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1.	Introduction.	
The n-body problem is the problem of predicting the individual motions of a group of objects interacting 
with each other via conservative forces. These forces can be of gravitational origin (celestial mechanics), 
inter-molecular origin (molecular dynamics), or representing the Coulomb potential (structural biology). In 
the most common version, the trajectories of the objects are determined by numerically 
solving the Newton's equations of motion for a system of interacting particles. Non-conservative version of 
the interaction forces became important in case of the n-body problem that incorporates the effects of 
radiation pressure, Poynting-Robertson (P-R) drag, and solar wind drag.  
   The n-body problem as a classic astronomical and physical problem that naturally follows from the two-
body problem first solved by Newton in his Principia in 1687. The efforts of many famous mathematicians 
have been devoted to this difficult problem, including Euler and Lagrange (1772), Jacobi (1836), Hill 
(1878), Poincaré (1899), Levi-Civita (1905), and Birkhoff (1915). However, despite centuries of 
exploration, there is no clear structure of the solution of the general n- or even three-body problem as there 
are no coordinate transformations that can simplify the problem, and there are more and more evidences 
that, in general, the solutions of n-body problems are chaotic. Failure to find a general analytical structure 
of the solution shifted the effort towards numerical methods. Many ODE solvers offer a variety of advance  
numerical methods for the solution. The general method of numerical solution of the corresponding system 
of ODE was originally conceived within theoretical physics in the late 1950s,,[1,2], but is applied today 
mostly in chemical physics, materials science and the modeling of biomolecules.  
  The most significant “side effect “of the existing numerical methods for n-body problems becomes chaos 
when different numerical runs with the same initial conditions result in different trajectories. Although 
numerical errors can contribute to chaos, nevertheless the primary origin of chaos is physical instability, 
[3].  
In this work, a general approach to probabilistic description of chaos in n-body problem with conservative 
and non-conservative interaction forces is proposed. 

2. Chaos in classical dynamics 
We	start	this	section	with	revisiting	mathematical	formalism	of	chaos	in	a	non-traditional	way	that	is	
based	upon	the	concept	of	orbital	instability.		
The concept of randomness entered Newtonian dynamics almost a century ago: in 1926, Synge, J. 
introduced a new type of instability - orbital instability- in classical mechanics,  [4], that can be considered 
as a precursor of chaos formulated a couple of decades later, [5]. The theory of chaos was inspired by the 
fact that in recent years, in many different domains of science (physics, chemistry, biology, engineering), 
systems with a similar strange behavior were frequently encountered displaying irregular and unpredictable 
behavior called chaotic. Currently the theory of chaos that describes such systems is well established. 
However there are still two unsolved problem remain: prediction of chaos (without numerical runs), and 
analytical description of chaos in term of the probability density that would formally follow from the 
original ODE. This paper proposes a contribution to the solution of these problems illustrated by chaos in 
inertial systems	
a.	Orbital	instability	as	a	precursor	of	chaos.	
Chaos	 is	a	special	 type	of	 instability	when	the	system	does	not	have	an	alternative	stable	state	and	
displays	an	irregular	aperiodic	motion.	Obviously	this	kind	of	instability	can	be	associated	only	with	
ignorable	variables,	i.e.	with	such	variables	that	do	not	contribute	into	energy	of	the	system.	In	order	
to	demonstrate	this	kind	of	instability,	consider	an	inertial	motion	of	a	particle	M	of	unit	mass	on	a	
smooth	pseudosphere	S	having	a	constant	negative	curvature	G0,	Fig.	1.	
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G0 = const > 0 	 	 	 	 	 	 	 	 	 (1)	
	
	 	 	 	 	 	 	

	
	Figure	1.	Inertial	motion	on	a	smooth	pseudosphere.																					
	
Remembering	 that	 trajectories	 of	 inertial	motions	must	 be	 geodesics	 on	 S,	 compare	 two	 different	

trajectories	assuming	that	initially	they	are	parallel,	and	the	distance	ε0 	between	them,	is	small	(but	
not	infinitesimal!),	

0 < ε0 <<1 	 	 	 	 	 	 	 	 	 (2)	 	
	 	 	 	 	 	 	
As	shown	in	differential	geometry,	the	distance	between	these	geodesics	increases	exponentially	

ε = ε0e
−G0q1 , G0 < 0 ,	 	 	 	 	 	 	 (3)	

Hence	 no	matter	 how	 small	 the	 initial	 distance	ε0 ,	 the	 current	 distance	ε 	tends	 to	 infinity	 as	 q1	
increases.	
Let	us	assume	now	that	accuracy	 to	which	 the	 initial	conditions	are	known	 is	characterized	by	 the	
scale	L.	This	means	that	any	two	trajectories	cannot	be	distinguished	if	the	distance	between	them	is	
less	than	L	i.e.	if	
ε < L 	 	 	 	 	 	 	 	 	 															(4)	
The	period	during	which	the	inequality	(4)	holds	has	the	order	

Δt ≈ 1
|−G0 |

ln L
ε0

	 	 	 	 	 	 	 																(5)	

However	for		
t >> Δt 	 	 	 	 	 	 	 	 															(6)	
these	two	trajectories	diverge	such	that	they	can	be	easily	distinguished	and	must	be	considered	as	
two	different	trajectories.	Moreover	the	distance	between	them	tends	to	infinity	no	matter	how	small	

is	ε0 .	That	is	why	the	motion	once	recorded	cannot	be	reproduced	again	(unless	the	initial	condition	
are	known	exactly),	and	consequently	it	attains	stochastic	features.	The	Liapunov	exponent	for	this	
motion	is	positive	and	constant	
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σ = limt→∞
ε0→0
[1
t
ln
ε0e

−G0 t

ε0
]= −G0 = const > 0 	 	 	 																	(7)	

Remark.	In	theory	of	chaos,	the	Liapunov	exponent	measures	divergence	of	initially	close	trajectories	averaged	
over	infinite	period	of	time.	But	in	this	particular	case,	even	“instantaneous”	Liapunov	exponent	taken	at	a	fixed	
time	has	the	same	value	(7).	
Let	 us	 introduce	 a	 system	 of	 coordinates	 on	 the	 surface	 S:	 the	 coordinate	 q1	 along	 the	 geodesic	
meridians	and	the	coordinate	q2	along	the	parallels.	In	differential	geometry	such	a	system	is	called	
semigeodesic.	The	square	distance	between	adjacent	points	on	the	pseudosphere	is		

ds = g11dq
2
1
+ 2q12dq1dq2 + g22dq

2
2 	 	 	 	 (8)	

where	

g11 =1, q12 = 0, g22 = −
1
G0
e(−2 −G0q1) 	 	 	 	 (9)	

			The	Lagrangian	for	the	inertial	motion	of	the	particle	M	on	the	pseudosphere	is	expressed	via	the	
coordinates	and	their	temporal	derivatives	as	

L = gij qi qj = q
2
1 −
1
G0
e(−2 −G0q1) q22 	 	 	 	 	 (10)	

and	consequently,		

∂L
∂q2

= 0 	 	 	 	 	 	 	 	 (11)	

∂L
∂q1

≠ 0 if q2 ≠ 0 	 	 	 	 	 (12)	

Hence	q1	and	q2	play	the	roles	of	position	and	ignorable	coordinates,	respectively,	and	therefore,	the	
inertial	motion	 of	 a	 particle	 on	 a	 smooth	 pseudosphere	 is	 unstable	with	 respect	 to	 the	 ignorable	
coordinate,	 [1].	 This	 instability	 known	 as	 orbital	 instability	 is	 not	 bounded	 by	 energy	 and	 it	 can	
persist	indefinitely.	As	shown	in	[2],	eventually	orbital	instability	leads	to	stochasticity.	Later	on	such	
motions	were	identified	as	chaotic.	
b. Randomness in chaotic systems. 
In this sub-section we present a sketch of general theory of chaos in context of origin of randomness 
starting with the flow generated by an autonomous ODE  

dxi
dt

=Vi (x), i =1,2,...m                                                                                    (13)                    

and compare two neighboring trajectories in m-dimensional phase space with initial  conditions x0 and 

x0 +Δx0  denoting Δx0 = w . These evolve with time yielding the tangent vector Δx(x0 ,t)  with its 
Euclidian norm 

d(x0 ,t) = Δx(x0 ,t)                   (14)                                                                                                          

Now the Liapunov exponent can be introduced as the mean exponential rate of divergence of two initially 
close trajectories 
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λ(x0 ,w) = limt→∞
d (0)→0

(1
t
)ln
d(x0 ,t)
d(x0 ,0)

              (15)                                                                                

  
Figure 2. Two nearby trajectories that separate as time evolves. 

	

	
Ficure 3. Tangent space for the Liapunov exponents. 

Therefore in general the Lyapunov exponent cannot be analytically expressed via the parameters of the 
underlying dynamical system (as it can be done in case of inertial motion on a pseudosphere), and that 
makes prediction of chaos a hard task. However some properties of the Liapunov exponents can be 
expressed in an analytical form. Firstly, it can be shown that in an m-dimensional space, there exist m 
Liapunov exponents  

λ1 ≥
λ2...≥ λm                   (16)                                                                                                           

while at least one of them must vanish. Indeed, as follows from Eqs. (13) and (14), w grows only linearly in 
the direction of the flow, and the corresponding Liapunov exponent is zero. Secondly it has been proven 
that the sum of the Liapunov exponents is equal to the average phase space volume contraction 

λi
i=1

m

∑ = Λ0           (17)                                                                                                                                                  

where the instantaneous phase space volume contraction 
Λ =∇⋅V           (18)                                                                                                                                                   
But 

Λ0 = Λ          (19)   
when 
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∇⋅V = const           (20)                                                                                                                                           
Therefore in case (20), the sum of the Liapunov exponents is expressed analytically      

λi
i=1

m

∑ =∇⋅V          (21)                                                                                                                            

Thus	the	result	we	extracted	from	the	theory	of	chaos,	which	can	be	used	for	comparison	to	quantum	
randomness	 is	 the	 following:	 the	 origin	 of	 randomness	 in	 Newtonian	 mechanics	 is	 instability	 of	
ignorable	 variables	 that	 leads	 to	 exponential	 divergence	 of	 initially	 adjacent	 trajectories;	 this	
divergence	 is	measured	 by	 Liapunov	 exponents,	 which	 form	 a	 discrete	 spectrum	 of	 numbers	 that	
must	include	positive	ones.	
	
 
	
 

For a system of N particles with coordinates  and velocities , the following pair of first order 
differential equations may be written inNewton's notation as 

 

 

The potential energy function  of the system is a function of the particle 
coordinates . It is referred to simply as the "potential" in physics, or the "force field" in 
chemistry. The first equation comes from Newton's laws; the force  acting on each 

particle in the system can be calculated as the negative gradient of . 

5. Suppression of trajectories’ divergence using negative diffusion. 
 

a. Introduction. The approach proposed in this Section is based upon the removal of 
positive Liapunov exponents by introducing special control forces represented by 
negative diffusion, [23]. The role of these forces is to suppress the divergence of the 
trajectories corresponding to initial conditions that are different from the preset ones, 
without affecting the ‘‘target’’ trajectory that starts with the preset initial conditions. 
Since the control forces include probability densities of the state variables as new 
unknowns, the corresponding Liouville equation should be invoked for the closure. This 
equation is different from its classical version by additional nonlinear terms represented 
by negative diffusion, (see Figs. 27 and 28). 
Consider a system of n first order ordinary differential equations with n unknowns  
xi = fi[{x(t)},t], {x}= x1,x2 ,...xn , i =1,2,...n                                                           

(4.37) 
subject to initial conditions 
xi (0) = xi

0                                                                                                                                 
(4.38)     
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Due to finite precision, the values (4.38)) are not known exactly, and we assume that the 
error possesses some joint distribution 
Err(Xi

0 ) =ρ(X1
0 ,...Xn

0 ) = P0                                                                                                 
(4.39) 
It is reasonable to assume that the initial conditions (4.38) coincide with the initial 
expectations i.e. that P has a maximum at Xi

0 = xi
0, i = 1,2,…n. This means that 

     
∂P0
∂X 0

= 0,
∂2P0

∂Xi∂X j

< 0, i =1,2,...n.                                                                          

(4.40)  

  This  is true for any symmetric initial density (for instance, the normal distribution) 
when the expected values have the highest probability to occur. The Liouville equation 
describing the evolution of the joint density P is  

∂ρ
∂t
+∇•(ρf ) = 0,    Fi = Fi ({x},t)   P = P({X},t)                                                           

(4.41)                                       
Its formal solution 

P = P0 exp(− ∇• f dV
0

t

∫ )                                                                                                            

(4.42)                                                             
suggests that the flattening of the error distribution is caused by the divergence of the 
trajectories of the governing equations (4.37) from the target trajectory that starts with the 
preset initial conditions (4.38), Fig.27.  
Remark. Here and below we make distinction between the random variable x(t) and its 
values X in probability space. 

 

 
 
Figure 27. Uncontrolled evolutions of trsjectories. 
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Figure 28. Controlled evolutions of trajectories. 

b.	 Problem	formulation.	Let	us	apply	the	following	control	force	to	the	system	
(4.37)	

fi = αi
∂
∂xi
ln P, αi > 0 	 	 	 	 	 	 	 		

(4.43)						

Then the system (4.37) is modified to the following one 

xi = fi +αi
∂
∂xi
ln P,         (4.44) 

    
that should be complemented by the corresponding Liouville equation  

 
      (4.45) 

 
The coupled ODE-PDE equations of this type have been discussed in [23]. Here we will 
summarize only mathematical aspects of these systems. 

Firstly, the force if  makes the Liouville equation nonlinear, while ODE becomes 
dependent upon PDE. Secondly, this force introduces to PDE a negative diffusion that 
changes the type of the PDE from the hyperbolic to the parabolic one. At the same time, 
the behavior of the solution of Eq. (4.45) is fundamentally different from its Fokker-
Planck analog.  

Thirdly, as follows from Eq. (4.43), the force if  does not affect the motion along that 

trajectory xi = xi * that has the maximum probability of occurrence since  

∂P
∂t
+ αi

i
∑ ∂

∂Xi
(PFi +

∂P
∂Xi

) = 0
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∂P
∂xi
(xi = xi*) = 0          (4.46) 

      
and that property makes this force fictitious. 

Before formulating the proposed model in the final form, we will consider a trivial, but 
instructive example. 
The main purpose of this example is to demonstrate a suppression of trajectory 
divergence by a nonlinear negative diffusion rather than removal of positive Liapunov 
exponents. 
c. Example. Let us consider an unstable linear ODE 
x = εx, ε <<1          

 (4.47) 
In this particular case, the expected trajectory is known in advance: 
x = 0           
 (4.48)          
However, any small error in initial conditions leads to a different trajectory that diverge 
exponentially from those in Eq.(4.47): 
x = x0 expεt          
 (4.49) 
Similar result follows from the corresponding Liouville equation: 

∂P
∂t

= −ε
∂
∂X
(PX )         (4.50) 

X = X 0 expεt         (4.51) 

Let us introduce now the control force as   

fc = D ∂
∂x
ln P,         (4.52)  

where D is the variance 

D(t) = X 2P(
−∞

∞

∫ X ,t)dX          (4.53)                       

and obtain the following modifies version of Eq. (4.47) 

x = εx + D ∂
∂x
ln P              (4.54)  

  

Due to this Liouville feedback, Eq. (4.50) is modified to the following Fokker-Planck 
equation   



	 9	

∂P
∂t

= −ε
∂
∂X
(PX )− D ∂2P

∂X 2
              (4.55)  

Multiplying Eq.(4.55) by X , then using partial integration, one obtains for expectations 
the same  
Eq. (4.50) and its solution (4.51). 

Similarly one obtains for variances 

D = −2 D −εD ≈ 2 D                (4.56) 
  

For the initial condition   
00 == tatDD                            (4.57)  

the solution of Eq.(20) is 

00
2

0 0,)( DtforDandDtfortDD ≥≡<−=                                    (4.58) 

It is easily verifiable that the Lipchitz condition at D=0 is violated since 

01
→∞→−=

∂

∂ Dat
DD

D!                           (4.59)  

As will be shown later, this property of the solution is of critical importance for multi-
dimensional case. 
Now the solution of the nonlinear version of the Fokker-Planck equation (4.55) can be 
approximated by the first term in the Gram-Charlier series represented by the normal 
distribution with the variance D. For the case close to a sharp initial value at X=0 

P = 1

D 2π
exp(− X

2

2D2
),                   (4.60)  

Substituting Eq.(4.60) (with reference to the solution (4.58) into Eq. (4.54) one obtains 

x = x[1− 1
D0 − t

]         (4.61)  

whence for x = x0 at t=0 the solution is 

x =
x0
D0
et ( D0 − t)

2 0 ≤ t ≤ D0 , x ≡ 0 t > D0.  (4.62)    

For sufficiently small variance of initial error distribution 10 <<D , an exponential growth 
of initial error x0 is totally eliminated after 0Dt > , Fig.29.  
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Figure 29. Suppression of instability. 
It should be noticed that a finite time of approaching equilibrium is due to special 
properties of the terminal attractors discussed in Zak, M., 1970, 1993.  One has to recall 
again that although the example we just considered is trivial, and Liapunov exponents 
does not play any role in it, the stabilization mechanism performed by the negative-
diffusion-based Liouville-feedback forces is the same. It is also important to learn from 
this example that the true expected solution is given by Eq. (4.62) rather than by Eq. 
(4.51) despite the fact that Eq. (4.51) directly follows from the Liouville equation (4.55). 
Indeed, the solution (4.51) is identical to the original solution (4.49), and any initial error 
will grow exponentially. This means that both of these solutions are unstable in the class 
of differentiable functions.  
But the same physical phenomenon described by Eq. (4.62) is stable in the enlarged class 
of functions that includes stochastic components. Obviously the stochastic components 
are found from the Stabilization Principle discussed in the previous section.  

d. Comment on negative diffusion.  
One	may	ask	why	the	negative	diffusion	was	chosen	to	be	nonlinear.	Let	us	turn	to	a	
linear	version	of	the	Fokker-Planck	equation	
∂P
∂t

= −σ2
∂2P
∂X 2

, PdX =1
−∞

∞

∫ 	 	 	 	 	 	 (4.63)	

and	discuss	a	negative	diffusion	in	more	details.	As	follows	from	the	linear	
equivalent	of	Eq.	(26)	
D = −2σ,i.e. D = D0 − 2σt < 0 at t > D0 / (2σ) 		 	 	 (4.64)	 	
Thus,	 eventually	 the	 variance	 becomes	 negative,	 and	 that	 disqualifies	 Eq.	 (4.64)	
from	being	meaningful.	As	will	 be	 shown	below,	 the	 initial	 value	problem	 for	 this	
equation	 is	 ill-posed:	 its	 solution	 is	 not	 differentiable	 at	 any	 point.	 Therefore,	 a	
negative	diffusion	must	be	nonlinear	in	order	to	protect	the	variance	from	becoming	
negative,	Fig.30.	
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Linear	negative	diffusion.																		Nonlinear	negative	diffusion.	

 

Figure 30. Negative diffusion. 
 

Since a parabolic PDE with negative diffusion coefficients is of fundamental importance 
for the proposed approach to the computation strategy, we will take a closer look at its 
properties associated with the so called Hadamard’s instability, or the ill-posedness of the 
initial value problem. Without loss of generality, the analysis will be focused on the one-
dimensional case. 
Consider a parabolic PDE 

∂P
∂t

= −q2 ∂
2P
∂X 2

       (4.65) 

subject to the following initial conditions 

P00 = P |t=0={

1
λ0
2 sinλ0X if | X |≤ X 0

0 if | X |> X 0
}     (4.66) 

with the parameter λ0 being made as large as necessary,i.e 

∞→0λ         (4.67) 

The region of the initial disturbance can be made arbitrarily shrunk, i.e. 

0|| 0 →X 		 	 	 	 	 	 	 	 (4.68)	
The	solution	of	Eq.	(4.65)	can	be	sought	in	the	form		

P = 1
λ0
2
eγΔt sinλ0X . 			 	 	 	 	 	 	 (4.69)		

Substituting	this	solution	into	Eq.	(4.65),	one	obtains	
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.0
2
0

2 ∞→∞→= λλλ atq 	 	 	 	 	 	 (4.70)			
Thus,	the	solution	of	Eq.	(4.65)	subject	to	the	initial	conditions	(4.66)	is	

P = 1
λ0
2
eq

2λ0
2Δt sinλ0X        (4.71) 

This solution has very interesting properties: its modulus tends to infinity if  

∞→0λ          (4.72) 

within an arbitrarily short period of time Δt0 and within an infinitesimal length around the 
point X = X0. In other words, vanishingly small changes in the initial conditions lead to 
unboundedly large changes in the solution during infinitesimal period of time.  

The	 result	 formulated	 above	 was	 obtained	 under	 specially	 selected	 initial	
conditions	(4.66),	but	it	can	be	generalized	to	include	any	initial	conditions.	Indeed,	
let	the	initial	conditions	be	defined	as	

P |t=0= P *(X )         (4.73) 

and the corresponding solution of Eq. (4.65) is 

P = P **(X ,t)         (4.74) 

Then, by altering the initial conditions to 

P |t=0= P *(X )+ P
00 (X )       (4.75) 

where P00(X) is defined by Eq. (4.66), one observes the preceding argument by 
superposition that vanishingly small change in the initial condition (4.73) leads to 
unboundedly large change in the solution (4.74) that occurs during an infinitesimal period 
of time. Such an unattractive property of the solution (that represents the Hadamard’s 
instability) repelled scientists from using Eq. (4.65) as a model for physical phenomena. 
However, the situation becomes different if the variable P in Eq. (4.65) cannot be 
negative, i.e. when Eq. (4.65) is complemented by the constraint 

P ≥ 0          (4.76) 

This constraint is imposed, for instance, when ρ stands for the probability density, or for 
the absolute temperature. It is easily verifiable that the proof of the Hadamard’s 
instability presented above fails if the constraint (41) is imposed, since negative values of 
ρ is essential for that proof. Thus, if the models of negative diffusion have attractors 
separating positive and negative areas of the solutions, they are free of the Hadamard’s 
instability, and that what takes place in Eq. (25). 

It	 should	 be	 emphasized	 that	 negative	 diffusion	 represents	 a	 major	 departure	
from	 both	 Newtonian	 mechanics	 and	 classical	 thermodynamics	 by	 providing	 a	
progressive	evolution	of	complexity	against	the	Second	Law	of	thermodynamics.	
e. General case. Based upon the example considered above, we can now specify the 
coefficients αi in Eqs. (4.44), and (4.45) 
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xi = fi + Dii
∂
∂xi
ln P,                               (4.77)  

∂P
∂t
+

∂
∂Xi

(PFi + Dii
i
∑ ∂P

∂Xi
) = 0                                      

(4.78)   

where iiD  are principal variances 

Dii = ... (Xi
−∞

∞

∫
−∞

∞

∫ − Xi )
2P(dX )n                                  

(4.79)   

In order to verify the stabilizing effect of negative diffusion for n-dimensional case, let us 
linearize Eqs. (4.77) with respect to the initial state xi = 0 . Then the linearized versions 
of Eqs. (4.77) and (4.78) will be, respectively 

xi = aij x j + Dii
∂
∂xi
ln P, aij = (

∂fi
∂x j
)v
x j=0

                                              (4.80)  

∂P
∂t
+
∂
∂X
(ρaij X j + Dii

i
∑ ∂ρ

∂Xi
) = 0                 (4.81) 

An n-dimensional analog of Eq. (4.56) can be obtained by multiplying Eq.(4.81) by Xi 
and then using partial integration 

Dij = −ailDlj − a jlDli − 2 Dij                (4.82) 

Let us first analyze the effect of terminal attractor and, turning to Eq.(4.82), start with 
the matrix [∂ Dij / ∂Dlk ]. Its diagonal elements become infinitely negative when the 

variances vanish 

∂ Dij
∂Dij

= (−2aij −
1
Dij
)→−∞ at Dii → 0      (4.83)                   

while the off-diagonal elements are bounded. Therefore, due to the effect of terminal 
attractor (4.83), the system Eqs. (4.82) has infinitely negative characteristic roots, i.e. it is 
infinitely stable with respect to small errors regardless of the parameters ija  of the 
original dynamical system (4.80). In addition to that, the terminal attractor (as well as any 
attractor) guarantees “impenetrability” of the state 0=iiD , i.e. if the principle variances 
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initially were non-negative, they will never become negative, and that prevent ill-
possedness of the problem for the PDE (4.78).  

Thus, all the properties of the modified model discovered in one-dimensional case are 
preserved in the 

n-dimensional case, namely: a simultaneous solution of the coupled ODE-PDE system 
(4.77) and (4.78) describes a stable “expected” motion regardless of the original 
instability. 
f. Representation of higher moments. Although the expected (mean) values of the state 

variables play  
an important role in description of postinstability motions, they do not expose the full 

dynamical picture.  
Indeed, measured velocities of chaotic motions look truly random, and therefore, the 

behavior of the  
higher moments is required within the framework of stochastic formalism. For that 

purpose, let us turn to  
Eqs. (4.37) and introduce new variables 
xij = xix j  (4.84)          

After trivial transformations, the system (4.37) can be rewritten in an equivalent form 
being expressed via new variables 
xij = fij (x11,...xnn )         (4.85)  

in which 

fij = x jj fi ( x11 ,... xnn}+ xii f j (x11,... xnn )    (4.86)    

Let us now augment Eqs.(4.86) with the Liouville feedback similar to that in Eq.(4.77) 

xij = fij + D*ijij
∂
∂xij
ln P*,      (4.87) 

Then the corresponding Liouville equation will be similar to Eq. (4.78) 

	 	 	 (4.88)	 	
	 	 	 	 	
	 	 	

	

where	P *	and ijijD* are	 probability	 density	 and	 principal	 variances	 for	 the	 new	
variables.	 	Solving	Eqs.(4.87)	and	(4.78)	simultaneously,	one	obtains	 the	evolution	
of	 the	 expectations	 of	 the	 new	 state	 variables	 that	 are	 equivalent	 to	 the	 second	
moments	of	the	old	variables	(see	Eqs.(4.84))	

xij = xix j                          (4.89)   

It should be noticed that P and P* are different: for instance, if initially P is normally 
distributed, P* must be recalculated by applying the rules for the change of variables 

∂P *
∂t

+
∂
∂Xij

(Pfij + D*ijij
ij
∑ ∂P *

∂Xi
) = 0
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(4.84);  that is why the expectations and the second moments must be found from 
different equations. 

The	higher	moments	can	be	found	in	a	similar	way	by	introducing	new	variables	
xijk,	xijkl,	 etc.	Based	upon	 the	expectation	and	higher	moments,	one	can	reconstruct	
the	 joint	 probability	 distribution	 of	 state	 variables,	 and	 therefore,	 to	 obtain	 a	
complete	information	about	dynamics	of	the	underlying	physical	process	in	a	stable	
form.	

g.	 Computational complexity. Since the proposed approach, in general, can be 
implemented only by  

numerical simulations, its computational complexity becomes critical for a practical use. 
It should be  

emphasized that although our primary objective is to stabilize the governing equations, 
nevertheless our  

secondary objective is to make them practically tractable. As follows from the governing 
equations (27),  

and (28), one has to deal with 2n first order ODE and one second order parabolic PDE, 
and this PDE has  

exponential complexity in a sense that with a linear growth of the interacting bodies, the 
computational  

resources grow exponentially, and the problem becomes intractable. Indeed, Eq. (28) is a 
Fokker Planck  

equation for which the number of the independent variables is equal to the number of 
interacting bodies. 

Here we will introduce a draft of the computational strategy for circumventing this 
obstacle by replacing simulation of Eq. (28) with direct collection statistics of the random 
trajectories. Assuming that the initial value of the joint probability density is a delta 
function, one can find all the state variables of the system (4.77), and (4.78) during a 
small time interval tΔ . Repeating the same computations many times, one may obtain 
different results due to chaotic instability. These results can be used for collecting 
statistics and finding the joint probability density for the next small time interval, etc. It 
should be emphasized that the solution is obtained without exploiting the original PDE 
(28). The last property is very important since the complexity of the computing is coming 
from numerical solution of n-dimensional PDE. The price of this advantage is collection 
of statistics at each time step. Nevertheless, this procedure leads only to polynomial 
complexity, while computing or simulating an n-dimensional PDE has exponential 
complexity. Indeed, adopting Monte-Carlo approach applied for computation of multi-
dimensional integrals, one can compute probability density by counting frequency of 
getting trajectories into preset areas, preset volumes, etc. while complexity of these 
simulations do not depend upon the problem dimensionality that is typical for Monte-
Carlo methods, [24]. 
In particular, the computational complexity of integrating PDE is on the order of n)/1( 2ε  
that is, the reciprocal of the error threshold rose to a power equal to the number of 
variables that is exponential in n. In contradistinction to that, the resources for 
simulations by Monte-Carlo method is on the order of )/1( 2ε , i.e., they do not depend 
upon the dimensionality of the problem. Therefore, the complexity of the whole approach 
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is polynomial, and that is enormous advantage over standard approach to computing 
multi-dimensional Fokker-Planck equation. It should be noticed that the proposed 
approach is free of some limitations of the Monte-Carlo methods since success of the 
latter depends upon efficient implementations of multi-dimensional stochastic processes 
with prescribed density distribution, and that necessitates a fast and effective way to 
generate random numbers uniformly distributed on the interval [0,1]. It should be noticed 
that often-used computer-generated numbers are not really random, since computers are 
deterministic. In particular, if a random number seed is used more than once, one will get 
identical random numbers every time. Therefore, for multiple trials, different random 
number seeds must be applied. The proposed simulations approach does not need random 
number generator since randomness is generated by the dynamical system itself via 
chaotic instability. There is another advantage of proposed simulations:  suppose that we 
are interested in behavior of the solution in a local region of the variables; then, in case of 
computing, one has to find the global solution first, and only after that the local solution 
can be extracted, while the last procedure requires some additional integrations in order 
to enforce the normalization constraints.  On the other hand, in our case, one can project 
all the simulations onto a desired sub-space βα jj ⊗  of the total space ljj ...1⊗  and 
directly obtain the local solution just disregarding the rest of the space. Similar approach 
has been applied to solution of the Madelung equation, [23]. 

6. Application to postinstability models. 
a. General remarks.The	 proposed	 approach	 can	 be	 stated	 as	 follows:	 in	 order	 to	

find	the	solution		
of	 a	 dynamical	 system	 (4.37)	 subject	 to	 the	 initial	 conditions	 (4.38)	 and	 avoid	

possible		
computational	errors	due	to	exponential	divergence	of	the	neighboring	trajectories,	

it	is	sufficient		
to	 modify	 Eqs.	 (4.37)	 by	 applying	 a	 fictitious	 stabilizing	 force	 in	 the	 form	 of	 the	

Liouville	feedback		
(4.43)	and	 to	solve	 the	system	(4.77)	subject	 to	 the	same	 initial	 conditions	 (4.38),	

simultaneously		
with	the	modified	Liouville	equation	(4.78)	
Obviously	 if	 stability	 of	 the	 system	 (4.37)	 in	 known	 in	 advance,	 the	modification	
(4.77)	and	(4.78)	is	not	necessary,	although	application	of	Eqs.	(4.77)	and	(4.78)	will	
only	reaffirm	this	stability.	However,	in	general,	there	is	no	analytical	criterion	that	
would	 predict	 chaos	 based	 only	 upon	 the	 system	 (4.37)	without	 actual	 numerical	
runs.	In	view	of	that,	the	proposed	approach	seems	quite	universal.		
b. Application to Lagrangian turbulence. In Section 2, the Lagrangian turbulence was 

described by  
Eqs. (4.15)-(4.17) representing transition from Euler to Lagrange frames of reference. It 

was shown that  
this is the simplest system of ODE that can has chaotic solutions. This phenomenon was 

identified with  
the Lagrangian turbulence since the underlying Eulerian flow is laminar.  
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In order to apply the computational strategy developed in the previous Section, let us turn 
to Eqs. (4.15)-(4.17), and rewrite them in a dimensionless form. For that purpose, 
introduce the following variables 

t =Tt*, x = Xx*, y =Yy*, z = Zz*
u =V

∞
u*, v =V

∞
v*,w =V

∞
w*

	 	 	 	 	 	

	 (4.90)	
Here	T,	L,	and	V

∞
are	the	scales	of	time,	length	and	velocities.	

Then	Eqs.	(4.15)-4.17)	are	written	in	a	dimensionless	form	

S dx*
dt *

= u*(x*, y*, z*)         

 (4.91)          

S dy*
dt *

= v*(x*, y*, z*)         

 (4.92)           

S dz*
dt *

= w*(x*, y*, z*)         

 (4.93)   

where S = L
V∞T

is the Strouhal number.    

Now Eqs. (4.77) take the form 

S dx*
dt *

= u*(x*, y*, z*)+ Dxx
∂
∂x*

ln P      

 (4.94)
 

S dy*
dt *

= v*(x*, y*, z*)+ Dyy
∂
∂y*

ln P      

 (4.95)
 

S dz*
dt *

= w*(x*, y*, z*)+ Dzz
∂
∂z*

ln P      

 (4.96)
 where 

Dxx = (X *
−∞

∞

∫ − X*)2PdX *dY *dZ *
     

 (4.97)
 



	 18	

Dyy = (Y *
−∞

∞

∫ −Y *i )
2PdX *dY *dZ *

     
 (4.98) 

Dzz = (Z *
−∞

∞

∫ − Z *i )
2PdX *dY *dZ *

     
 (4.99)

 

These equations should be complemented by the Liouville equation following from Eq. 
(4.78) 

S ∂P
∂t *

+
∂

∂X *
(PU *+ Dxx

∂P
∂X *

)+ ∂
∂Y *

(PV *+ ""Dyy
∂P
∂Y *

)+ ∂
∂Z *

(PW *+ Dzz
∂P
∂Z *

) = 0

 

(4.100) 
The system of Eqs. (4.94)-4.96), and 4.100) is closed, and its solution, subject to the 
following initial conditions  

x*= x0 , y*= y0 , z*= z0 , P = P0 at t = 0      
 (4.101) 
is to be sought in the form 

x = x (x0 , y0 , z0 ), y = y(x0 , y0 , z0 ), z = z (x0 , y0 , z0 )     
 (4.102) 

Here  

x0 , y0 , z0 are initial Cartesan coordinates of a trajectory of interest, and P0 is the initial 
joint probability density of error in the values of these coordinates that can be chosen as a 
delta-function. 
The solution (4.102) describes the equation of the sought trajectory averaged over time. 
The “real” trajectory may be not representable as a smooth curve due to chaotic 
instability. Recall that although the mean values of the coordinates x , y, z are not 
explicitly enter the system (4.91)-(4.93), they represent the limit values of x*,y*, and z*, 
respectively, as a result of the suppression of the trajectory divergence by the negative 
diffusion forces., Fig.31.  
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Figure 31. Chaotic and averaged trajectories.	
Following Eqs. (4.84)-(4.88), one can formulate the problem for computing higher 
moments by introducing new variables and performing the same computational strategy. 

c. Application to Navier-Stokes equations. Reformulation of the Euler and the Navier-
Stokes equations  

discussed in Chapter III did not cover a special case known as intermittency that is the 
irregular  

alternation of phases of apparently periodic and chaotic dynamics. Intermittent behavior 
is commonly  

observed in fluid flows that are near the transition to turbulence. In this sub-section we 
apply the approach  

presented above to the intermittence turbulence described by the Navier-Stokes equation. 
In this case, prior to application of the proposed methodology, the Navier-Stocks 
equations must be approximated by a system of ODE. Such an approximation can be 
performed using finite differences, finite elements, or the Galerkin method. The relevance 
of the finite-dimensional approximation to solutions of the fluid dynamics has been 
successfully demonstrated by Lorenz, [25], who applied the Galerkin method to the 
Rayleigh- Benard convection model keeping only three Fourier components; as a result, 
he arrived at a strange attractor that now bears his name.  
Let us illustrate the application of the Galerkin method to the Navier-Stokes equations. 
We will start with the following vector form 

ρ(∂v
∂t
+ v∇v) = −∇p+∇•T + f ) ,       (4.103) 

∂ρ
∂t
+∇•(ρv) = 0          

 (4.104)  
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where v is the flow velocity, ρ is the fluid density, p is the pressure, T is the (deviatoric) 
stress tensor, and     f represents body forces (per unit volume) acting on the fluid. 
Let us represent Eqs. (4.103) and (4.104) in the following compressed form 

∂Q(x,t)
∂t

= L(x)Q(x,t)         

 (4.105)                          

where Q is m-dimensional vector that specifies the state of the fluid, x! is the 
configuration space (with components x, y, and z,) and L(x) is a time-independent, 
nonlinear differential operator. Applying Fourier decomposition into mode amplitudes to 
the vector Q , one obtains 

Q(x,t) = qk
k
∑ (t)eik•x          

 (4.106)   

where 

qk (t) =
1

(2π)3
d 3xQ(x∫ ,t)e−ik•x        

 (4.107)  
Inserting  Eq. (4.106) into Eq.(4.105) and using the orthogonality of the exponential 
functions in (4.106), one obtains for each mode an equation of the form 

qk = Fk (q1,...qk )          
 (4.108)  
If only the first n modes are kept in the sum (4.106), then Eqs.(4.108) represent a set of 
mn first order ODE describing the evolution in time of the mode amplitude components.  
Eqs. (4.108) are of the same form as Eqs (4.105), and their solution can be performed 
using the approach introduced above. The effectiveness of the Galerkin approach in 
discretization procedure of the Navier-Stokes equations follows from the fact that despite 
a sharp truncation of the Galerkin expansion, there are obvious qualitative similarities 
between the original PDE model and its tree-dimensional approximation representing the 
Lorenz attractor.  
d. Application to n-body problem. Unlike the Navier-Stokes equations that describe 

dissipative motions,  
the famous n-body problem describes conservative motions. But these two unsolved 

problems have a  
fundamental property in common: driven by supersensitivity to initial condition, they 

develop chaotic  
motions, and it turns out that the proposed methodology can be applied to both of them. 

The n-body  
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problem is a classic astronomical and physical problem that naturally follows from the 
two-body problem  

first solved by Newton in his Principia in 1687. The efforts of many famous 
mathematicians have been  

devoted to this difficult problem, including Euler and Lagrange (1772), Jacobi (1836), 
Hill (1878),  

Poincaré (1899), Levi-Civita (1905), and Birkhoff (1915). However, despite centuries of 
exploration,  

there is no clear structure of the solution of the general n- or even three-body problem as 
there are no  

coordinate transformations that can simplify the problem, and there are more and more 
evidences that, in  

general, the solutions of n-body problems are chaotic. Failure to find a general analytical 
structure of the  

solution shifted the effort towards numerical methods. Many ODE solvers offer a variety 
of advance  

numerical methods for the solution. However due to the sensitivity of the solution to 
initial errors,  

different runs produce different results that is typical for chaotic phenomena.  The 
governing equations of  

n-body problem can be written in the form of 2n ODE of the first order 

vi = −G mi
j=1, j≠i

n

∑
rij
rij
3
, ri = vi ,  i=1,2,…n                               

(4.109)  

Here r,v and m are positions, velocities and masses of the bodies centers, and rij is the 

distance between these centers. The sensitivity of solutions of these ODE’s leading to 
chaos is measured by the Lyapunov exponents. Quantitatively, two trajectories in phase 
space with initial separation )(0 tZδ diverge as 

|||| 0ZeZ t δδ λ≈                                                  
(4.110)   

where λ is the Lyapunov exponent. A typical value of the positive Lyapunov exponent in 
a three body problem is .5.0≈λ  Although the divergence that is associated with the 
Lyapunov instability is weaker that the Hadamard instability, it still leads to chaos. Here 
we will apply a new approach to solution of n-body problem proposed in this Chapter. 
First of all, the system (4.109) should be presented in the form equivalent to Eqs. (4.77), 
(4.78) 
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vi
k = −G mi

j=1, j≠i

n

∑
rij
k

rij
3
+ Dii

k ∂

∂vi
k
ln P, i =1,2,...n; k =1,2,3.   

 (4.111) 

ri
k = vi

k + Dii
k ∂

∂ri
k
ln P, i =1,2...n; k =1,2,3.                   

 (4.112)  
∂P
∂t
+
k=1

3

∑ { ∂

∂Vi
k
[P(−G mi

j=1, j≠i

n

∑
i=1

n

∑
Rij
k

Rij
3
)+

∂(PVi
k )

∂Ri
k
]+

 

+
∂

∂Vi
k
( Dii

k ∂P
∂Vi

k
)+ ∂

∂Ri
k
Dii
k ∂P
∂Ri

k
)}= 0      

 (4.113) 
where	 k

ir is	the	
thk Cartesian	projection	of	the	radius-vector	of	the	 thi body	

k
iv 	is	the	 thk Cartesian	projection	of	the	velocity	vector	of	the	 thi body	
k
ijr is	the	 thk Cartesian	projection	of	the	radius-vector	of	the	distance	between	

    the thi and the thj    bodies, and  

Dii
k = ... (Vi

k

−∞

∞

∫
−∞

∞

∫ −Vi
k )2PdW        (4.114)  

Dii
k = ... (Xi

k

−∞

∞

∫
−∞

∞

∫ − Xi
k )2PdW        (4.115) 

Here W is the volume of the probability space 

dW = dX1dX 2dX 3dV1dV2dV3        (4.116)  

The last terms in Eqs. (4.111) and (4.112), and the second line in Eq. (4.114) represent 
the effect of the fictitious forces in the form of the Liouville feedback. 

7. Summary. 
In this Chapter, the Lagrangian turbulence is defined as postinstability motion of 
individualized trajectories of a fluid generated by a laminar flow. The formulation of L-
turbulence is reduced to a system of three nonlinear ODE describing kinematics of 
transition from Euler’s to Lagrange’s frames of reference. It has been demonstrated that 
the complexity of this ODE is equivalent to that of the simplest chaotic systems like a 
Lorentz attractor. Application of the Stabilizaion Principle to Lagrangian turbulence with 
generalization to the Navier-Stokes equations and n-body problems are discussed.  
A general approach to representation of postinstability motions in dynamics is the central 
objective of this Chapter. The approach is based upon introduction of stabilizing forces 
that couple equations of motion and the evolution of the probability density of errors in 
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initial conditions. These stabilizing forces create a powerful terminal attractor in the 
probability space that corresponds to occurrence of the target trajectory with the 
probability one. In configuration space, this effect suppresses exponential divergence of 
the close neighboring trajectories without affecting the target trajectory. As a result, the 
postinstability motion is represented by a set of functions describing the evolution of the 
statistical invariants such as expectations and higher moments, while this representation 
is stable. General analytical proof has been introduced. Since the proposed approach is 
not restricted by any special assumptions about the original dynamical system, it can be 
applied to both conservative and dissipative systems. The main applications for 
conservative systems are in celestial mechanics as well as in molecular dynamics (for 
instance, many-body problems). The broad class of dissipative systems to which the 
proposed approach can be applied includes chaotic attractors and turbulence. 

It	 should	 be	 noticed	 that	 the	 proposed	 approach	 combines	 several	 departures	
from	the	classical	methods.	Firstly,	it	introduces	a	nonlinear	version	of	the	Liouville	
equation	that	is	coupled	with	the	equation	of	motion	(in	Newtonian	dynamics	they	
are	 uncoupled).	 Secondly,	 it	 introduces	 terminal	 attractors	 characterized	 by	
violation	of	the	Lipschitz	conditions	(in	Newtonian	dynamics	as	well	as	in	theory	of	
differential	equations	 these	conditions	are	preserved).	Finally,	 the	 idea	of	a	 forced	
stabilization	 of	 unstable	 equations	 follows	 from	 the	 Stabilization	 Principle	
formulated	 in	Chapter	 II.	This	 is	 the	most	 fundamental	conceptual	departure	 from	
the	classical	approach	to	mathematical	modeling.		
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