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Abstract

Neutrosophic set (NS) is a generalization of fuzzy set (FS) that is de-
signed for some practical situations in which each element has different
truth membership function, indeterminacy membership function and falsi-
ty membership function. In this paper, we study the multi-attribute group
decision making (MAGDM) problems under neutrosophic environment
with the incompletely known or completely unknown attribute weight.
We first define the single valued neutrosophic ideal-solution (SVNIS) and
the weighted distance measure, and establish the program models to de-
rive the attribute weights. Then we give a practical application in the
framework of SVNS, the result shows that our method is reasonable and
effective in dealing with decision making (DM) problems. Furthermore,
we extend the method to interval valued neutrosophic set (IVNS).

Keywords : multi-attribute group decision making (MAGDM), the
weighted distance measure based method; neutrosophic set (NS).

1 Introduction

Fuzzy set was introduced by Zadeh, which has been widely used in many aspects
[1, 2]. On the basis of Zadeh’s work, several high-order fuzzy sets have been
proposed as an extension of fuzzy sets, including interval-valued fuzzy set, type-2
fuzzy set, type-n fuzzy set, soft set, rough set, intuitionistic fuzzy set, interval-
valued intuitionistic fuzzy set, hesitant fuzzy set and neutrosophic set (NS)
[2, 3, 4, 5, 6]. So far, the proposed high-order fuzzy sets have been successfully
utilized in dealing with different uncertain problems, such as decision making
[7], pattern recognition [8], etc.

As a generalization of fuzzy set, the NS was proposed by Smarandache [5]
not only to deal with the decision information which is often incomplete, inde-
terminate and inconsistent but also include the truth membership degree, the
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falsity membership degree and the indeterminacy membership degree. For sim-
plicity and practical application, Wang proposed the single valued NS (SVNS)
and the interval valued NS (IVNS) which are the instances of NS and gave some
operations on these sets [8, 9]. Since its appearance, many fruitful results have
been appeared [23, 24]. On one hand, many researchers have proposed some
aggregation operators of SVNS and INS and applied them to MADM problems
[10, 11, 12, 25, 26]. On the other hand, some researchers have also proposed
entropy and similarity measure of the SVNS and IVNS and applied them to
MADM and pattern recognition [13, 14]. The above problems that related to
the attribute weights are completely known. However, with the development of
the information society and internet technology, the socio-economic environment
gets more complex in many decision areas, such as capital investment decision
making, medical diagnosis, personnel examination, etc. Only one decision maker
cannot deal with the complex problems. Accordingly, it is necessary to gather
multiple decision makers with different knowledge structures and experiences
to conduct a group decision making. In some circumstances, it is difficult for
the decision makers to give the information of the attribute weights correctly,
which makes the attribute weights incompletely known or completely unknown.
How to derive the attribute weights from the given neutrosophic information
is an important topic. In intuitionistic fuzzy environments, many researchers
have proposed some program models to obtain the incompletely known attribute
weights or the completely unknown attribute weights, such as Xu proposed the
deviation-based method [15], the ideal-solution based method [16], the group
consensus-based method [17], Li proposed the consistency-based method [18],
etc. Under the neutrosophic environment, Sahin proposed the maximizing devi-
ation method [19]. Up to now, we found that there is no research of the weighted
distance measure based method to neutrosophic multi-attribute group decision
making. In this paper, we investigate the MAGDM problems which the infor-
mation expressed by SVNS or IVNS, and the attribute weights are incompletely
known or completely unknown.

The rest of the paper is organized as follows. In Section 2, we recall the
concept of NS, SVNS, INS and their distance measures. In Section 3, we give
the weighted distance measure based method to single valued neutrosophic set
(SVNS). Furthermore, we extend the method to interval valued neutrosophic
set (IVNS). Finally, a conclusion is given in Section 4.

2 Preliminaries

Definition 2.1 [5] Assume X be a universe of discourse with a generic element
in X denoted by x. A NS A on X is defined by a truth membership function
TA(x), an indeterminacy membership function IA(x) and a falsity membership
function FA(x). TA(x), IA(x) and FA(x) are defined by

TA(x) : X →]0−, 1+[

IA(x) : X →]0−, 1+[

FA(x) : X →]0−, 1+[

where 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.
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For similarity and practical application, Wang proposed the SVNS and IVN-
S which are the subclasses of NS and preserve all the operations on NS. In the
following part, we recall SVNS and IVNS and their distance measure, respec-
tively.

Definition 2.2 [8] Assume X be a universe of discourse with a generic element
in X denoted by x. A single valued neutrosophic set (SVNS) A on X is defined
by a truth membership function TA(x), an indeterminacy membership function
IA(x) and a falsity membership function FA(x). TA(x), IA(x) and FA(x) are
defined by

TA(x) : X → [0, 1]

IA(x) : X → [0, 1]

FA(x) : X → [0, 1]

where TA(x), IA(x) and FA(x) are subsets of [0, 1], and satisfy 0 ≤ TA(x) +
IA(x) + FA(x) ≤ 3.

For similarity, we utilize A = {TA(x), IA(x), FA(x)} to denote a SVNS A
in the following part. If X has only one element, for convenience, we call A a
single valued neutrosophic number (SVNN) and denoted by A = {TA, IA, FA}.

Definition 2.3 [20] Let A1 = {T1, I1, F1}, A2 = {T2, I2, F2} be two SVNNs,
the normalized Hamming distance measure between A1 and A2 is defined by

d(A1, A2) =
1

3
(|T1 − T2|+ |I1 − I2|+ |F1 − F2|) (1)

Definition 2.4 [9] Assume X be a universe of discourse with a generic element
in X denoted by x, and int[0, 1] be the set of all closed subsets of [0, 1]. An
interval valued neutrosophic set (IVNS) A on X is defined by a truth member-
ship function TA(x), an indeterminacy membership function IA(x) and a falsity
membership function FA(x). TA(x), IA(x) and FA(x) are defined by

TA(x) : X → int[0, 1]

IA(x) : X → int[0, 1]

FA(x) : X → int[0, 1]

with the condition 0 ≤ SupTA(x) + SupIA(x) + SupFA(x) ≤ 3.

Here we denote TA(x) = [T−
A (x), T+

A (x)], IA(x) = [I−A (x), I+A (x)], FA(x) =
[F−
A (x), F+

A (x)]. For convenience, we call A an interval valued neutrosophic
number (IVNN) and denoted by A = {[T−

A , T
+
A ], [I−A , I

+
A ], [F−

A , F
+
A ]}.

Definition 2.5 [14] Let A1 = {[T−
1 , T

+
1 ], [I−1 , I

+
1 ], [F−

1 , F
+
1 ]},

A2 = {[T−
2 , T

+
2 ], [I−2 , I

+
2 ], [F−

2 , F
+
2 ]} be two IVNNs, the normalized Hamming

distance measure between A1 and A2 is defined by

d(A1, A2) = 1
6 (|T−

1 − T
−
2 |+ |T

+
1 − T

+
2 |+ |I

−
1 − I

−
2 |

+|I+1 − I
+
2 |+ |F

−
1 − F

−
2 |+ |F

+
1 − F

+
2 |)

(2)
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3 The weighted distance measure based method
to neutrosophic set

3.1 The weighted distance measure based method to single-
valued neutrosophic set

Let X = {X1, X2, . . . , Xm} be a set of alternatives, C = {C1, C2, . . . , Cn} be a
set of attributes and w = {w1, w2, . . . , wn} be the weight vector of the attribute
with wj ∈ [0, 1] and

∑n
j=1 wj = 1. Suppose that there are s decision makers D =

{D1, D2, . . . , Ds}, whose corresponding weighted vector is λ = {λ1, λ2, . . . , λs}
. Let Ak = (rkij)m×n (k = 1, 2, . . . , s) be single valued neutrosophic decision

matrix, where rkij = {T kij , Ikij , F kij} is the value of the attribute, expressed by
SVNNs.

In MADM environments, the ideal point is used to help the identification of
the best alternative in the decision set. Although the ideal point does not exist
in real world, it does provide an effective way to evaluate the best alternative.
Now we suppose the ideal SVNN as α∗

j = {t∗, i∗, f∗} = {1, 0, 0}. Based on
the ideal SVNN, we define the single valued neutrosophic positive ideal-solution
(SVNPIS).

Definition 3.1 Let α∗
j = {1, 0, 0} (j = 1, 2, . . . , n) be n ideal SVNNs, then a

SVNPIS is defined by
A∗ = {α∗

1, α
∗
2, . . . , α

∗
n}.

Definition 3.2 Let Aki = {rki1, rki2, . . . , rkin} (i = 1, 2, . . . ,m) be the i th alter-
native of the kth decision makers (k = 1, 2, . . . , s), A∗ = {α∗

1, α
∗
2, . . . , α

∗
n} be the

SVNPIS, then the weighted Hamming distance measure (WHDM) between Ai
and A∗ is defined by

d(Ai, A
∗) =

s∑
k=1

λk

n∑
j=1

wjd(rkij , α
∗
j ). (3)

3.1.1 Incompletely known attribute weights

In the decision making process, the incomplete information of the attribute
weight provided by the decision makers can usually be constructed using several
basic ranking forms [21]. Let H be the set of information about the incompletely
known attribute weights, which may be constructed in the following forms [22],
for i 6= j:
(a) A weak ranking:{wi ≥ wj};
(b) A strict ranking: {wi − wj ≥ δi(> 0)};
(c) A ranking with multiples: {wi ≥ δiwj}, 0 ≤ δi ≤ 1;
(d) An interval form: {δi ≤ wi ≤ δi + εi}, 0 ≤ δi ≤ δi + εi;
(e) A ranking of differences: {wi − wj ≥ wk − wl} , for j 6= k 6= l.
We now establish the following single-objective programming model based on
the weighted distance measure method:

(M1)

{
Minf(w) =

∑s
k=1 λk

∑m
i=1

∑n
j=1 wjd(rkij , α

∗
j )

s.t.wj ∈ H,
∑n
j=1 wj = 1, wj ≥ 0, j = 1, 2, . . . , n.
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where λk is the weight of the decision maker Dk(k = 1, 2, . . . , s) and

d(rkij , α
∗
j ) =

1

3
(|T kij − 1|+ Ikij + F kij) (4)

d(rkij , α
∗
j ) represents the weighted distance measure between the attribute value

rkij and the SVNPIS α∗
j . The desirable weight vector w = (w1, w2, . . . , wn)

should make the sum of all the weighted distance measure (3) small. So we
construct this model to make the overall distance small.
By solving the model (M1) with Matlab software, we get the optimal solution
w∗ = (w∗

1 , w
∗
2 , . . . , w

∗
n) , which is considered as the weight of the attributes

C1, C2, . . . , Cn. Then we utilize d(Ai, A
∗) to rank all the alternatives. The

smaller the weighted distance measure, the better the alternative.

3.1.2 Completely unknown attribute weights

If the information about the attribute weight is completely unknown, we estab-
lish the following programming model:

(M2)

{
Minf(w) =

∑s
k=1 λk

∑m
i=1

∑n
j=1 wjd(rkij , α

∗
j )

s.t.
∑n
j=1 w

2
j = 1, wj ≥ 0, j = 1, 2, . . . , n.

To solve this model, we construct the Lagrange function as follows:

L(w, λ) =

s∑
k=1

λk

m∑
i=1

n∑
j=1

wjd(rkij , α
∗
j ) +

λ

2
(

n∑
j=1

w2
j − 1) (5)

where λ is the Lagrange multiplier.
Differentiating (5) with respect to wj(j = 1, 2, . . . , n) and λ, setting these partial
derivatives equal to zero, the following set of the equations are obtained:{

∂L
∂wj

=
∑s
k=1 λk

∑m
i=1 d(rkij , α

∗
j ) + wjλ = 0

∂L
∂λ =

∑n
j=1 w

2
j = 1

(6)

By solving Eq.(6), we obtain the weight wj and normalize it with w∗
j =

wj∑n

j=1
wj

,

then we get

w∗
j =

∑s
k=1 λk

∑m
i=1 d(rkij , α

∗
j )∑n

j=1

∑s
k=1 λk

∑m
i=1 d(rkij , α

∗
j )

(7)

we get the optimal solution w∗ = (w∗
1 , w

∗
2 , . . . , w

∗
n), which is considered as the

weight of the attributes C1, C2, . . . , Cn. Later, we calculate the distance measure
(3) and get the most desirable one.

3.1.3 Ilustrative example

Example 1. Here we choose the decision making problem adapted from [19]. An
automotive company is desired to select the most appropriate supplier for one of
the key elements in its manufacturing process. After pre-evaluation, four sup-
pliers have remained as alternatives for further evaluation. In order to evaluate
alternative suppliers, a committee composed of four decision makers has been
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formed. The committee selects four attributes to evaluate the alternatives:
(1)C1: product quality, (2)C2: relationship closeness, (3)C3: delivery perfor-
mance, (4)C4: price. Suppose that there are four decision-makers, denoted by
d1, d2, d3, d4, whose corresponding weight vector is λ = (0.25, 0.25, 0.25, 0.25) .
The four possible alternatives are to be evaluated under these four attributes
and are in the form of SVNNs for each decision-maker, as shown in the following
single valued neutrosophic decision matrix:

D1 =


{0.4, 0.2, 0.3} {0.4, 0.2, 0.3} {0.2, 0.2, 0.5} {0.7, 0.2, 0.3}
{0.6, 0.1, 0.2} {0.6, 0.1, 0.2} {0.5, 0.2, 0.3} {0.5, 0.1, 0.2}
{0.3, 0.2, 0.3} {0.5, 0.2, 0.3} {0.1, 0.5, 0.2} {0.1, 0.4, 0.5}
{0.7, 0.2, 0.1} {0.6, 0.1, 0.2} {0.4, 0.3, 0.2} {0.4, 0.5, 0.1}



D2 =


{0.1, 0.3, 0.5} {0.5, 0.1, 0.5} {0.3, 0.1, 0.6} {0.4, 0.1, 0.4}
{0.2, 0.5, 0.4} {0.3, 0.4, 0.3} {0.2, 0.3, 0.1} {0.2, 0.3, 0.5}
{0.5, 0.2, 0.6} {0.2, 0.4, 0.3} {0.5, 0.2, 0.5} {0.1, 0.5, 0.3}
{0.2, 0.4, 0.2} {0.1, 0.1, 0.3} {0.1, 0.5, 0.4} {0.5, 0.3, 0.1}



D3 =


{0.3, 0.2, 0.1} {0.3, 0.1, 0.3} {0.1, 0.4, 0.5} {0.2, 0.3, 0.5}
{0.6, 0.1, 0.4} {0.6, 0.4, 0.2} {0.5, 0.4, 0.1} {0.5, 0.2, 0.4}
{0.3, 0.3, 0.6} {0.4, 0.2, 0.4} {0.2, 0.3, 0.2} {0.3, 0.5, 0.1}
{0.3, 0.6, 0.1} {0.5, 0.3, 0.2} {0.3, 0.3, 0.6} {0.4, 0.3, 0.2}



D4 =


{0.2, 0.2, 0.3} {0.3, 0.2, 0.3} {0.2, 0.3, 0.5} {0.4, 0.2, 0.5}
{0.4, 0.1, 0.2} {0.6, 0.3, 0.5} {0.1, 0.2, 0.2} {0.5, 0.1, 0.2}
{0.3, 0.5, 0.1} {0.2, 0.2, 0.3} {0.5, 0.4, 0.3} {0.5, 0.3, 0.2}
{0.3, 0.1, 0.1} {0.2, 0.1, 0.4} {0.2, 0.3, 0.2} {0.3, 0.1, 0.6}


Case 1. Incompletely known attribute weights

Suppose the incompletely known information of the attribute weight is given
as follows:

H = {0.18 ≤ w1 ≤ 0.2, 0.15 ≤ w2 ≤ 0.25, 0.30 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤ 0.4,

4∑
j=1

wj = 1}.

Step 1. By model (M1), we establish the following model:{
Minf(w) = 1.5833w1 + 1.5038w2 + 1.825w3 + 1.625w4

s.t.w ∈ H

Step 2. By solving this model with Matlab software, we get the weight
vector:

w1 = 0.18, w2 = 0.22, w3 = 0.30, w4 = 0.30.

Step 3. Use the distance measure (3), we have

d(A1, A
∗) = 0.4365, d(A2, A

∗) = 0.3618, d(A3, A
∗) = 0.4502, d(A4, A

∗) = 0.4033.

Step 4. Rank the alternatives.
Since d(A3, A

∗) is the biggest, and d(A2, A
∗) is the smallest, we rank the alter-

natives as follows:
A2 � A4 � A1 � A3,
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where � indicates the relationship superior or preferred to, and A2 is the best
alternative.
Case 2. Completely unknown attribute weights

Step 1.By model (M2), we establish the following model:{
Minf(w) = 1.5833w1 + 1.5038w2 + 1.825w3 + 1.625w4

s.t.
∑4
j=1 w

2
j = 1, wj ≥ 0, j = 1, 2, 3, 4.

Step 2. Use Eq. (7) to obtain the weight vector of attributes:

w∗
1 = 0.18, w∗

2 = 0.22, w∗
3 = 0.30, w∗

4 = 0.30.

Step 3. Use the distance measure (4) and (5), we have

d(A1, A
∗) = 0.4352, d(A2, A

∗) = 0.3613, d(A3, A
∗) = 0.4482, d(A4, A

∗) = 0.3984.

Step 4. Rank the alternatives. Since d(A3, A
∗) is the biggest, and d(A2, A

∗)
is the smallest, we rank the alternatives as follows:

A2 � A4 � A1 � A3,

where � indicates the relationship superior or preferred to, and A2 is the best
alternative.

3.2 The weighted distance measure based method to in-
terval valued neutrosophic set

Let X = {X1, X2, . . . , Xm} be a set of alternatives, C = {C1, C2, . . . , Cn} be a
set of attributes and w = {w1, w2, . . . , wn} be the weight vector of the attribute
with wj ∈ [0, 1] and

∑n
j=1 wj = 1. Suppose that there are s decision makers D =

{D1, D2, . . . , Ds}, whose corresponding weighted vector is λ = {λ1, λ2, . . . , λs}
. Let Ak = (rkij)m×n (k = 1, 2, . . . , s) be interval valued neutrosophic decision

matrix, where rkij = {T kij , Ikij , F kij} is the value of the attribute, expressed by
IVNNs.

Now we suppose the ideal IVNN as β∗
j = {t∗, i∗, f∗} = {[1, 1], [0, 0], [0, 0]}.

Based on the ideal IVNN, we define the interval valued neutrosophic positive
ideal-solution (IVNPIS).

Definition 3.3 Let β∗
j = {[1, 1], [0, 0], [0, 0]} (j = 1, 2, . . . , n) be n ideal IVNNs,

then a IVNPIS is defined by

A∗ = {β∗
1 , β

∗
2 , . . . , β

∗
n}.

Definition 3.4 Let Ai = {ri1, ri2, . . . , rin} (i = 1, 2, . . . ,m) be the i th al-
ternative, A∗ = {β∗

1 , β
∗
2 , . . . , β

∗
n} be the IVNPIS, then the weighted Hamming

distance measure (WHDM) between Ai and A∗ is defined by

d(Ai, A
∗) =

s∑
k=1

λk

n∑
j=1

wjd(rkij , β
∗
j ) (8)
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3.2.1 Incompletely known attribute weights

We now establish the following single-objective programming model based on
the weighted distance measure method:

(M3)

{
Minf(w) =

∑s
k=1 λk

∑m
i=1

∑n
j=1 wjd(rkij , β

∗
j )

s.t.wj ∈ H,
∑n
j=1 wj = 1, wj ≥ 0, j = 1, 2, . . . , n.

where λk is the weight of the decision maker Dk (k = 1, 2, . . . , s) and

d(rkij , β
∗
j ) =

1

6
(|T−k

ij − 1|+ |T+k
ij − 1|+ |I−kij |+ |I

+k
ij |+ |F

−k
ij |+ |F

+k
ij |) (9)

d(rkij , β
∗
j ) represents the distance measure between the attribute value rkij and

the IVNPIS β∗
j . The desirable weight vector w = (w1, w2, . . . , wn) should make

the sum of all the weighted distance (8) small. So we construct this model to
make the overall distances small. The smaller the WHD, the better the alter-
native. We use (8) to rank the alternative.

By solving the model (M3) with Matlab software, we get the optimal solu-
tion w∗ = (w∗

1 , w
∗
2 , . . . , w

∗
n), which is considered as the weight of the attributes

C1, C2, . . . , Cn. Then we utilize d(Ai, A
∗) to rank all the alternatives. The

smaller the distance, the better the alternative.

3.2.2 Completely unknown attribute weights

If the information about the attribute weight is completely unknown, we estab-
lish the following programming model:

(M4)

{
Minf(w) =

∑s
k=1 λk

∑m
i=1

∑n
j=1 wjd(rkij , β

∗
j )

s.t.
∑n
j=1 w

2
j = 1, wj ≥ 0, j = 1, 2, . . . , n.

By Lagrange multiple method, we get the completely unknown weight wj and
normalize it with w∗

j =
wj∑n

j=1
wj

as follows:

w∗
j =

∑s
k=1 λk

∑m
i=1 d(rkij , β

∗
j )∑n

j=1

∑s
k=1 λk

∑m
i=1 d(rkij , β

∗
j )

(10)

which is considered as the weight of the attributes Cj . Later, we calculate the
distance measure d(Ai, A

∗), and then get the most desirable one.

3.2.3 Ilustrative example

Example 2. The decision making problem is adapted from [19]. Suppose an orga-
nization plans to implement ERP system. The first step is to form a project team
that consists of CIO and two senior representatives from user departments. By
collecting all information about ERP vendors and systems, project team choos-
es four potential ERP systems Ai(i = 1, 2, 3, 4) as candidates. The company
employs some external professional organizations (experts) to aid this decision
making. The project team selects four attributes to evaluate the alternatives:
(1)C1: function and technology, (2)C2: strategic fitness, (3)C3: vendors ability,
(4)C4: vendors reputation. Suppose that there are three decision-makers, de-
noted by D1, D2, D3, whose corresponding weight vector is λ = ( 1

3 ,
1
3 ,

1
3 ) . The
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four possible alternatives are to be evaluated under these four attributes and
are in the form of IVNNs for each decision-maker, as shown in the following
interval valued neutrosophic decision matrix:

D1 =



{{[0.4, 0.5], [0.2, 0.3], [0.3, 0.5]} {[0.3, 0.4], [0.3, 0.6], [0.2, 0.4]} {[0.2, 0.5], [0.2, 0.6], [0.3, 0.5]}
{[0.5, 0.6], [0.3, 0.5], [0.2, 0.5]}}
{{[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]} {[0.1, 0.3], [0.1, 0.4], [0.2, 0.5]} {[0.4, 0.5], [0.2, 0.5], [0.3, 0.7]}
{[0.2, 0.4], [0.1, 0.4], [0.3, 0.3]}}
{{[0.3, 0.4], [0.2, 0.3], [0.3, 0.4]} {[0.3, 0.6], [0.2, 0.3], [0.2, 0.5]} {[0.2, 0.7], [0.2, 0.4], [0.3, 0.6]}
{[0.2, 0.6], [0.4, 0.7], [0.2, 0.7]}}
{{[0.2, 0.6], [0.1, 0.2], [0.1, 0.2]} {[0.2, 0.5], [0.4, 0.5], [0.1, 0.6]} {[0.3, 0.5], [0.1, 0.3], [0.2, 0.2]}
{[0.4, 0.4], [0.1, 0.6], [0.1, 0.5]}}



D2 =



{{[0.4, 0.6], [0.1, 0.3], [0.2, 0.4]} {[0.3, 0.5], [0.1, 0.4], [0.3, 0.4]} {[0.4, 0.5], [0.2, 0.4], [0.1, 0.3]}
{[0.3, 0.6], [0.3, 0.6], [0.3, 0.6]}}
{{[0.3, 0.5], [0.1, 0.2], [0.2, 0.3]} {[0.3, 0.4], [0.2, 0.2], [0.1, 0.3]} {[0.2, 0.7], [0.3, 0.5], [0.3, 0.6]}
{[0.2, 0.5], [0.2, 0.7], [0.1, 0.2]}}
{{[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]} {[0.1, 0.4], [0.1, 0.3], [0.3, 0.5]} {[0.5, 0.5], [0.4, 0.6], [0.3, 0.4]}
{[0.1, 0.2], [0.1, 0.4], [0.5, 0.6]}}
{{[0.3, 0.4], [0.1, 0.2], [0.1, 0.3]} {[0.3, 0.3], [0.1, 0.5], [0.2, 0.4]} {[0.2, 0.3], [0.4, 0.5], [0.5, 0.6]}
{[0.3, 0.3], [0.2, 0.3], [0.1, 0.4]}}



D3 =



{{[0.1, 0.3], [0.2, 0.3], [0.4, 0.5]} {[0.3, 0.3], [0.1, 0.3], [0.3, 0.4]} {[0.2, 0.6], [0.3, 0.5], [0.3, 0.5]}
{[0.4, 0.6], [0.3, 0.4], [0.2, 0.3]}}
{{[0.3, 0.6], [0.3, 0.5], [0.3, 0.5]} {[0.3, 0.4], [0.3, 0.4], [0.3, 0.5]} {[0.3, 0.5], [0.2, 0.4], [0.1, 0.5]}
{[0.1, 0.2], [0.3, 0.5], [0.3, 0.4]}}
{{[0.4, 0.5], [0.2, 0.4], [0.2, 0.4]} {[0.2, 0.3], [0.1, 0.1], [0.3, 0.4]} {[0.1, 0.4], [0.2, 0.6], [0.3, 0.6]}
{[0.4, 0.5], [0.2, 0.6], [0.1, 0.3]}}
{{[0.2, 0.4], [0.3, 0.4], [0.1, 0.3]} {[0.1, 0.4], [0.2, 0.5], [0.1, 0.5]} {[0.3, 0.6], [0.2, 0.4], [0.2, 0.2]}
{[0.2, 0.4], [0.3, 0.3], [0.2, 0.6]}}


Case 1. Incompletely known attribute weights
Suppose the incompletely known information of the attribute weight is given as
follows:
H = {0.18 ≤ w1 ≤ 0.2, 0.15 ≤ w2 ≤ 0.25, 0.30 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤
0.4,

∑4
j=1 wj = 1}

Step 1. By model (M3), we establish the following model:{
Minf(w) = 1.4278w1 + 1.7278w2 + 1.8278w3 + 1.7667w4

s.t.w ∈ H

Step 2. By solving this model with Matlab software, we get the weight
vector:

w1 = 0.18, w2 = 0.25, w3 = 0.20, w4 = 0.37.

Step 3. Use the distance measure (9) and (10), we have

d(A1, A
∗) = 0.4204, d(A2, A

∗) = 0.4182, d(A3, A
∗) = 0.4471, d(A4, A

∗) = 0.41.

Step 4. Rank the alternatives.
Since d(A3, A

∗) is the biggest, and d(A4, A
∗) is the smallest, we rank the alter-

natives as follows:
A4 � A2 � A1 � A3,
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where � indicates the relationship superior or preferred to, and A4 is the best
alternative.
Case 2. Completely unknown attribute weights

Step 1.By model (M4), we establish the following model:{
Minf(w) = 1.4278w1 + 1.7278w2 + 1.8278w3 + 1.7667w4

s.t.
∑4
j=1 w

2
j = 1, wj ≥ 0, j = 1, 2, 3, 4.

Step 2. Use Eq. (10) to obtain the weight vector of attributes:

w∗
1 = 0.2115, w∗

2 = 0.2560, w∗
3 = 0.2708, w∗

4 = 0.2617.

Step 3. Use the distance measure (9) and (10), we have

d(A1, A
∗) = 0.4200, d(A2, A

∗) = 0.3776, d(A3, A
∗) = 0.4421, d(A4, A

∗) = 0.4054.

Step 4. Rank the alternatives.
Since d(A3, A

∗) is the biggest, and d(A2, A
∗) is the smallest, we rank the alter-

natives as follows:
A2 � A4 � A1 � A3,

where � indicates the relationship superior or preferred to, and A2 is the best
alternative.

3.3 Comparative analysis

Considering the proposed method and the maximizing deviation method pro-
posed by Sahin, there exsit some differences. In Sahins method, they calculated
the distance measure of all the attributes and assign a small weight to the at-
tribute which has a similar effect among the alternatives, then they used the
weighted aggregation operators and the score functions to rank the alterna-
tives; while, the proposed method calculates the distance measure between the
attributes and the ideal solution, and obtain the weight that make the weighted
distance measure small, we then use the weighted distance measure to rank the
alternatives which avoid the complex calculation of aggregation operators pro-
cessing. The two methods are all effective to deal with the incompletely known
or completely unknown attribute weight by solve the program models. The ad-
vantage of the proposed method is that calculation is simple and convenient,
which can deal with the MAGDM problem effectively.

4 Conclusion

In this paper, we investigate the multi-attribute group decision making prob-
lems expressed with neutrosophic set and the attribute weights are incompletely
known or completely unknown. We first define the single valued neutrosophic
ideal solution (SVNIS), and then establish the optimal models to derive the
attribute weight. Furthermore, an approach to MAGDM within the framework
of SVNS is developed, and the result shows that our approach is reasonable
and effective in dealing with decision making problems. Finally, we extend the
method to IVNS.
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