xy)i
min{IP

C
(x),IP

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′
}

,

4. max
{

IND (xy)i
max{IN

C
(x),IN

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′
}

,

5. max
{

FP
D (xy)i

max{FP
C
(x),FP

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′
}

,

6. min
{

FN
D (xy)i

min{FN
C

(x),FN
C

(y)}
, i = 1, 2, . . . ,m|xy ∈ E′

}

.

Definition 2.22. A BN face is called strong BN face if its positive true and indeterminacy value is

greater than 0.5 but false value is lesser than 0.5, and negative true and indeterminacy value is less

than −0.5 but false value is greater than -0.5. Otherwise, face is weak. Every BN planar graph has

an infinite region which is called outer BN face. Other faces are called inner BN faces.

Example 2.23. Consider a BN planar graph as shown in Fig. 2.5. The BN planar graph has the

following faces:

• BN face F1 is bounded by the edges

(v1v2, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1), (v2v3, 0.6, 0.6, 0.1,−0.6,−0.6,−0.1), (v1v3, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1).

• outer BN face F2 surrounded by edges

(v1v3, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1), (v1v4, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1), (v2v4, 0.6, 0.6, 0.1,−0.6,−0.6,−0.1),

(v2v3, 0.6, 0.6, 0.1,−0.6,−0.6,−0.1),

• BN face F3 is bounded by the edges

(v1v2, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1), (v2v4, 0.6, 0.6, 0.1,−0.6,−0.6,−0.1), (v1v4, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1).

Clearly, the positive truth, indeterminacy and falsity values of a BN face F1 are 0.833, 0.833 and 0.333,

respectively, and the negative truth, indeterminacy and falsity values of a BN face F1 are -0.833, -

0.833 and -0.333, respectively. The positive truth, indeterminacy and falsity values of a BN face F3

are 0.833, 0.833 and 0.333, respectively, and the negative truth, indeterminacy and falsity values of a

BN face F3 are -0.833, -0.833 and -0.333, respectively. Thus F1 and F3 are strong BN faces.
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Figure 2.5: Faces in BN planar graph

We now introduce dual of BN planar graph. In BN dual graph, vertices are corresponding to the

strong BN faces of the BN planar graph and each BN edge between two vertices is corresponding

to each edge in the boundary between two faces of BN planar graph. The formal definition is given

below.

Definition 2.24. Let G be a BN planar graph and let

D = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈ V × V }. Let

F1, F2, . . . , Fk be the strong BN faces of G. The BN dual graph of G is a BN planar graph G′ =

(V ′, C ′,D′), where V ′ = {xi, i = 1, 2, . . . , k}, and the vertex xi of G
′ is considered for the face Fi of

G. The truth- membership, indeterminacy and false-truth- membership values of vertices are given by

the mapping C ′ = (TP
C′ , I

P
C′ , F

P
C′ , T

N
C′ , I

N
C′ , F

N
C′) : V ′ → [0, 1] × [0, 1] × [0, 1] × [−1, 0] × [−1, 0] × [−1, 0]

such that

TP
C′(xi) = max{TP

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

TN
C′(xi) = min{TN

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

IPC′(xi) = max{IPD′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

INC′(xi) = min{IND′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

FP
C′(xi) = min{FP

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

FN
C′(xi) = max{FN

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi}.

There may exist more than one common edges between two faces Fi and Fj of G. Thus there may
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be more than one edges between two vertices xi and xj in BN dual graph G′. Let (TP )lD(xixj),

(IP )lD(xixj) and (FP )lD(xixj) denote the positive truth, indeterminacy and falsity membership values

of the l-th edge between xi and xj , and let (TN )lD(xixj), (I
N )lD(xixj) and (FN )lD(xixj) denote the

negative truth, indeterminacy and falsity membership values of the l-th edge between xi and xj .

The positive and negative truth, indeterminacy and falsity values of the BN edges of the BN dual

graph are given by TP
D′(xixj)l = (TP )lD(uv)j , I

P
D′(xixj)l = (IP )lD(uv)j , F

P
D′(xixj)l = (FP )lD(uv)j ,

TN
D′(xixj)l = (TN )lD(uv)j , IND′(xixj)l = (IN )lD(uv)j , FN

D′(xixj)l = (FN )lD(uv)j , where (uv)l is an

edge in the boundary between two strong BN faces Fi and Fj and l = 1, 2, . . . , s, where s is the

number of common edges in the boundary between Fi and Fj or the number of edges between xi

and xj .If there be any strong pendant edge in the BN planar graph, then there will be a self loop in

G′ corresponding to this pendant edge. The edge truth- membership, indeterminacy-membership and

falsity-membership value of the self loop is equal to the truth- membership, indeterminacy-membership

and falsity-membership value of the pendant edge. Single-valued neutrosophic dual graph of BN planar

graph does not contain point of intersection of edges for a certain representation, so it is BN planar

graph with planarity value (1, 1, 1,−1,−1,−1). Thus the BN face of BN dual graph can be similarly

described as in BN planar graphs.

Example 2.25. Consider a BN planar graph G = (V,A,B) as shown in Fig. 2.6 such that V =

{a, b, c, d},

C = (a, 0.6, 0.6, 0.2,−0.6,−0.6,−0.2), (b, 0.7, 0.7, 0.2,−0.7,−0.7,−0.2), (c, 0.8, 0.8, 0.2,−0.8,−0.8,−0.2),

(d, 0.9, 0.9, 0.1,−0.9,−0.9,−0.1), andD = {(ab, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (ac, 0.4, 0.4, 0.01,−0.4,−0.4,−0.01

(ad, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01), (bc, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01), (bc, 0.6, 0.6, 0.01,−0.6,−0.6,−0.

(cd, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01)}.

bb

b b

bc

bc

bc

bc

a b

cd

x1

x2
x3

x4

Figure 2.6: Neutrosophic dual graph

The BN planar graph has the following faces:
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• BN face F1 is bounded by

(ab, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (ac, 0.4, 0.4, 0.01,−0.4,−0.4,−0.01), (bc, 0.45, 0.45, 0.01,−0.45,−0.45,−0

• BN face F2 is bounded by

(ad, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01), (cd, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01), (ac, 0.4, 0.4, 0.01,−0.4,−0.4,−0

• BN face F3 is bounded by

(bc, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01), (bc, 0.6, 0.6, 0.01,−0.6,−0.6,−0.01)

• outer BN face F4 is surrounded by

(ab, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (bc, 0.6, 0.6, 0.01,−0.6,−0.6,−0.01), (cd, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01),

(ad, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01).

Routine calculations show that all faces are strong BN faces. For each strong BN face, we consider

a vertex for the BN dual graph. So the vertex set V ′ = {x1, x2, x3, x4}, where the vertex xi is taken

corresponding to the strong BN face Fi, i = 1, 2, 3, 4. Thus

TP
C′(x1) = max{0.5, 0.4, 0.45} = 0.5, TP

C′(x2) = max{0.55, 0.7, 0.4} = 0.7,

TN
C′(x1) = min{−0.5,−0.4,−0.45} = −0.5, TN

C′(x2) = min{−0.55,−0.7,−0.4} = −0.7,

IPC′(x1) = max{0.5, 0.4, 0.45} = 0.5, IPC′(x2) = max{0.55, 0.7, 0.4} = 0.7,

INC′(x1) = min{−0.5,−0.4,−0.45} = −0.5, INC′(x2) = min{−0.55,−0.7,−0.4} = −0.7,

FP
C′(x1) = min{0.01, 0.01, 0.01} = 0.01, FP

C′ (x2) = min{0.01, 0.01, 0.01} = 0.01,

FN
C′(x1) = max{−0.01,−0.01,−0.01} = −0.01, FN

C′ (x2) = max{−0.01,−0.01,−0.01} = −0.01,

TP
C′(x3) = max{0.45, 0.6} = 0.6, TP

C′ (x4) = max{0.5, 0.6, 0.7, 0.55} = 0.7,

TN
C′(x3) = min{−0.45,−0.6} = −0.6, TN

C′(x4) = min{−0.5,−0.6,−0.7,−0.55} = −0.7,

IPC′(x3) = max{0.45, 0.6} = 0.6, IPC′(x4) = max{0.5, 0.6, 0.7, 0.55} = 0.7,

FP
C′(x3) = min{0.01, 0.01} = 0.01, FP

C′ (x4) = min{0.01, 0.01, 0.01, 0.01} = 0.01.

FN
C′(x3) = max{−0.01,−0.01} = −0.01, FN

C′ (x4) = max{−0.01,−0.01,−0.01,−0.01} = −0.01.

There are two common edges ad and cd between the faces F2 and F4 in G. Hence between the

vertices x2 and x4, there exist two edges in the BN dual graph of G. Truth-membership, indeterminacy-

membership and falsity-membership values of these edges are given by

TP
D′(x2x4) = TP

D (cd) = 0.7, TP
D′(x2x4) = TP

D (ad) = 0.55, IPD′(x2x4) = IPD(cd) = 0.7, IPD′(x2x4) = IPD(ad) = 0.55,

FP
D′(x2x4) = FP

D (cd) = 0.01, FP
D′ (x2x4) = FP

D (ad) = 0.01.

TN
D′(x2x4) = TN

D (cd) = −0.7, TN
D′(x2x4) = TN

D (ad) = −0.55, IND′(x2x4) = IND (cd) = −0.7, IND′(x2x4) = IND (ad) = −0.

14



FN
D′(x2x4) = FN

D (cd) = −0.01, FN
D′ (x2x4) = FN

D (ad) = −0.01.

The truth- membership, indeterminacy-membership and falsity-membership values of other edges of

the BN dual graph are calculated as

TP
D′(x1x3) = TP

D (bc) = 0.45, TP
D′(x1x2) = TP

D (ac) = 0.4, TP
D′(x1x4) = TP

D (ab) = 0.5, TP
D′(x3x4) = TP

D′(bc) = 0.6,

TN
D′(x1x3) = TN

D (bc) = −0.45, TN
D′ (x1x2) = TN

D (ac) = −0.4, TN
D′(x1x4) = TN

D (ab) = −0.5, TN
D′(x3x4) = TN

D′(bc) = −0

IPD′(x1x3) = IPD(bc) = 0.45, IPD′(x1x2) = IPD(ac) = 0.4, IPD′(x1x4) = IPD(ab) = 0.5, IPD′(x3x4) = IPD′(bc) = 0.6,

IND′(x1x3) = IND (bc) = −0.45, IND′(x1x2) = IND (ac) = −0.4, IND′(x1x4) = IND (ab) = −0.5, IND′(x3x4) = IND′(bc) = −0.6,

FP
D′(x1x3) = TP

D (bc) = 0.01, FP
D′ (x1x2) = FP

D (ac) = 0.01, FP
D′ (x1x4) = FP

D (ab) = 0.01, FP
D′ (x3x4) = FP

D (bc) = 0.01.

FN
D′(x1x3) = TN

D (bc) = 0.01, FN
D′ (x1x2) = FN

D (ac) = 0.01, FN
D′ (x1x4) = FN

D (ab) = 0.01, FN
D′ (x3x4) = FN

D (bc) = 0.01.

Thus the edge set of BN dual graph is

D′ = {(x1x3, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01), (x1x2, 0.4, 0.4, 0.01,−0.4,−0.4,−0.01),

(x1x4, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (x3x4, 0.6, 0.6, 0.01,−0.6,−0.6,−0.01), (x2x4, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01)

(x2x4, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01)}. In Fig. 2.6, the BN dual graph G′ = (V ′, C ′,D′) of G is

drawn by dotted line.

Weak edges in planar graphs are not considered for any calculation in BN dual graphs. We state the

following Theorem without its proof.

Theorem 2.26. Let G = (V,C,D) be a BN planar graph without weak edges and the BN dual graph

of G be G′ = (V ′, C ′,D′). The truth- membership indeterminacy-membership and falsity-membership

values of BN edges of G′ are equal to truth- membership, indeterminacy-membership and falsity-

membership values of the BN edges of G.

3 Applications

Graph is considered an important part of Mathematics for solving countless real World problems in

information technology, psychology, engineering, combinatorics and medical sciences. Everything in

this World is connected, for instance, cities and countries are connected by roads, railways are linked

by railway lines, flight networks are connected by air, electrical devices are connected by wires, pages

on internet by hyperlinks, components of electric circuits by various paths, and many more. Scientists,

analysts and engineers are trying to optimize these networks to find a way to save millions of lives

by reducing traffic accidents, plane crashes and circuit shots. Planar graphs are used to find such

graphical representations of networks without any crossing or minimum number of crossings. But

there is always an uncertainty and degree of indeterminacy in data which can be dealt using bipolar

neutrosophic graphs. We now present applications of bipolar neutrosophic graphs in road networks.
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1. Road network model to monitor traffic: Roads are a mean of frequent and unacceptable

number of fatalities every year. Road accidents are increasing due to dense traffic, negligence of

drivers and speed of vehicles. Traffic accidents can be minimized by modeling road networks to

monitor the traffic, apply quick emergency services and to take action against the speedily going

vehicles quickly. The practical approach of bipolar neutrosophic planar graphs can be applied to

construct road networks, as these are the combination of vertices and edges along with the degree

of truth, indeterminacy and falsity. The method for the construction of road network is given in

Algorithm 1.

Algorithm 1

1. Input the n number of location L1, L2, . . . , Ln.

2. Input the bipolar neutrosophic set of cities.

3. Input the adjacency matrix of ξ = [ξij ]n×n of cities.

4. do i from 1 → n

5. do j from 1 → n

6. if(i < j, ξij 6= (0, 0, 1, 0, 0,−1))then

7. Draw an edge between Li and Lj.

8. B(LiLj) = ξij

9. end if

10. end do

11. end do

Consider the problem of road networks between 6 locations L1, L2, L3, L4, L5, L6. The degree of

memberships of cities and roads between cities is given in Table 5 and Table 6.

Table 5: Bipolar neutrosophic set of cities

A L1 L2 L3 L4 L5 L6

T
p
A 0.7 0.5 0.8 0.6 0.5 0.4

I
p
A 0.4 0.4 0.2 0.1 0.4 0.5

F
p
A 0.2 0.3 0.2 0.1 0.4 0.5

T n
A −0.2 −0.3 −0.2 −0.1 −0.4 −0.5

InA −0.4 −0.4 −0.2 −0.1 −0.4 −0.5

Fn
A −0.7 −0.5 −0.8 −0.6 −0.5 −0.4
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Table 6: Bipolar neutrosophic set of roads

A L1L3 L1L6 L2L3 L2L4 L3L5 L5L6 L2L5 L3L6 L4L6

T
p
B 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.4

I
p
B 0.2 0.4 0.2 0.1 0.2 0.4 0.4 0.2 0.1

F
p
B 0.2 0.5 0.3 0.1 0.4 0.4 0.3 0.5 0.5

T n
B −0.2 −0.2 −0.3 −0.1 −0.2 −0.4 −0.3 −0.2 −0.1

InB −0.4 −0.4 −0.2 −0.1 −0.2 −0.4 −0.4 −0.2 −0.1

Fn
B −0.7 −0.4 −0.8 −0.6 −0.8 −0.4 −0.5 −0.8 −0.6
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Figure 3.1: Bipolar neutrosophic road model

The positive degree of membership T p(x) of each vertex x represents the percentage that vehicles

traveling to or from this city are dense, Ip(x) and F p(x) represent the indeterminacy and falsity in

this percentage. The negative degree of membership T n(x) represents the percentage that traffic is

not dense, In(x) and Fn(x) represent the indeterminacy and falsity in this percentage. The positive

degree of memberships of each edge xy indicate the percentage of truth, indeterminacy and falsity

of road accidents through this road. The negative degree of memberships of xy show the percentage

of truth, indeterminacy and falsity that the road is safer. The bipolar neutrosophic model of road

connections between the cities is shown in Fig. 3.1. This bipolar neutrosophic model can be used to

check and monitor the percentage of annual accidents. Also, by monitoring and taking special security

actions, the total number of accidents can be minimized.

2. Electrical connections: Graph theory is extensively used in designing circuit connections and

installation of wires in order to prevent crossing which can cause dangerous electrical hazards. The

twisted and crossing wires are a serious safety risk to human life. There is a need to install electrical
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wires to reduce crossing. Bipolar neutrosophic planar graphs can be used to model electrical connec-

tions and to study the degree of damage that can cause due to the connection.

Consider the problem of setting electrical wires between 5 electrical utilities and power plugsE1, E2, E3, E4, E5

in a factory as shown in Fig. 3.2.
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Figure 3.2: Electrical connections

The positive degree of membership T p(Ei) of each vertex Ei represents the percentage of faults

and electrical sparks of utility or power plug Ei , I
p(Ei) and F p(Ei) represent the indeterminacy and

falsity in this percentage. The negative degree of membership T n(Ei) represents the percentage that

Ei is update and safer, In(x) and Fn(x) represent the indeterminacy and falsity in this percentage.

The positive degree of memberships of each edge EiEj indicate the percentage of truth, indeterminacy

and falsity of electrical hazards through this connection. The negative degree of memberships of EiEj

show the percentage of truth, indeterminacy and falsity that the connection is safer. The crossing of

wires can be reduced if we change the geometrical representation of Fig. 3.2. The other representation

is shown in Fig. 3.3 which has only one crossing, at point P1, between the edges E1E4 and E2E5. The

electrical damage at crossing point P1 can be reduced by using better electrical wires between E1 and

E4, E2 and E5.

18



b

b

b

b

b

E
1
(0
.7
,
0
.4
,
0
.2
,
−
0
.2
,
−
0
.4
,
−
0
.7
) E2(0.8, 0.2, 0.2,−0.2,−0.2,−0.8)

E5(0.6, 0.1, 0.1,−0.1,−0.1,−0.6)

E
3
(0
.5
,
0
.4
,
0
.4
,
−
0
.4
,
−
0
.4
,
−
0
.5
)

E4
(0.4

, 0.5
, 0.5

,−0.5,
−0.5,

−0.4)

(0.4, 0.4, 0.5,−
0.2,−

0.4,−
0.4)

(0.
4, 0

.2,
0.2

,−
0.2

,−
0.4

,−
0.7

)
(0.5, 0.2, 0.4,−0.2,−0.2,−0.8)

(0.
4,
0.4

, 0
.5,

−0
.4,

−0
.4,

−0
.4)

(0
.6
,
0
.1
,
0
.2
,
−
0
.1
,
−
0
.1
,
−
0
.8
)(0.6, 0.1, 0.2,−

0.1,−
0.1,−

0.7)

(0.5, 0.4, 0.4,−0.2,−0.4,−0.7)

P
1

Figure 3.3: Bipolar neutrosophic planar graph

The method for the construction of bipolar neutrosophic planar graph in given in Algorithm 2.

Algorithm 2

1. Input the n number of utilities E1, E2, . . . , En and p number of connections e1, e2, . . . , ep.

2. Input the bipolar neutrosophic set of utilities.

3. Input the points of intersection P1, P2, . . . , Pr.

4. do i from 1 → r

5. Pi is a point of intersection between ej and ek.

6. Change the graphical representation of one of the edges ej and ek.

7. if There is no new point of intersection in this representation then

8. Keep this graphical representation.

9. else

10. Keep the previous graphical representation.
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11. end if

12. end do

References

[1] N. Abdul-Jabbar, J. H. Naoom and E. H. Ouda, Fuzzy dual graph, Journal of Al-Nahrain Uni-

versity, 12(4)(2009), 168-171.

[2] M. Akram and S. Shahzadi, Neutrosophic soft graphs with application, Journal of Intelligent and

Fuzzy Systems, 32 (2017), 841-858.

[3] M. Akram, M. Sarwar, Novel multiple criteria decision making methods based on bipolar neutro-

sophic sets and bipolar neutrosophic graphs, viXra:1701.0190, 2015.

[4] M. Akram and S. Shahzadi, Representation of graphs using intuitionistic neutrosophic soft sets,

Journal of Mathematical Analysis, 7(6)(2016)31-53.

[5] M. Akram and G. Shahzadi, Operations on single-valued neutrosophic graphs, Journal of Uncertain

System, 11(2017) 1-26.

[6] M. Akram, S. Samanta and M. Pal, Application of bipolar fuzzy sets in planar graphs, International

Journal of Applied and Computational Mathematics, 2016, doi:10.1007/s40819-016-0132-4.

[7] N. Alshehri and M. Akram, Intuitionistic fuzzy planar graphs, Discrete Dynamics in Nature and

Society, 2014(2014), Article ID 397823, 9 pages.

[8] M. Akram, Single-valued neutrosophic planar graphs, International Journal of Algebra and Statis-

tics, 5(2)2016), 157-167.

[9] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letter 6(1987), 297-302.

[10] I. Deli, M. Ali and F. Smarandache, Bipolar neutrosophic sets and their application based on

multi-criteria decision making problems, arXiv preprint arXiv: 1504.02773, 2015.

[11] R. Dhavaseelan, R. Vikramaprasad, and V. Krishnaraj, Certain types of neutrosophic graphs, Int

Jr. of Mathematical Sciences and Applications, 5(2)(2015), 333 − 339.

[12] A. Kauffman, Introduction a la Theorie des Sous-emsembles Flous, Masson et Cie, Vol.1, 1973.

[13] J.N. Mordeson and P.S. Nair, Fuzzy graphs and fuzzy hypergraphs, Physica Verlag, Heidelberg

1998; Second Edition 2001.

[14] F. Smarandache, A Unifying field in logics neutrosophy: Neutrosophic probability, set and logic,

Rehoboth: American Research Press, 1998.

20



[15] A. Rosenfeld, Fuzzy graphs, Fuzzy Sets and their Applications (L.A. Zadeh, K.S. Fu, M. Shimura,

Eds.), Academic Press, New York (1975) 77-95.

[16] A. Pal, S. Samanta and M. Pal, Concept of fuzzy planar graphs, Proceedings of Science and

Information Conference 2013, October 7-9, 2013, London, UK, 557-563, 2013.

[17] S. Samanta, M. Pal and A. Pal, New concepts of fuzzy planar graph, International Journal of

Advanced Research in Artificial Intelligence, 3(1)(2014) 52-59.

[18] S. Ye and J. Ye, Dice similarity measure between single valued neutrosophic multisets and its

application in medical diagnosis, Neutrosophic Sets and Systems, 6 (2014), 48-52.

[19] L.A. Zadeh, Fuzzy sets, Information and Control, 8(1965) 338-353.

[20] W.-R. Zhang, Bipolar fuzzy sets, Proc. of FUZZ-IEEE, 1998, 835-840.

21


