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ABSTRACT – Electrons interacting with the QED vacuum and distorting the space-

time tissue are considered as a means to express the gravitational constant in terms of 

electromagnetic parameters. The link between gravity and weak interactions is also 

worked out in this paper. Finally we extend the first treatment to hadrons, in order to 

evaluate the strong interaction coupling at low energies (at the energy scale of the 

proton mass).   

 

1 – Introduction 

 

   Leptons are elementary particles which may interact through the 

electromagnetic, the weak and the gravitational forces, but are not sensible 

to the strong interactions [1]. The electron is the most stable lepton and 

seems to be a good candidate to look for relations between gravity and 

electromagnetic couplings and also between weak and gravity forces. 

   Five characteristics lengths can be assigned to the electron, namely: - the 

classical radius, the Schwarzschild radius, the weak radius, the Compton 

length and the Bohr radius. Although in the evaluation of the Bohr radius 

the proton enters in the game, its internal structure governed by the strong 

force is not taken in account.  

   In section 2 we deduce a relation which ties the gravitational constant to 

the electromagnetic coupling and the electron mass. In section 3 is deduced 

a new relation which links the gravitational constant to the electroweak 

coupling and the electron mass. Perhaps surprisingly, relation developed in 

section 2 is adapted to the strong interaction case in section 4. There, this 

adapted relation is used in order to evaluate the strong coupling at the 

energy of the proton mass. Section 5 is reserved to concluding remarks. 
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This paper is largely inspired in a previous one published by Jesús Sánchez 

[2], and entitled: “Calculation of the gravitational constant G using 

electromagnetic parameters”. The results obtained in section 2, reproduces 

Sánchez result [2], but we have used an alternative path as a means to get 

it.  

 

2 – The gravitational constant G, the electromagnetic coupling α and the 

electron mass. 

 

     Modern description of the electron proposes that it is immersed in the 

quantum electrodynamics (QED) vacuum, where it can interact with virtual 

photons and electron-positron pairs [3]. We can write an general relation 

representing this possibility, namely 

 

                                                 σ n ℓ =1.                                                     (1) 

 

In (1), σ represents the electron scattering cross-section, n is the number of 

virtual particles (N) per unit of volume (V), and ℓ is the electron mean free 

path. As was pointed out by T. D. Lee [4]: “in QED there are three 

important lengths, differing from each other by powers of α” .  Next we 

define these lengths. We write ( ħ = c = 1) 

 

                    Re = α ∕ me,      and          λe = 2πRe = 2 πα ∕ me.                      (2) 

 

                    λC = 1 ∕ me,       and           RB = 1 ∕ (α me).                              (3) 

 

In (2) and (3), Re is the classical radius of electron, being λe a wave length 

related to it, λC is the Compton wavelength of electron, and RB is its Bohr 

radius. 
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Now we propose that the scattering cross-section is given by “the quantum 

size of the electron” squared and write 

 

                                           σ = λC
2
 = 1 ∕ me

2
.                                               (4) 

 

Meanwhile, the characteristic volume where we will count the number of 

elementary excitations, must consider the electromagnetic strength α and 

we define 

 

                                     V = λe
2
 λC = 4π α

2
 ∕ me

3
.                                         (5) 

 

The evaluation of the electron mean free path ℓ, will take in account that 

the electron gravity causes a distortion in the tissue of the space-time and 

therefore we are taking it as half of the Schwarzschild radius of electron.  

We write 

 

                                               ℓ = G me.                                                      (6) 

 

Next step is counting the number N of elementary excitations occurring 

inside the volume V. We make use of the Boltzmann relation and write 

 

                                        S – S0 = ln Ω,            (kB = 1).                             (7) 

 

In (7) S and S0 are respectively the entropy and the reference entropy that 

we link to a string, which size is related to the Compton length of electron. 

Besides this, we take 

 

                                                   Ω ≡ V.                                                      (8) 
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In order to evaluate the entropies S and S0, let us think about a mass of a 

electron-positron pair which oscillates as 

 

                                           M = (2me) cos(ωt).                                           (9) 

 

We have 

 

                       < M
 2
 > =  (4me

2
) <cos

2
 (ωt)> = 2me

2
,        and                  (10) 

 

                                        μ = <M
2
>

1 ∕ 2
 = √2 me.                                     (10A) 

 

For a chain of size 1 ∕ μ = 1 ∕ (√2 me), we define the entropy S [5,6] as 

 

                        S = [1 ∕ (√2 me)] ÷ (α ∕ me) = 1 ∕ (√2 α).                             (11) 

 

In (11), Re = α ∕ me, is the size of the unit cell used to cover the chain. We 

verify that the classical radius of electron is the unit of length used to do the 

partitioning of the chain. 

Meanwhile the hydrogen atom can be adopted to define the residual or 

reference entropy S0, and we take 1 ∕ 4 of the perimeter of the first Bohr 

orbit as a means to measure the chain. We have 

                      S0 = [1 ∕ (√2 me)] ÷ [ π ∕ (2α me)] = απ ∕ (2√2).                    (12) 

 

Inserting the results (11) and (12) into (7), solving for Ω and considering 

(8), we get 
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                           N ≡ Ω = exp[ 1 ∕ (√2 α) – π α ∕ (2√2)].                           (13) 

 

We remember that in (1), we have 

 

                                                 n = N ∕ V.                                                  (14) 

 

Putting the results of (4), (14), (13), (5) and (6) in equation (1), and solving 

for G we find 

 

                 G = [(4π
2
 α

2
 ħc) ∕ me

2
] exp[ πα  ∕ (2√2) – 1 ∕ (√2α)].                (15) 

 

In (15), we have also restored the constants ħ and c, which were made 

equal to the unity during the calculations. This result is identical to that first 

obtained in reference [2], but here through an alternative path to that 

followed by Sánches [2]. Numerical evaluation of (15) reproduces the 

measured value of G with a great accuracy (please see reference [2]). 

 

3 – Connection between the gravitational constant and the weak coupling 

 

   In this section we are going to show that the gravitational constant G can 

also be expressed in terms of the mass of the W-boson of the weak 

interactions, besides the electromagnetic coupling and the electron mass. 

First let us define the weak radius of the electron Rw. We write 

              me = αw ∕ Rw,               with                αw = α (me  ∕ Mw)
 2
.           (16) 

 

Relation (16) implies that  
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                                            Rw = α me  ∕ Mw
2
.                                           (17) 

 

Now let us to consider that the electron behaves as a spherical universe of 

radius Re. Besides this, we propose that the Holographic Principle (HP) 

[7,8,9] can be applied to this universe if we use Rw (the weak radius) as the 

size of the unit cells which cover its surface. On the other hand we assume 

that the entropy of this universe can also be computed, by considering the 

perimeter of one of its maximum circles, partitioned in unit cells of size L, 

where L is a modified Planck length. Let us put these ideas in terms of the 

relation 

 

                           Nw = π Re
2
 ∕ Rw

2
 = π Re  ∕ L = NG.                                   (18) 

 

The modified Planck length is given by 

 

                            L = LPl ∕ (4π)
 1 ∕ 2

 = [G ∕ (4π)]
 1 ∕ 2

.                                    (19) 

 

The use of (2) and (17) in (18) gives after some little algebra 

 

                                      L
2
 = α

2
 me

6
 ∕ Mw

8
.                                                (20) 

 

Finally considering (19) we get 

 

                                   G = 4π α
2
 me

6
 ∕ Mw

8
.                                               (21) 

We observe that the value of G is easily evaluated by inserting in it the 

known measured values of α, me and Mw. 

However comparing relations (15) and (21), which are two different ways 

of expressing G, we find  
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                      (me ∕ Mw)
 8
 = π exp[ πα  ∕ (2√2) – 1 ∕ (√2α)].                       (22) 

 

Solving (22) for Mw, and making use of the measured value of the electron 

mass, we find 

 

                                             Mw = 80.32 GeV.                                         (23) 

 

The above value must be compared with  

 

                        Mw│measured = 80,385 MeV ± 15 MeV,                             (24) 

 

This last one quoted from a reporter of the Particle Data Group [10]. 

 

4 – The strong interaction case 

 

   Working in an analogous way we have done for the electro magnet 

coupling case, we can write 

 

             Gs = [(4π
2
 αs

2
 ħc) ∕ mp

2
] exp[ παs  ∕ (2√2) – 1 ∕ (√2αs)].                (25) 

 

In (25), mp is the proton mass, αs is the strong coupling and Gs is the 

equivalent of the Newton constant for the strong interaction case. Now we 

impose that 

 

                                              Gs mp
2
 = πħc.                                               (26) 
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Indeed (26) defines Gs. The use of (26) into (25) yields 

 

                      π(4αs
2
 ) exp[ παs  ∕ (2√2) – 1 ∕ (√2αs)] = 1.                          (27) 

 

Solving numerically Equation (27) , we find 

 

                                           αs = 0.465.                                                      (28) 

 

This value can be compared with αs = 4 ∕ 9 , as evaluated in reference [11]. 

 

5 – Concluding remarks 

 

   It is interesting to verify that the Schwarzschild radius of electron, which 

has a scale of length very much smaller than the Planck length, plays a 

fundamental role in the present derivation linking the gravitational constant 

to the electromagnetic parameters. Indeed this fact has been considered 

before by Sánchez [2], in the work which inspired the present paper. 

   In section 3, we have used the weak radius of electron in a variation of 

the HP. It is worth to stress that this radius is closely related to the Fermi 

constant of the weak interactions as can be seen in reference [12]. 

Finally, the adaptation of the calculations to the strong interaction case 

comes as a bonus got by this work. 
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