
Simulation Environment for Mobile Robots Testing
Using ROS and Gazebo

Kenta Takaya∗, Toshinori Asai†, Valeri Kroumov‡ and Florentin Smarandache§
∗Graduate School, Okayama University of Science, 1-1 Ridai-cho, Okayama City 700–0005, Japan

Email: kenta@kids.ee.ous.ac.jp
†FBR Technology Engineering Services Co., 2-2-2 Chuo-cho, Tsuruga City 914-0811, Japan

Email: asronx@gmail.com
‡Dept. of Electrical & Electronic Engineering, Okayama University of Science, 1-1 Ridai-cho, Okayama City 700-0005, Japan

Email: val@ee.ous.ac.jp
§ University of New Mexico, 705 Gurley Ave., Gallup, New Mexico 87301, USA

Email: smarand@unm.edu

Abstract—In the process of development a control strategy for
mobile robots, simulation is important for testing the software
components, robot behavior and control algorithms in different
surrounding environments. In this paper we introduce a simula-
tion environment for mobile robots based on ROS and Gazebo.
We show that after properly creating the robot models under
Gazebo, the code developed for the simulation process can be
directly implemented in the real robot without modifications.
In this paper autonomous navigation tasks and 3D-mapping
simulation using control programs under ROS are presented.
Both the simulation and experimental results agree very well
and show the usability of the developed environment.

Index Terms—Mobile robot simulation, 3D mapping, ROS,
Gazebo.

I. INTRODUCTION

Today’s robot system is a complex hardware device equ-
ipped with a numerous sensors and computers which are
often controlled by complex distributed software. Robots must
navigate and perform successfully specific tasks in various
environments and under changing conditions. However, it is
costly and time consuming to build different test fields and to
examine the robot behaviour under multiple conditions. Using
a well-developed simulation environment allows safe and cost-
effective testing of the robotic system under development.
The simulation decreases the development cycle and can be
versatilely applied for different environments.

Even though there exist several software platforms (cf.
Section II) for simulation and robot control, as far as the au-
thors are concerned, ROS (Robot Operation System)[1] allows
building of reliable robot control and navigation software and
Gazebo[2] simulation together with ROS’s RVis library helps
to create simulation, which results can be directly deployed to
the real robot hardware.

In this paper we describe the design and implementation
of an environment for development and simulation of mobile
robots using ROS and Gazebo software. Accurate models
of the simulated robots and their working environment are
designed. Simulation and experiments for mapping and control

are presented as well. The contribution of this paper is: (a) the
content of the paper can be used as a tutorial for building
2D and 3D environment simulation models under Gazebo
and simulation of robot models in those environments; (b)
an effective method for creating precise 3D maps by suitable
combination of the ROS packages is presented. The software
used during simulations is successfully used in the control of
real robots without any modifications.

The final goal of this research is a development of reliable
guiding robot for elderly or disabled people for indoor and
outdoor environments. At present, differential drive robots
are considered because they can move and turn in narrow
places and are enough manoeuvrable compared to other types
wheeled robots.

This paper is organized as follows. The next section de-
scribes related work. Section III describes briefly Gazebo and
the ROS software. The robot and the working environment
models are introduced there, too. Section IV and Section V
detail the 2D and 3D simulation and experimental results,
respectively. In Section VI the simulation and experimental
results are analyzed and compared to other work and plans
for further developments are presented. Section VII concludes
the paper.

II. RELATED WORK

There are several commercial and open source simulation
environments for robotic field. Some common examples of
such software are briefly listed here.

WEBOTS[3] supports C/C++, Java, Python, URBI and
MATLAB and has TCP/IP interface to communicate to
other software products. It has many components which can
be connected to create complex construction easily. Visual
Components[4] is a simulation suite for production lines and
can even simulate entire factory. Robot Virtual Worlds[5] was
primarily designed for educational purpose but it seems that
it can be used for some advanced applications. LabVIEW[6]
is a complex software system suited for data acquisition,
analysis, control, and automation. It has numerous libraries978-1-5090-2720-0/16/$31.00 c©2016 IEEE

2016 20th International Conference on System Theory, Control and Computing (ICSTCC), October 13-15, Sinaia, Romania

96

for simulation of hardware components and supports most of
the standard interfaces.

On other hand there exist a great number of open source
simulators and many of them have very advanced features.

USARSim (Unified System for Automation and Robot
Simulation)[7] is commonly used in RoboCup rescue virtual
robot competition as well as a research platform. It is based on
the Unreal Tournament Game Engine[8]. Initially, the Unreal
Engine was proprietary, but starting from 2015, it is available
for free.

The OpenHRP3[9] (Open-architecture Human-centered Ro-
botics Platform version 3) is compatible with OpenRTM-
aist[10]—a robotic technology middleware. However, the
OpenHRP is designed to develop and simulate mainly hu-
manoid robots. There are some attempts[11] to develop a
software supporting the OpenRTM-aist for simulation of other
types of robots, as well.

OpenRAVE[12] is a tool for testing, development, and
simulation for robotics systems. It uses high level scripting
such as MATLAB and Octave. The OpenRAVE focuses mainly
on humanoid robots and robot manipulators. However, it has
ROS plugins that create Nodes (executables) for controllers
and sensors data simulation. A comparison between several
open source simulation environments for mobile robots can
be found in [13], [14] and the references there.

There are many publications about robot simulation cover-
ing variety of robots: manipulators, legged robots, underwa-
ter vehicles, and unmanned aerial vehicles (UAV). Many of
those developments are based on ROS and Gazebo software
packages which proves their reliability and great usability.
The Virtual Robotics Challenge[15] hosted by Defense Ad-
vanced Research Projects Agency (DARPA) as a part of the
DARPA Robotics Challenge led to development and improve-
ment of simulation software to run nearly identically to the
real robotic hardware[16]. Simulation of manipulation tasks
including grasp and place motions are presented in [17].
The advantages and disadvantages of simulators for testing
the robot behaviours are compared in [18]. Results in UAV
simulation and experimental challenges are covered in other
publications[19], [20].

III. ROBOT SIMULATION UNDER ROS AND GAZEBO

A. Gazebo

Gazebo is a part of the Player Project[21] and allows simu-
lation of robotic and sensors applications in three-dimensional
indoor and outdoor environments. It has a Client/Server ar-
chitecture and has a topic-based Publish/Subscribe model of
interprocess communication.

Gazebo has a standard Player interface and additionally has
an native interface. The Gazebo clients can access its data
through a shared memory. Each simulation object in Gazebo
can be associated with one or more controllers that process
commands for controlling the object and generate the state of
that object. The data generated by the controllers are published
into the shared memory using Gazebo interfaces (Ifaces). The
Ifaces of other processes can read the data from the shared

memory, thus allowing interprocess communication between
the robot controlling software and Gazebo, independently of
the programming language or the computer hardware platform.

In the process of dynamic simulation Gazebo can access the
high-performance physics engines like Open Dynamics Engine
(ODE)[22], Bullet[23], Simbody[24] and Dynamic Animation
and Robotics Toolkit (DART)[25] which are used for rigid
body physical simulation. Object-Oriented Graphics Render-
ing Engine (OGRE)[26] provides the 3D graphics rendering
of environments of Gazebo.

The Client sends control data, simulated objects’ coordi-
nates to the Server which performs the real-time control of
the simulated robot. It is possible to realize a distributed
simulation by placing the Client and the Server on differ-
ent machines. Deploying ROS Plugin for Gazebo helps to
implement a direct communication interface to ROS, thus
controlling the simulated and the real robots using the same
software. This provides an effective simulation tool for testing
and development of real robotic systems.

B. ROS

ROS[1] is a collection of libraries, drivers, and tools for
effective development and building of a robot systems. It
has a Linux-like command tool, interprocess communication
system, and numerous application-related packages. The ROS
executable process is called Node and interprocess commu-
nication has a Publish/Subscribe model. The communication
data is called Topic. The Publisher process may publish one
or more Topics and processes which subscribe to certain
Topic can receive its content. The interprocess communication
library allows easily to add user developed libraries and ROS
executables. Moreover, the ROS-based software is language
and platform-independent—it is implemented in C++, Python,
and LISP. Furthermore, it has experimental libraries in Java
and Lua[1].

The process name resolving and execution is scheduled by
the Master Server. The ROS packages include many sensor
drivers, navigation tools, environment mapping, path planning,
interprocess communication visualization tool, as well as a 3D
environment visualization tool and many others. ROS allows
effective development of new robotic systems and when used
together with a simulation middleware like Gazebo the time for
development a reliable and high performance robotic control
software can be dramatically decreased.

C. Robot and Environment Modeling

In representing the robot and environment models in ROS,
the URDF (Universal Robotic Description Format) is used.
The URDF is an XML file format used and standardized
in ROS for description of all elements (sensors, joints, links
etc.) of a robot model. Because URDF can only specify the
kinematic and dynamic properties of a single robot in isolation,
to make the URDF file work properly in Gazebo, additional
simulation-specific tags concerning the robot pose, frictions,
inertial elements and other properties were added[27]. The
addition of these properties makes the original URDF file

97

<gazebo>
<plugin name="differential_drive_controller" \

filename="libdiffdrive_plugin.so">
... plugin parameters ...

</plugin>
</gazebo>

(a) The URDF file

<model name="P3DX_robot_model">
<plugin name="differential_drive_controller" \

filename="libdiffdrive_plugin.so">
... plugin parameters ...

</plugin>
</model>

(b) The SDF file

Fig. 1. Using gazebo plugins.

compatible with the native SDF (Simulation Description For-
mat) Gazebo’s model description format. The SDF can fully
describe the simulated world together with the complete robot
model.

The process of conversion from URDF to SDF can be
easily done by adding the so called gazebo plugins into URDF
file. The gazebo plugins can attach into ROS messages and
service calls the sensor outputs and driving motor inputs[28],
i.e. the gazebo plugins create a complete interface (Topic)
between ROS and Gazebo. The control process intercom-
munication under ROS is achieved by performing a Pub-
lish/Subscribe to that Topic. There are several plugins available
in gazebo plugins[28]: Camera (ROS interface for simulating
cameras), Multicamera (synchronizes multiple camera shutters
to publish their images together—typically stereo cameras),
GPU Laser, F3D (for external forces on a body), Inertial
Measurement Unit (IMU), Bumper, Differential Drive, Skid
Steering Drive, Planar Move Plugin and many others. Fig. 1

Fig. 2. Pioneer3-DX (left) and PeopleBot (right) models in Gazebo.

Fig. 3. P3-DX and lab models in Gazebo

shows the result of conversion of an URDF to SDF format.
For the purpose of this study we have created models of

PeopleBot and Pioneer 3-DX robots. The model of P3-DX
is distributed together with Gazebo, but its dimensions and
properties differ from the real robot. Because of this a new
much more precise model of P3-DX including the models
of several sensors was created. Part of P3-DX model was
adopted in the process of designing the PeopleBot model. The
models of 2D (Hokuyo UTM-30LX LIDAR) and 3D (Hokuyo
YVT-X002 LIDAR) laser finders, sonars, odometry, camera,
IR sensors, and bumpers were also added. Additionally, the
robots masses and frictions were properly defined. The created
models of both robots are shown in Fig. 2. In the process of
simulation we are using the already distributed Willow Garage
model and the model of one of our laboratories as shown in
Fig. 3.

IV. 2D SIMULATION AND EXPERIMENTAL RESULTS

This section describes the simulation results using ROS and
Gazebo. The robot model and the real robot are equipped
with 2D laser finder (Hokuyo UTM-30LX LIDAR), 2 Web
cameras (Logicool c615), sonars (16pcs for P3-DX robot and
24psc for PeopleBot), odometry system and a laptop computer
for controlling the robot. The sonars are used by the obstacle
avoidance Node. Because there is no a plugin for sonars

98

Fig. 4. Map generation using Hector mapping in Rviz

in the gazebo plugins, we adopted the Laser plugin (ray,
libgazebo ros laser.so) making it work approximately like
a sonar sensor. Additionally, we have designed an obstacle
avoidance Node: a standard Britenberg vehicle type node.

The first camera is used for environment monitoring and
the second one transfers the floor area directly in front of
the robot which increases the reliability during remote control
operations. The robot and the environment models are created
using Gazebo and simulation is performed under the ROS
control. As depicted in Fig. 4 and Fig. 5 the simulation results
are visualized using the RViz package. By using the Camera
plugin the simulated environment is displayed in RViz (left
side in the figures). The goal position of the robot is set by
pointing and clicking at it with the computer mouse.

The simulation results from map generation of unknown
environment and robot navigation using the generated map
are presented in the next subsections. For path generation
we are using the ROS Navigation Stack[29] package which
extensively uses costmap[30] to store information about the
obstacles situated in the robot working space and builds
occupancy grid of the data. The Navigation Stack uses one
costmap for global planning and another one for local planning
and obstacle avoidance. The global planning is based on the
Dijkstra’s Algorithm[31] and in the local coordinates the path
is additionally corrected using Dynamic Window Approach
(DWA)[32].

A. Unknown Environment Mapping Simulation

A simulation example of map generation of unknown en-
vironment is shown in Fig. 4. To perform map generation
the hector mapping[33] package was used. hector mapping
realizes the SLAM (Simultaneous Localization and Mapping)
algorithm and provides robot pose estimates at the scan rate
of the laser scanner (40Hz for the UTM-30LX LIDAR).
Generally, the package does not need odometry if the robot
platform does not perform yaw motion. Because during the
simulations our obstacle avoidance algorithm causes some yaw
motions, we are using the odomery data to properly estimate
the robot pose.

One way to perform the map generation is by simultane-
ously setting goal positions until the whole working space
is covered by the robot. Another approach is to make the
robot to “explore” the environment until the complete map

Fig. 5. Navigation using AMCL in RViz

is constructed. The problem with the latter is that a special
care must be taken in the exploration algorithm to make the
robot not to perform unnecessary turns and “reexplore” already
covered areas. Otherwise, the map generation process may
take very long time. In our simulations we are using the first
approach: setting simultaneously goals as depicted in Fig. 4.
Fig. 5 shows the completed map which is further used in the
navigation simulation.

B. Navigation Simulation

After performing the map generation using the hector map-
ping package, we used the amcl[34] (Adaptive Monte Carlo
Localization) package for navigation inside the generated map.
To properly estimate the robot position inside the environment,
this package uses the laser scan and odometry readings data
as well a laser-based map. Most of the algorithms used by
amcl package are described in [35]. One simulation result in
known environment is shown in Fig. 5.

C. Experimental Results

Using the simulation control software we performed ex-
periments of control of real robots under ROS. During the
experiments there was no difference in robots behaviour
compared to the simulations. However, due to differences in
the interprocess communication speed and calculation speeds
there was need to tune some parameter of the Navigation stack
node.

V. 3D MAPPING SIMULATION AND EXPERIMENTAL
RESULTS

To perform the 3D mapping we use the Octomap pack-
age[36] and the Hokuyo YVT-X002 LIDAR model. The Oc-
tomap Package does not possess a SLAM algorithm and relies
on odometry measurements, which introduce a bias in the
position estimation of the robot and consequently uncertainties
in the map as shown in Fig. 6.

In order to solve the above problem we have combined the
Octomap and the Hector Mapping as follows. Instead to use
the 3D laser Topic for the YVT-X002, we changed it with
2D Topic to create a map using the Hector Mapping Package
(SLAM algorithm). While using the robot position from the
2D SLAM we create the 3D map by Octomap, and combining

99

Fig. 6. 3D Mapping Using Only the Octomap Package

Fig. 7. 3D Mapping Using Octomap and Hector Mapping

the 2D and 3D maps we performed the visualization under
RViz tool. These tasks are performed in parallel without doing
additional scans of the environment. The result is generation
of quite precise 3D map as shown in Fig. 7 and 8.

Fig. 7 depicts an experimental result under ROS control and
Fig. 8 shows the simulation using Gazebo. From the figures
it can be confirmed that the maps are precise enough. The
map created during the experiment has some noise which
successfully can be neglected.

Fig. 8. 3D Map Generation Using Gazebo in RViz (simulation)

VI. DISCUSSION

2D and 3D real-time mapping and simulations cause
very high load on the CPUs. The laptop computers used
in the course of the experiments were Intel R© CoreTMi5–
4200@1.6GHz equipped with 8GB RAM. During the experi-
ments the robot speed was set to 0.4 [m/s] and the whole map
building and navigation run smootly, while due to the extensive
calculations during the simulation, the robot speed had to be
decreased to about 0.2 [m/s]. The ROS and Gazebo software
run under 64-bit Ubuntu 15.04 OS. Even though there exist
several software platforms (cf. Section II) for simulation and
robot control, as far as the authors are concerned, ROS allows
building of reliable robot control and navigation software and
Gazebo simulation together with ROS’s RVis library helps to
create simulation, which results can be directly deployed to
the real robot hardware.

During the robot navigation it is very much important to per-
form precise localization and position correction of the mobile
robot. The authors have already proposed a method for local-
ization and position correction using artificial landmarks(see
[37] and the references there) based on vSLAM R©[38] algo-
rithm. That method has very good performance for indoor
environments but the map building based on vSLAM does not
work well for outdoor applications and it is almost impossible
to render realistic 3D maps[39]. In this work, to perform
reliable outdoor and indoor navigation, a map building using
laser sensors and dead reckoning was adopted.

VII. CONCLUSION

The purpose of this study is to develop a reliable environ-
ment for simulation and control of mobile robots using the
ROS and Gazebo software.

It was shown that after designing properly the models of the
robot platforms and their working environments the software
used in the simulations can be directly used to control the
real robots. Simulations and experimental results in 2D and
3D mapped environments prove the usability of the models.
The main contribution of this paper is that the well done
combination of ROS packages allowed real-time generation
of precise map in 3D space.

The paper describes in details which software packages
were employed and we hope that the results reported here
will be useful at least for part of the roboticists community.

The final goal of this research is a design of reliable guiding
robot for elderly for indoor and outdoor environments. We are
in process of deploying a voice recognition and voice synthesis
for Japanese and after adding a face recognition functions we
will be able to realize the next stage of the project.

ACKNOWLEDGMENT

The authors would like to thank Mr. Hirona Kato for
his valuable support during the experiments. This work was
partially supported by the Japanese Ministry of Education,
Culture, Sports and Technology (MEXT): Strategic Research
on QOL Innovation 2012–2016.

100

REFERENCES

[1] Open Source Robotic Foundation. (2016) ROS/Introduction. [Online].
Available: http://wiki.ros.org/ROS/Introduction

[2] (2016) Robot simulation made easy. [Online]. Available: http://
gazebosim.org/

[3] (2016) Webots. [Online]. Available: https://www.cyberbotics.com
[4] (2016) Visual Components. [Online]. Available: http://www.

visualcomponents.com/products/
[5] (2016) Robot Virtual Worlds. [Online]. Available: http://www.

robotvirtualworlds.com/
[6] National Instruments. (2016) What Can You Do With LabVIEW?

[Online]. Available: http://www.ni.com/labview/why/
[7] S. Carpin, M. Lewis, J. Wang, S. Balakirski, and C. Scrapper, “US-

ARSim: a robot simulator for research and education,” in Proc. 2007
IEEE International Conference on Robotics and Automation, Roma,
Italy, April 2007, pp. 1400–1405.

[8] Epic Games. (2016) Unreal Engine 4. [Online]. Available: https://www.
epicgames.com/

[9] OpenHRP3 Official Site (2016) About OpenHRP3. [Online]. Available:
http://fkanehiro.github.io/openhrp3-doc/en/about.html

[10] Japan’s National Institute of Advanced Industrial Science and Tech-
nology. (2016) OpenRTM-aist. [Online]. Available: http://www.openrtm.
org/openrtm/en/node/629

[11] I. Chen, B. MacDonald, B. Wunsche, G. Biggs, and T. Kotoku, “A Sim-
ulation Environment for OpenRTM-aist,” in Proc. SII 2009. IEEE/SICE
International Symposium on System Integration, Tokyo, Japan, Nov.
2009, pp.113–117.

[12] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, July 2008.

[13] P. Castillo-Pizarro, T.V. Arredondo, and M. Torres-Torriti, “Introductory
Survey to Open-Source Mobile Robot Simulation Software,” in Proc.
2010 Latin American Robotics Symposium and Intelligent Robotics
Meeting (LARS), 2019, pp. 150–155.

[14] D. Cook, A. Vardy, and R. Lewis, “A survey of AUV and robot simula-
tors for multi-vehicle operations,” in Proc. 2014 IEEE/OES Autonomous
Underwater Vehicles (AUV), Ocford, Missisippi, Oct. 2014, pp. 1–8.

[15] Defense Advanced Research Projects Agency (DARPA). (2016) DARPA
Robotics Challenge. [Online]. Available: http://theroboticschallenge.org/

[16] C. E. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. L. Rivero, J. Manzo, E. Krotkov, and G. Pratt, “Inside
the Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster
Response,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 494-506,
Apr. 2015.

[17] W. Qian, Z. Xia, J. Xiong, Y. Gan, Y. Guo, S. Weng, H. Deng, Y.
Hu, J. Zhang, “Manipulation Task Simulation using ROS and Gazebo,”
inProc. 2014 IEEE Int. Conf. on Robotics and Biomimetics, Dec. 2014,
Bali, Indonesia, pp. 2594–2598.

[18] F. R. Lera, F. C. Garcia, G. Esteban, and V. Matellan, “Mobile Robot
Performance in Robotics Challenges: Analyzing a Simulated Indoor
Scenario and its Translation to Real-World,” in Proc. 2014 Second
International Conference on Artificial Intelligence, Modelling and Sim-
ulation, pp. 149–154.

[19] Q. Bu, F. Wan, Z. Xie, Q. Ren, J. Zhang, and S. Liu, “General Simulation
Platform for Vision Based UAV Testing,” in Proc. 2015 IEEE Int. Conf.
Information and Automation, Lijiang, China, Aug. 2015, pp.2512–2516.

[20] M. Zhang, H. Qin, M. Lan., J. Lin., S. Wang, K. Liu, F. Lin, and B. M.
Chen, “A High Fidelity Simulator for a Quadrotor UAV using ROS and
Gazebo,” IECON2015-Yokohama, Nov. 2015, pp. 2846–2851.

[21] Player/Stage project. (2016) The Player Project. [Online]. Available:
http://playerstage.sourceforge.net/

[22] Russell L. Smith. (2016) Open Dynamics Engine. [Online]. Available:
https://bitbucket.org/odedevs/ode/

[23] Real-Time Physics Simulation. (2016) BULLET Physics Library. [On-
line]. Available: http://bulletphysics.org/wordpress/

[24] (2016) Simbody: Multibody Physics API. [Online]. Available: https://
simtk.org/home/simbody/

[25] Georgia Tech Graphics Lab and Humanoid Robotics Lab. (2016) DART
(Dynamic Animation and Robotics Toolkit). [Online]. Available: http:
//dartsim.github.io/

[26] OGRE3D. (2016) Object-Oriented Graphics Rendering Engine. [On-
line]. Available: http://www.ogre3d.org/

[27] URDF in Gazebo. (2016) Tutorial: Using a URDF in Gazebo. [Online].
Available: http://gazebosim.org/tutorials/?tut=ros urdf

[28] Gazebo plugins in ROS. (2016) Tutorial: Using Gazebo plugins
with ROS. [Online]. Available: http://gazebosim.org/tutorials?tut=ros
gzplugins

[29] ROS Navigation Stack. (2016) navigation. [Online]. Available: http://
wiki.ros.org/navigation

[30] (2016) costmap 2d Package. [Online]. Available: http://wiki.ros.org/
costmap 2d

[31] J. C. Latombe, Robot Motion Planning, Kluver Academic Publishers,
pp. 604–608, 1998.

[32] R. Segward and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots, The MIT Press, pp.282–284, 2004.

[33] S. Kohlbrecher. (2016) hector mapping. [Online]. Available: http://wiki.
ros.org/hector mapping

[34] B. P. Gerkey. (2016) amcl. [Online]. Available: http://wiki.ros.org/amcl
[35] S. Turn, W. Burgard and D. Fox, Probabilistic Robotics, The MIT Press,

2006.
[36] (2016) Octomap—A probabilistic, flexible, and compact 3D mapping

library for robotic systems. [Online]. Available: http://octomap.github.
io/octomap/doc/md README.html

[37] V. Kroumov and K. Okuyama, “Localization and Position Correction
for Mobile Robot Using Artifical Visual Landmarks”, Int. J. Advanced
Mechatronic Systems, pp. 112–119, vol. 4, no. 2, 2012.

[38] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian,
and M. E. Munich, “The vSLAM algorithm for robust localization
and mapping”, in Proc. Int. Conf. Robotics and Automation (ICRA),
Barcelona, Spain, 2005, pp.24–29.

[39] X. Li, N. Aouf and A. Nemra, “3D Mapping based VSLAM for UAVs,”
in Proc. 2012 20th Mediterranean Conference on Control & Automation
(MED), Barcelona, Spain, July 2012, pp. 348–352.

101

