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Abstract

In this paper, we introduce certain concepts, including neutrosophic hypergraph, line
graph of neutrosophic hypergraph, dual neutrosophic hypergraph, tempered neutrosophic
hypergraph and transversal neutrosophic hypergraph. We illustrate these concepts by several
examples and investigate some of interesting properties.
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1 Introduction

Fuzzy set was introduced by Zadeh [24] to solve difficulties in dealing with uncertainties. Since
then the theory of fuzzy sets and fuzzy logic have been examined by many researchers to solve
many real life problems, involving ambiguous and uncertain environment. Atanassov [4] in-
troduced the concept of intuitionistic fuzzy sets as an extension of Zadeh’s fuzzy set [24]. An
intuitionistic fuzzy set can be viewed as an alternative approach when available information is
not sufficient to define the impreciseness by the conventional fuzzy set. In fuzzy sets the degree of
acceptance is considered only but intuitionistic fuzzy set is characterized by a membership(truth-
membership) function and a non-membership(falsity-membership) function. Intuitionistic fuzzy
set can deal only with incomplete information but not the indeterminate information and in-
consistent information which commonly exist in certainty system. In intuitionistic fuzzy sets,
indeterminacy is its hesitation part by default. Smarandache [19] initiated the concept of neu-
trosophic set in 1998. “ It is the branch of philosophy which studied the origin, nature and
scope of neutralities, as well as their interaction with different ideational spectra”[19]. A neutro-
sophic set is characterized by three components: truth-membership, indeterminacy-membership,
and falsity-membership which are represented independently for dealing problems involving im-
precise, indeterminacy and inconsistent data. In neutrosophic set, truth-membership, falsity-
membership are independent, indeterminacy membership quantified explicitly, this assumption
helps in a lot of situations such as information fusion when try to combine the data from different
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sensors. A Neutrosophic set is a general framework which generalizes the concept of fuzzy set,
interval valued fuzzy set, and intuitionistic fuzzy set. Wang [22] presented the notion of single
valued neutrosophic set(SVNS) and some set theoretic operators of neutrosophic set which is
known as single valued neutrosophic set.
The hypergraph was introduced by Berge [9] and considered as a useful tool to analyze the
structure of a system and to represent a partition, clustering and covering [6, 14, 18]. Fuzzy
hypergraph was introduced by the Kaufmann [15]. Lee-kwang generalized the notion of fuzzy
hypergraph and redefined it to be useful for fuzzy partition of a system. Chen [11] introduced
interval-valued fuzzy hypergraphs. Akram and Dudek [1] investigated some properties of in-
tuitionistic fuzzy hypergraph and gave applications of intuitionistic fuzzy hypergraph. The
concepts of bipolar neutrosophic graphs and neutrosophic soft graphs are discussed in [3, 21].
In this paper, we introduce certain concepts, including neutrosophic hypergraph, line graph
of neutrosophic hypergraph, dual neutrosophic hypergraph, tempered neutrosophic hypergraph
and transversal neutrosophic hypergraph. We illustrate these concepts by several examples and
investigate some of interesting properties.
A single valued neutrosophic set (SVNS) N in X is described by truth-membership function
TN (x), indeterminacy-membership function IN (x) and falsity-membership function FN (x). For
every element x in X, TN (x), IN (x), FN (x) ∈ [0, 1], i.e., N = {〈x, TN , IN (x), FN (x)〉 : x ∈ X}
and 0 ≤ TN (x)+ IN (x)+FN (x) ≤ 3. The hypergraph H = (V,E∗) was defined by Berge [9] and
is defined as a pair (V,E∗), where V is a finite set of nodes and E∗ a finite family of subsets of
V such that V =

⋃

i

E∗
i . The number of vertices in an hyperedge Ei is called its cardinality; if

|Ei| = 1 be a cycle on the element. If |Ei| = 2, for all i, the hypergraph becomes an ordinary
graph. The rank of a hypergraph H is the maximium cardinality of any edge in hypergraph. If
cardinality of all edges is same say k, then H is k-uniform hypergraph. The degree of a vertex v
is the number of edges which contain the vertex v. A transversal T of hypergraph H = (V,E∗) is
a subset of V such that T ∩E∗

i = ∅ for all E∗
i ∈ E∗. The line graph (intersection graph) of simple

hypergraph H∗ = (V,E∗) is the graph L(H∗) = (V ′, E∗′) such that V ′ = E∗ and eiej ∈ E∗′ if
and only if Ei ∩Ej 6= ∅, i 6= j. A transversal T is a minimal transversal of H if no proper subset
of T is a transeversal of H. A hypergraphH = (V ;E∗

1 , E
∗
2 , · · · , E

∗
m); V = {v1, v2, · · · , vn} can be

mapped to a hypergraph H∗ = (E∗;V1, V2, · · · , Vn) whose vertices are e1, e2, · · · , em correspond-
ing to E1, E2, · · · , Em, respectively. The hypergaph H∗ is called the dual hypergraph of H. The
incidence matrix of dual hypergraph is the transpose of hypergraph H, thus (H∗)∗ = H. A pair
H = (V,E) is a fuzzy hypergraph such that V is a finite set of vertices and E is a finite family
of fuzzy sets on V , µi defined on Ei ∈ E, V =

⋃

i

supp(µi). A fuzzy hypergraph is µ tempered

fuzzy hypergraph of H = (V,E∗), if a fuzzy set µ : V → (0, 1] exist and E = {λEi
| ei ∈ E∗},

where λEi
(x) =

{

minµ(e) | e ∈ Ei, if x ∈ Ei;
0, otherwise.

2 Neutrosphic Hypergraphs

First we define here some fundamental notions.

Definition 2.1. The support set of a neutrosophic set N = {(x, TN (x), IN (x), FN (x)) : x ∈ X}
is denoted by supp(N), defined by supp(N) = {x| TN (x) 6= 0, IN (x) 6= 0, FN (x) 6= 0}. The
support set of a neutrosophic set is a crisp set.
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Definition 2.2. The height of a neutrosophic set N = {(x, TN (x), IN (x), FN (x)) : x ∈ X} is
defined as h(N) = (sup

x∈X
TN (x), sup

x∈X
IN (x), inf

x∈X
FN (x)). We call neutrosophic set N is normal

then there exist at least one element x of X such that TN (x) = 1, IN (x) = 1, FN (x) = 0.

Definition 2.3. Let N = {(x, TN (x), IN (x), FN (x)) : x ∈ X} be a neutrosophic set on X and
let α, β, γ ∈ [0, 1] such that α + β + γ ≤ 3. Then the set N(α,β,γ) = {x | TN (x) ≥ α, IN (x) ≥
β, FN (x) ≤ γ} is called (α, β, γ)−level subset of N . (α, β, γ)−level set is a crisp set.

Example 2.4. LetX = {a1, a2, a3, a4, a5}. ThenN = {(a1, 0.5, 0.6, 0.3), (a2 , 0.3, 0.3, 0.5), (a3 , 0.2, 0.5, 0.7),
(a4, 0.5, 0.6, 0.2), (a5 , 0.4, 0.2, 0.6)} is a neutrosophic subset ofX. Clearly, supp(N) = {a1, a2, a3, a4, a5},
h(N) = (0.5, 0.6, 0.2). Let (0.5, 0.3, 0.6) ∈ [0, 1], (0.5, 0.3, 0.6)-level set is N(0.5,0.3,0.6) = {a1, a4}.

Definition 2.5. [5] A single valued neutrosophic graph (SVN-graph) with underlying set V is
defined to be a pair G = (A,B), where

(i) the functions TA : V → [0, 1], IA : V → [0, 1], and FA : V → [0, 1] denote the degree
of truth-membership, degree of indeterminacy-membership and falsity-membership of the
element xi ∈ V, respectively, and

0 ≤ TA(xi) + IA(xi) + FA(xi) ≤ 3 for all xi ∈ V, i = 1, 2, 3, · · · , n.

(ii) the functions TB : E ⊆ V × V → [0, 1], IB : E ⊆ V × V → [0, 1], and FB : E ⊆ V × V →
[0, 1] are defined by

TB(xixj) ≤ min(TA(xi), TA(xj))

TB(xixj) ≤ min(TA(xi), TA(xj))

TB(xixj) ≥ max(TA(xi), TA(xj))

denotes the degree of truth-membership, indeterminacy-membership and falsity-membership
of the edge xixj ∈ E, respectively, where

0 ≤ TA(xixj) + IA(xixj) + FA(xixj) ≤ 3 for all xixj ∈ E, i = 1, 2, 3, · · · , n.

We call A the single valued neutrosophic vertex set of V , B the single valued neutrosophic edge
set of E, respectively. Note that the B is a symmetric single valued neutrosophic relation on A.

b b

b b

v1(0.3, 0.5, 0.7) v2(0.5, 0.3, 0.7)

v3(0.6, 0.3, 0.9) v4(0.5, 0.4, 0.2)

(0.2, 0.3, 0.8)

(0
.3
,
0
.2
,
0
.9
) (0

.5
, 0

.3
, 0
.7
)

(0.3, 0.4, 0.8)

(0.4, 0.2, 0.9)

Figure 2.1: Single valued neutrosophic graph.
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Definition 2.6. Let G = (A,B) be a SVN graph. An edge (x, y) of G is an effective edge if
TB(x, y) = TA(x) ∧ TA(y), IB(x, y) = IA(x) ∧ IA(y) and FB(x, y) = FA(x) ∨ FA(y).

Definition 2.7. Let V = {v1, v2, · · · , vn} be a finite set of vertices and E = {E1, E2, · · · , Em}
be a finite family of non-trivial neutrosophic subsets of the vertex V such that

V =
⋃

i

supp(Ei), i = 1, 2, 3, · · · ,m,

where the edges Ei are neutrosophic subsets of V , Ei = {(vj , TEi
(vj), IEi

(vj), FEi
(vj))}, Ei 6= ∅,

for i = 1, 2, 3, · · · ,m. H = (V,E) is an neutrosophic hypergraph on V , E is the family of
neutrosophic hyperedges of H and V is the crisp vertex set of H.

In neutrosophic hypergraphs two vertices v1 and v2 are adjacent if there exists an edge Ei ∈ E
which have two vertices v1 and v2, i.e., v1, v2 ∈ supp(Ei). In neutrosophic hypergraphs H, two
vertices u and w are said to be connected if there exists a sequence u = u0, u1, u2, · · · , un = v
of vertices of H such that ui−1 is adjacent ui for i = 1, 2, · · · , n. When every pair of vertices
in a neutrosophic hypergraph H are connected, H is connected. In a neutrosophic hypergraph
two edges Ei and Ej are said to be adjacent if their intersection is non-empty, i.e., supp(Ei) ∩
supp(Ej) = ∅, i 6= j. The order |V | of a neutrosophic hypergraphs meant number of vertices and
size |E| is number of edges of neutrosophic hypergraph. If supp(Ei) = k for each Ei ∈ E, then
neutrosophic hypergraph H = (V,E) is k-uniform neutrosophic hypergraph.

The element aij of the neutrosophic matrix represents the truth-membership (participa-
tion) degree, indeterminacy-membership degree and falsity-membership of vi to Ej (that is
(TEj

(vi), IEj
(vi), FEj

(vi))). Since the diagram of neutrosophic hypergraph does not imply suffi-
ciently the truth-membership degree, indeterminacy-membership degree and falsity-membership
degree of vertex to edges, we use incidence matrix MH for the description of neutrosophic hy-
peredes.

Definition 2.8. The height of a neutrosophic hypergraph H = (V,E), is denoted by h(H), is
defined by h(H) =

∨

i

{h(Ei)| Ei ∈ E}.

Definition 2.9. Let H = (V,E) be a neutrosophic hypergraph, the cardinality of a neutrosophic
hyperedge is the sum of truth-membership, indeterminacy-membership, and falsity-membership
values of the vertices connects to an hyperedge, it is denoted by |Ei|. The degree of a neutrosophic
hyperedge, Ei ∈ E is its cardinality, that is dH(Ei) = |Ei|. The rank of a neutrosophic hypergraph
is the maximum cardinality of any neutrosophic hyperedge in H, i.e., max

Ei∈E
dH(Ei) and anti rank of

a neutrosophic is the minimum cardinality of any neutrosophic hyperedge in H, i.e., min
Ei∈E

dH(Ei).

Definition 2.10. A linear neutrosophic hypergraph is a neutrosophic hypergraph in which every
pair of distinct vertices of H = (V,E) is in at most one neutrosophic hyperedge of H, i.e.,
|supp(Ei) ∩ supp(Ej)| ≤ 1 for all Ei, Ej ∈ E. A 2−uniform linear neutrosophic hypergraph is a
neutrosophic graph.

Example 2.11. Condsider a neutrosophic hypergraphH = (V,E) such that V = {v1, v2, v3, v4, v5, v6},
E = {E1, E2, E3, E4, E5, E6}, whereE1 = {(v1, 0.3, 0.4, 0.6), (v3 , 0.7, 0.4, 0.4)}, E2 = {(v1, 0.3, 0.4, 0.6), (v2 ,
0.5, 0.7, 0.6)}, E3 = {(v2, 0.5, 0.7, 0.6), (v4 , 0.6, 0.4, 0.8)}, E4 = {(v3, 0.7, 0.4, 0.4), (v6 , 0.4, 0.2, 0.7)},
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E5 = {(v3, 0.7, 0.4, 0.4), (v5 , 0.6, 0.7, 0.5)}, E6 = {(v5, 0.6, 0.7, 0.5), (v6 , 0.4, 0.2, 0.7)}, and E7 =
{(v4, 0.6, 0.4, 0.8),
(v6, 0.4, 0.2, 0.7)}.

b b

bb

b

v1(0.3, 0.4, 0.6) v2(0.5, 0.7, 0.6)

v5(0.6, 0.7, 0.5, )

v4(0.6, 0.4, 0.8)

v6(0.4, 0.2, 0.7)v3(0.7, 0.4, 0.4)

b

E1

E2

E3

E4

E7

E6
E5

Figure 2.2: Neutrosophic hypergraph.

The neutrosophic hypergraph is shown in Figure. 2.2 and its incidence matrix MH is given
follows:

MH E1 E2 E3 E4 E5 E6 E7

v1 (0.3, 0.4, 0.6) (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
v2 (0, 0, 0) (0.5, 0.7, 0.6) (0.5, 0.7, 0.6) (0, 0., 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
v3 (0.7, 0.4, 0.4) (0, 0, 0) (0, 0, 0) (0.7, 0.4, 0.4) (0.7, 0.4, 0.4) (0, 0, 0) (0, 0, 0)
v4 (0, 0, 0) (0, 0, 0) (0.6, 0.4, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.6, 0.4, 0.8)
v5 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.6, 0.7, 0.5) (0.6, 0.7, 0.5) (0, 0, 0)
v6 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.7) (0, 0, 0) (0.4, 0.2, 0.7) (0.4, 0.2, 0.7)

Definition 2.12. Let H = (V,E) be a neutrosophic hypergraph, the degree dH(x) of a vertex x
in H is dH(v) =

∑

v∈Ei

(TEi
(v), IEi

(v), FEi
(v)), where Ei are the edges that contain the vertex v.

The maximum degree of a neutrosophic hypergraph is △(H) = max
v∈V

(dH(v)).

Definition 2.13. A neutrosophic hypergraph is said to be regular neutrosophic hypergraph in
which all the vertices have same degree.

Proposition 2.14. Let H = (V,E) be a neutrosophic hypergraph, then
∑

v∈V
dH(v) =

∑

Ei∈E
dH(Ei).

Proof. Let MH be the incidence matrix of neutrosophic hypergraph H, then the sum of the
degrees of each vertex vi ∈ V and the sum of degrees of each edge Ei ∈ E are equal. We obtain
∑

v∈V
dH(v) =

∑

Ei∈E
dH(Ei).

Definition 2.15. The strength η of a neutrosophic hyperedge Ei is the minimum of truth-
membership and indeterminacy-membership values and maximum falsity-membership in the
edge Ei, i.e.,

η(Ei) = {min
vj∈Ei

(TEi
(vj) | TEi

(vj) > 0), min
vj∈Ei

(IEi
(vj) | IEi

(vj) > 0), max
vj∈Ei

(FEi
(vj) | FEi

(vj) > 0)}.
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The strength of an edge in neutrosophic hypergraph interpreters that the edge Ei group elements
having participation degree at least η(Ei).

Example 2.16. Consider neutrosophic hypergraph as shown in Figure. 2.2, the height of H is
h(H) = (0.7, 0.7, 0.4), the strength of each edge is η(E1) = (0.3, 0.4, 0.6), η(E2) = (0.3, 0.4, 0.6), η(E3) =
(0.5, 0.4, 0.8),
η(E4) = (0.4, 0.2, 0.7), η(E5 ) = (0.6, 0.4, 0.5), η(E6) = (0.4, 0.2, 0.7) and η(E7) = (0.4, 0.2, 0.8),
respectively. The edges with high strength are called the strong edges because the interrelation
(cohesion) in them is strong. Therefore, E5 is stronger than each Ei, for i = 1, 2, 3, 4, 6, 7.
If we assign η(Ei) = (Tη(Ei), Iη(Ei), Fη(Ei)) to each clique in neutrosophic graph mapped to an
edge Ei in neutrosophic hypergraph, we obtain a neutrosophic graph which represents subset
with grouping strength(interrelationship).

MH E1 E2 E3 E4 E5 E6 E7

v1 (0.3, 0.4, 0.6) (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
v2 (0, 0, 0) (0.3, 0.4, 0.6) (0.5, 0.4, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
v3 (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.7) (0.6, 0.4, 0.5) (0, 0, 0) (0, 0, 0)
v4 (0, 0, 0) (0, 0, 0) (0.5, 0.4, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.8)
v5 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.6, 0.4, 0.5) (0.4, 0.2, 0.7) (0, 0, 0)
v6 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.7) (0, 0, 0) (0.4, 0.2, 0.7) (0.4, 0.2, 0.8)

b b

b b

b
b

v1

v3

v5

v2

v6

v4

(0
.3
,
0
.4
,
0
.6
)

(0.3, 0.4, 0.6)
(0.5, 0.4, 0.8)

(0.4, 0.2, 0.7)

(0.4, 0.2, 0.7)(0.
6,
0.4

, 0
.5)

(0
.4,

0.2
, 0
.8)

Figure 2.3: Corresponding neutrosophic graph.

We see that a neutrosophic graph can be associated with a neutrosophic hypergraph, a
hyperedge with its strength η in the neutrosophic hypergraph is mapped to a clique in the
neutrosophic graph, all edges in the clique have the same strength. Figure. 2.3 shows that
corresponding neutrosophic graph to the neutrosophic hypergraph H in Fig. 2.2. In correspond-
ing neutrosophic graph, the numbers attached to the edges represents the truth-membership,
indeterminacy-membership and falsity membership of the edges.

Proposition 2.17. Neutrosophic graphs and neutrosophic digraphs are special cases of the neu-
trosophic hypergraphs.

Definition 2.18. A neutrosophic set N = {(x, TN (x)), IN (x), FN (x) | x ∈ X} is an elementary
neutrosophic set if N is single valued on supp(N). An elementary neutrosophic hypergraph
H = (V,E) is a neutrosophic hypergraph in which each element of E is elementary.

Definition 2.19. A neutrosophic hypergraph H = (V,E) is called simple neutrosophic hy-
pergraph if E has no repeated neutrosophic hyperedges and whenever Ei, Ej ∈ E and TEi

≤
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TEj
, IEi

≤ IEj
, FEi

≥ FEj
, then TEi

= TEj
, IEi

= IEj
, FEi

= FEj
. A neutrosophic hyper-

graph is called support simple, if whenever Ei, Ej ∈ E, Ei ⊂ Ej and supp(Ei) =suppEj, then
Ei = Ej. A neutrosophic hypergraph is called strongly support simple if whenever Ei, Ej ∈ E,
and supp(Ei) =suppEj, then Ei = Ej.

Definition 2.20. Let H = (V,E) be a neutrosophic hypergraph. Let α, β, γ ∈ [0, 1] and

E(α,β,γ) = {E
(α,β,γ)
i | Ei ∈ E} and V (α,β,γ) =

⋃

Ei∈E
E

(α,β,γ)
i . H(α,β,γ) = (V (α,β,γ),E(α,β,γ)) is

the (α, β, γ)-level hypergraph of H = (V,E), where E(α,β,γ) 6= ∅. H(α,β,γ) is a crisp hypergraph.

Remark 2.21. 1. A neutrosophic hypergraph H = (V,E) is a neutrosophic graph (with
loops) if and only if H is elementary, each edge has two (or one) element support and
support simple.

2. For a simple neutrosophic hypergraph H = (V,E), (α, β, γ)-level hypergraph H(α,β,γ) may
or may not be simple neutrosophic hypergraph. For any two neutrosophic hyperedges

Ei, Ej ∈ E, it is possible E
(α,β,γ)
i = E

(α,β,γ)
j for Ei 6= Ej.

3. H and H′ are two families of simple hypergraphs(sets) formed by (α, β, γ)−levels of neu-
trosophic hypergraphs. H and H′ have an important relationship in common, for each set
H ∈ H there exist a set H ′ ∈ H′ which is superset of H. We say that H′ absorbs H, i.e.,
H ⊑ H′. Since it is possible H′ absorbs H while H′∩H = ∅, then H ⊆ H′ implies H ⊑ H′,
but on the other hand it is usually false that is, if H ⊑ H′ and H 6= H′, then H ⊏ H′.

Definition 2.22. Let H = (V,E) be a neutrosophic hypergraph, and let h(H) = (r, s, t),
H(ri,si,ti) = (V (ri,si,ti),E(ri,si,ti)) be the (ri, si, ti)−level hypergraphs of H. The sequence of
real numbers {(r1, s1, t1),
(r2, s2, t2), · · · , (rn, sn, tn)}, 0 < rn < rn−1 < · · · < r1 = r, 0 < sn < sn−1 < · · · < s1 = s, and
tn > tn−1 > · · · > t1 = t > 0, which satisfies the properties:

1. if ri+1 < r′ < ri, si+1 < r′ < si, ti+1 > t′ > ti(ti < t′ < ti+1), then E(r′,s′,t′) = E(ri,si,ti),

2. E(ri,si,ti) ⊏ E(ri+1,si+1,ti+1),

is fundamental sequence of neutrosophic hypergraphH, denoted by F(H) and the set of (ri, si, ti)−level
hypergraphs {H(r1,s1,t1),H(r2,s2,t2), · · · ,H(rn,sn,tn)} is known as core hypergraphs of neutrosophic
hypergraph H, and is denoted by C(H).

If r1 < r ≤ 1, s1 < s ≤ 1, 0 ≥ t < t1, then E(r,s,t) = {∅} and H(r,s,t) does not exist.

Definition 2.23. SupposeH = (V,E) is a neutrosophic hypergraph with F(H) = {(r1, s1, t1), (r2, s2, t2),
· · · , (rn, sn, tn)} and rn+1 = 0, sn+1 = 0, tn+1 = 0. H is sectionally elementary if every element

Ei ∈ E and each (ri, si, ti) ∈ F(H), E(ri,si,ti)
i = E(r,s,t)

i for all (r, s, t) ∈
(

(ri+1, si+1, ti+1), (ri, si, ti)
]

.

Definition 2.24. Suppose that H = (V,E) and H ′ = (V ′,E′) are neutrosophic hypergraphs.
H is called a partial neutrosophic hypergraph of H′ if E ⊆ E′. If H is partial neutrosophic
hypergraphs of H′, we write H ⊆ H′. If H is partial neutrosophic hypergraph of H′ and E ⊂ E′,
then we denoted as H ⊂ H′.
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Example 2.25. Consider the neutrosophic hypergraph H = (V,E), where V = {v1, v2, v3, v4}
and E = {E1, E2, E3, E4, E5}, which is represented by the following incidence matrix:

MH E1 E2 E3 E4 E5

v1 (0.7, 0.6, 0.5) (0.9, 0.8, 0.1) (0, 0, 0) (0, 0, 0) (0.4, 0.3, 0.3)
v2 (0.7, 0.6, 0.5) (0.9, 0.8, 0.1) (0.9, 0.8, 0.1) (0.7, 0.6, 0.5) (0, 0, 0)
v3 (0, 0, 0) (0, 0, 0) (0.9, 0.8, 0.1) (0.7, 0.6, 0.5) (0.4, 0.3, 0.3)
v4 (0, 0, 0) (0.4, 0.3, 0.3) (0, 0, 0) (0.4, 0.3, 0.3) (0.4, 0.3, 0.3)

Clearly, h(H) = (0.9, 0.8, 0.1), E∗
1 = E(0.9,0.8,0.1) = {{v1, v2}, {v2, v3}} = E(0.7,0.6,0.5) and

E∗
2 = E(0.4,0.3,0.3) = {{v1, v2}, {v1, v2, v3}, {v2, v3, v4}, {v1, v3, v4}}. Therefore, fundamental se-

quence is F(H) = {(r1, s1, t1) = (0.9, 0.8, 0.1), (r2 , s2, t2) = (0.4, 0.3, 0.3)} and the set of core hy-
pergraph is C(H) = {H(0.9,0.8,0.1) = (V1, E

∗
1),H

(0.4,0.3,0.3) = (V2, E
∗
2 )}. Note that, E(0.9,0.8,0.1) ⊑

E(0.4,0.3,0.3) and E(0.9,0.8,0.1) 6= E(0.4,0.3,0.3). As E5 ⊆ E2, H is not simple neutrosophic hyper-

graph but H is support simple. In neutrosophic graph H = (V,E), E(r,s,t)
1 6= E(0.9,0.8,0.1)

1 for
(r, s, t) = (0.7, 0.6, 0.5), H is not sectionally elementary.

The partial neutrosophic hypergraphs, H′ = (V ′,E′), where E′ = {E2, E3, E4, E1} is simple,
H′′ = (V ′′,E′′), where E′′ = {E2, E3, E5} is sectionally elementary, and H′′′ = (V ′′′,E′′′), where
E′′′ = {E1, E3, E5} is elementary.

Definition 2.26. A ordered neutrosophic hypergraphs is a neutrosophic hypergraph said in
which C(H) is ordered, i.e., if C(H) = {H(r1,s1,t1),H(r2,s2,t2), · · · ,H(rn,sn,tn)}, then H(r1,s1,t1) ⊆
H(r2,s2,t2) ⊆ · · · ⊆ H(rn,sn,tn). If C(H) is ordered and if whenever E∗ ∈ E∗

j+1 \ E
∗
j , then E∗ * Vj

then neutrosophic hypergraph H is simply ordered.

Proposition 2.27. If H = (V,E) is an elementary neutrosophic hypergraph, then H is ordered.
Also, if H = (V,E) is an ordered neutrosophic hypergraph with C(H) = {H(r1,s1,t1),H(r2,s2,t2), · · · ,H(rn,sn,tn)}
and if H(rn,sn,tn) is simple, then H is elementary.

Definition 2.28. A neutrosophic hypergraph H = (V,E) is called a Et tempered neutrosophic
hypergraph of H∗ = (V,E∗) if there is a crisp hypergraph H∗ = (V,E∗) and neutrosophic set
Et is defined on V , where TEt : V → (0, 1], IEt : V → (0, 1], and FEt : V → (0, 1] such that
E = {CE | E ∈ E∗}, where

TCE
(x) =

{

∧{TEt(y) | y ∈ E}, if x ∈ E;
0, otherwise.

ICE
(x) =

{

∧{IEt(y) | y ∈ E}, if x ∈ E;
0, otherwise.

FCE
(x) =

{

∨{FEt(y) | y ∈ E}, if x ∈ E;
0, otherwise.

We let Et ⊗H∗ denote the Et tempered neutrosophic hypergraph of H∗ = (V,E∗) and neutro-
sophic set Et.

Example 2.29. Consider the neutrosophic hypergraph H = (V,E), where V = {v1, v2, v3, v4}
and E = {E1, E2, E3, E4}, which is represented by the following incidence matrix:
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MH E1 E2 E3 E4

v1 (0.3, 0.4, 0.6) (0, 0, 0) (0.1, 0.4, 0.5) (0.3, 0.4, 0.5)
v2 (0, 0, 0) (0.1, 0.4, 0.3) (0, 0, 0) (0.3, 0.4, 0.5)
v3 (0.3, 0.4, 0.6) (0, 0, 0) (0, 0, 0) (0, 0, 0)
v4 (0, 0, 0) (0.1, 0.4, 0.3) (0.1, 0.4, 0.5) (0, 0, 0)

Define Et = {(v1, 0.3, 0.4, 0.5), (v2 , 0.6, 0.5, 0.2), (v3 , 0.5, 0.4, 0.6), (v4 , 0.1, 0.4, 0.3)}. Note that
T{v1,v3}(v1) = TET (v1) ∧ TET (v3) = 0.3, I{v1 ,v3}(v1) = IEt(v1) ∧ IEt(v3) = 0.4, F{v1 ,v3}(v1) =
FET (v1) ∨ FET (v3) = 0.6, and T{v1,v3}(V3) = TET (v3) ∧ TET (v1) = 0.3, I{v1 ,v3}(v3) = IEt(v3) ∧
IEt(v1) = 0.4, F{v1 ,v3}(V3) = FET (v3) ∨ FET (v1) = 0.6, then C{v1,v3} = E1. Also C{v2,v4} = E2,
C{v1,v4} = E3, C{v1,v2} = E4. Thus H is Et tempered.

Theorem 2.30. A neutrosophic hypergraph H = (V,E) is a Et tempered neutrosophic hyper-
graph of H∗ if and only if H is elementary, support simple and simple ordered.

Proof. Suppose H = (V,E) is a Et tempered neutrosophic hypergraph of H∗. Obviously, H
is elementary and support simple. We have to prove that H is simply ordered. Let C(H) =
{H(r1,s1,t1) = (V1, E

∗
1),H

(r2,s2,t2) = (V2, E
∗
2 ), · · · ,H

(rn,sn,tn) = (Vn, E
∗
n)}. Since H is elementary,

it follows from Proposition. 3.27 H is ordered. Suppose there exist E ∈ E∗
i+1\E

∗
i and v ∈ E such

that TE(v) = ri+1, IE(v) = si+1, and FE(v) = ti+1. Since TE(v) = ri+1 < ri, IE(v) = si+1 < si,
and FE(v) = ti+1 > ti, it follows that v /∈ Vi and E * Vi, hence H is simply ordered.

Conversely, suppose H = (V,E) is elementary, support simple and simply ordered. For
C(H) = {H(r1,s1,t1) = (V1, E

∗
1),H

(r2,s2,t2) = (V2, E
∗
2), · · · ,H

(rn,sn,tn) = (Vn, E
∗
n)}, fundamental

sequence is F(H) = {(r1, s1, t1), (r2, s2, t2), · · · , (rn, sn, tn)} with 0 < rn < rn−1 < · · · < r1,
0 < sn < sn−1 < · · · < s1, and 0 < t1 < t2 < · · · < tn. H(rn,sn,tn) = (Vn, E

∗
n) and neutrosophic

set Et on Vn defined by TEt(v) =

{

r1, if v ∈ V1;
ri, if v ∈ Vi \ Vi−1, i = 2, 3, · · · , n.

IEt(v) =

{

s1, if v ∈ V1;
si, if v ∈ Vi \ Vi−1, i = 2, 3, · · · , n.

FEt(v) =

{

t1, if v ∈ V1;
ti, if v ∈ Vi \ Vi−1, i = 2, 3, · · · , n.

We show that E = {CE | E ∈ E∗
n},where

TCE
(x) =

{

∧{TEt(y) | y ∈ E}, if x ∈ E;
0, otherwise.

ICE
(x) =

{

∧{IEt(y) | y ∈ E}, if x ∈ E;
0, otherwise.

FCE
(x) =

{

∨{FEt(y) | y ∈ E}, if x ∈ E;
0, otherwise.

Let E ∈ E∗
n. Since H is elementary and support simple there is a unique neutrosophic hyperedge

Ej in E having support E ∈ E∗
n. We have to show that Et tempered neutrosophic hypergraph

H = (V,E) determined by the crisp graph H∗
n = (Vn, E

∗
n), i.e., CE∈E∗

n
= Ei, i = 1, 2, · · · ,m.

As all neutrosophic hyperedges are elementary and H is support simple, then different edges
have different supports, that is h(Ej) is equal to some member (ri, si, ti) of F(H). Consequently,
E ⊆ Vi and if i > 1, then E ∈ E∗

i \E
∗
i−1, TE(v) ≥ ri, IE(v) ≥ si, and FE(v) ≤ ti for some v ∈ E.
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Since E ⊆ Vi,, we claims that TEt(v) = ri, IEt(v) = si, FEt(v) = ti for some v ∈ E, if not then
TEt(v) ≥ ri−1, IEt(v) ≥ si−1, FEt(v) ≤ ti−1 for all v ∈ E which implies E ⊆ Vi−1 and since H is
simply ordered, E ∈ E∗

i \ E
∗
i−1, then E * Vi−1, a contradiction. Thus CE = Ei, i = 1, 2, · · · ,m,

by the definition of CE .

Corollary 2.31. Suppose H = (V,E) is a simply ordered neutrosophic hypergraph and F(H) =
{(r1, s1, t1),
(r2, s2, t2), · · · , (rn, sn, tn)}. For a simple hypergraph H(rn,sn,tn), there is a partial neutrosophic
hypergraph H′ = (V,E′) of H = (V,E) such that following statements hold:

1. H′ is a Et tempered neutrosophic hypergraph of H(rn,sn,tn).

2. F(H′) = F(H) and C(H′) = C(H).

Proof. Since H is simple ordered, then H is an elementary neutrosophic hypergraph. We obtain
the partial neutrosophic hypergraph H′ = (V,E′) of H = (V,E) by removing all edges from E
that are properly contained in another edge of H, where E′ = {Ei ∈ E | if Ei ⊆ Ej and Ej ∈
E, then Ei = Ej}.

Since H(rn,sn,tn) is simple hypergraph in which all edges are elementary, any edge in H subset
of another edge then both edges have the same support. So F(H′) = H and C(H′) = C(H). By
the definition of E′, H′ is elementary, support simple. Thus by the Theorem 3.30 H′ is a Et

tempered neutrosophic hypergraph.

We now define neutrosophic line graph and neutrosophic line graph of a neutrosophic hyper-
graph.

Definition 2.32. Let L(G) = (C,D) be a line graph of crisp graph G = (V,E∗), where C =
{{x} ∪ {ux, vx} | x ∈ E∗, ux, vx ∈ V, x = uxvx} and D = {SxSy | Sx ∩ Sy 6= ∅, x, y ∈ E∗, x 6= y}
and where Sx = {{x} ∪ {ux, vx}}, x ∈ E∗. Let G = (A1, B1) be a neutrosophic graph with
underlying set V . Let A2 be the neutrosophic vertex set of C, B2 be the neutrosophic edge set
of D. The neutrosophic line graph of G is a neutrosophic graph L(G) = (A2, B2) such that

(i) TA2
(Sx) = TB1

(x) = TB1
(uxvx),

IA2
(Sx) = IB1

(x) = IB1
(uxvx),

FA2
(Sx) = FB1

(x) = FB1
(uxvx),

(ii) TB2
(SxSy) = min{TB1

(x), TB1
(y)},

IB2
(SxSy) = min{IB1

(x), IB1
(y)},

FB2
(SxSy) = max{FB1

(x), FB1
(y)} for all Sx, Sy ∈ C,SxSy ∈ D.

Proposition 2.33. L(G) = (A2, B2) is a neutrosophic line graph of some neutrosophic graph
G = (A1, B1) if and only if

TB2
(SxSy) = min{TA2

(Sx), TA2
(Sy)},

IB2
(SxSy) = min{IA2

(Sx), TA2
(Sy)},

FB2
(SxSy) = max{FA2

(Sx), FA2
(Sy)},

for all SxSy ∈ D.
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Definition 2.34. Let H = (V,E) be a neutrosophic hypergraph of a simple graph H = (V,E∗),
and L(H) = (X, ε) be a line graph of H. The neutrosophic line graph L(H) of a neutrosophic
hypergraph H is defined to be a pair L(H) = (A,B), where A is the vertex set of L(H) and B is
the edge set of L(H) as follows:

(i) A is a neutrosophic set of X such that
TA(Ei) = max

v∈Ei

(TEi
(v)),

IA(Ei) = max
v∈Ei

(IEi
(v)),

FA(Ei) = min
v∈Ei

(FEi
(v)) for all Ei ∈ E,

(ii) B is a neutrosophic set of ε such that
TB(EjEk) = min

i
{min(TEj

(vi), TEk
(vi))},

TB(EjEk) = min
i
{min(TEj

(vi), TEk
(vi))},

TB(EjEk) = max
i

{max(TEj
(vi), TEk

(vi))}, where vi ∈ Ei ∩ Ej, j, k = 1, 2, 3, · · · , n.

Example 2.35. ConsiderH = (V,E∗); V = {v1, v2, v3, v4, v5, v6} and E∗ = {E1, E2, E3, E4, E5, E6},
where E1 = {v1, v3}, E2 = {v1, v2}, E3 = {v2, v4}, E4 = {v3, v6}, E5 = {v3, v5}, E6 = {v5, v6},
and E7 = {(v4, v6}, H = (V,E) as E = {E1, E2, E3, E4, E5, E6}, such that
E1 = {(v1, 0.3, 0.4, 0.6), (v3 , 0.7, 0.4, 0.4)}, E2 = {(v1, 0.3, 0.4, 0.6), (v2 , 0.5, 0.7, 0.6)},
E3 = {(v2, 0.5, 0.7, 0.6), (v4 , 0.6, 0.4, 0.8)}, E4 = {(v3, 0.7, 0.4, 0.4), (v6 , 0.4, 0.2, 0.7)},
E5 = {(v3, 0.7, 0.4, 0.4), (v5 , 0.6, 0.7, 0.5)}, E6 = {(v5, 0.6, 0.7, 0.5), (v6 , 0.4, 0.2, 0.7)},
E7 = {(v4, 0.6, 0.4, 0.8), (v6 , 0.4, 0.2, 0.7)}.
The neutrosophic hypergraph H = (V,E) is shown in Figure. 2.2.

The line graph L(H) of neutrosophic hyperraph H is L(H) = (A,B), where
A = {(E1, 0.7, 0.4, 0.4), (E2 , 0.5, 0.7, 0.6), (E3 , 0.6, 0.7, 0.6), (E4 , 0.7, 0.4, 0.4), (E5 , 0.7, 0.7, 0.4), (E6 , 0.6, 0.7,
0.5), (E7, 0.6, 0.4, 0.7)} is the vertex set and
B = {(E1E2, 0.3, 0.4, 0.6), (E1E5, 0.7, 0.4, 0.4), (E1E4, 0.7, 0.4, 0.4), (E2E3, 0.5, 0.7, 0.6), (E3E7, 0.6, 0.4, 0.8),
(E4E5, 0.7, 0.4, 0.4), (E4E6, 0.4, 0.2, 0.7), (E4E7, 0.4, 0.2, 0.7), (E5E6, 0.6, 0.7, 0.5), (E6E7, 0.4, 0.2, 0.7)}
is the edge set of the neutrosophic line graph of H.

E1(0.7, 0.4, 0.4) E2(0.5, 0.7, 0.6)

E4(0.7, 0.4, 0.4)E5(0.7, 0.7, 0.4)

E7(0.6, 0.4, 0.7)E6(0.6, 0.7, 0.5)

E3(0.6, 0.7, 0.6)

b b

b b

(0
.7
, 0
.4
, 0
.4
)

bb

b

(0
.6
,0
.7
,0
.5
)

(0.7, 0.4, 0.4)

(0.5, 0.7, 0.6)

(0
.6
, 0
.4
, 0
.8
)

(0.4, 0.2, 0.7)(0
.4
, 0
.2
, 0
.7
)

(0.7, 0.4, 0.4)

(0.4, 0.2, 0.7)

(0.3, 0.4, 0.6)

Figure 2.4: Neutrosophic line graph L(H) of neutrosophic hypergraph H.

Proposition 2.36. A neutrosophic hypergraph is connected if and only if line graph of an
hypergraph is connected.

11



Definition 2.37. A 2−section of neutrosophic hypergraph H = (V,E), denoted by [H]2, is a
neutrosophic graph G = (A,B), where A is the neutrosophic vertex of V , B is the neutrosophic
edge set in which any two vertices form an edge if they are in the same neutrosophic hyperedge
such that

TB(e) = min{TEk
(vi), TEk

(vj)},

IB(e) = min{IEk
(vi), TEk

(vj)},

FB(e) = max{FEk
(vi), FEk

(vj)},

for all Ek ∈ E, i 6= j, k = 1, 2, · · · ,m.

Definition 2.38. The dual of a neutrosophic hypergraph H = (V,E) is a neutrosophic hy-
pergraph H∗ = (E,V); E = {e1, e2, · · · , en} set of vertices corresponding to E1, E2, , · · · , En

respectively and V = {V1, V2, · · · , Vn} set of hyperedges corresponding to v1, v2, · · · , vn respec-
tively.

Example 2.39. Let H = (V,E) be an neutrosophic hypergraph such that V = {v1, v2, v3, v4, v5}
and E = {E1, E2, E3}, whereE1 = {(v1, 0.5, 0.4, 0.6), (v2 , 0.4, 0.3, 0.8)}, E2 = {(v2, 0.4, 0.3, 0.8), (v3 , 0.6, 0.4,
0.8), (v4, 0.7, 0.4, 0.5)}, and E3 = {(v4, 0.7, 0.4, 0.5), (v5 , 0.4, 0.2, 0.9)}.

b b

b

b

b

v1(0.5, 0.4, 0.6) v2(0.4, 0.3, 0.8)

v3(0.6, 0.4, 0.8)

v4(0.7, 0.4, 0.5)

v5(0.4, 0.2, 0.9)

E1

E2

E3

Figure 2.5: Neutrosophic hypergraph.

The Neutrosophic hypergraph can be represented by the following incidence matrix:

MH E1 E2 E3

v1 (0.5, 0.4, 0.6) (0, 0, 0) (0, 0, 0)
v2 (0.4, 0.3, 0.8) (0.4, 0.3, 0.8) (0, 0, 0)
v3 (0, 0, 0) (0.6, 0.4, 0.8) (0, 0, 0)
v4 (0, 0, 0) (0.7, 0.4, 0.5) (0.7, 0.4, 0.5)
v5 (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.9)

The dual neutrosophic hypergraph H∗ = (E,V) of H such that E = {e1, e2, e3}, V =
{V1, V2, V3, V4, V5}, where V1 = {(e1, 0.5, 0.4, 0.6), (e2 , 0, 0, 0), (e3 , 0, 0, 0)}, V2 = {(e1, 0.4, 0.3, 0.8), (e2 , 0.4,
0.3, 0.8), (e3 , 0, 0, 0)}, V3 = {(e1, 0, 0, 0), (e2 , 0.6, 0.4, 0.8), (e3 , 0, 0, 0)}, V4 = {(e1, 0, 0, 0), (e2 , 0.7, 0.4, 0.5),
(e3, 0.7, 0.4, 0.5)} and V5 = {(e1, 0, 0, 0), (e2 , 0, 0, 0), (e3 , 0.4, 0.2, 0.9)}.
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b

e1 e2

b

e3

b

V1

V3
V5

V2 V4

Figure 2.6: Dual neutrosophic hypergraph H∗.

The dual neutrosophic hypergraph is shown in Figure. 2.6 and its incidence matrix MH∗ is
as follows:

MH∗ V1 V2 V3 V4 V5

e1 (0.5, 0.4, 0.6) (0.4, 0.3, 0.8) (0, 0, 0) (0, 0, 0) (0, 0, 0)
e2 (0, 0, 0) (0.4, 0.3, 0.8) (0.6, 0.4, 0.8) (0.7, 0.4, 0.5) (0, 0, 0)
e3 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.7, 0.4, 0.5) (0.4, 0.2, 0.9)

Remark 2.40. Incidence matrix of H∗ is the transpose of the incidence matrix of neutrosophic
hypergraph H and △(H) = rank(H∗). The dual neutrosophic hypergraph H∗ of a simple neu-
trosophic hypergraph H may or may not be simple.

Proposition 2.41. The dual neutrosophic hypergraph H∗ of a linear neutrosophic hypergraph
H without isolated vertex is linear neutrosophic hypergraph.

Proof. Let H be a linear neutrosophic hypergraph. Assume that H∗ is not linear neutrosophic
hypergraph, then there exist two distinct neutrosophic hyperedges Vi and Vj of H∗ have at least
two vertices e1 and e2 in common. By defnition of dual neutrosophic hypergraph implies that vi
and vj belongs to E1 and E2 (the neutrosophic hyperedges of H standing for the vertices e1, e2
of H∗, respectively) so H is not linear neutrosophic hypergraph. Contradiction since H is linear
neutrosophic hypergraph. Hence dual H∗ of a linear neutrosophic hypergraph without isolated
vertex is also linear neutrosophic hypergraph.

Observation In crisp theory of hypergraphs, any non-trivial graph is the line graph of a
linear hypergraph and line graph of a hypergraph is the 2−section of dual hypergraph, but a
neutrosophic graph is not necessarly the line graph of a linear neutrosophic hypergraph and
neutrosophic line graph of hypergraph is not the 2−section of dual neutrosophic hypergraph.

Definition 2.42. Let H = (V,E) be a neutrosophic hypergraph. A neutrosophic transversal τ
of H is a neutrosophic subset of V such that τh(Ei) ∩ Eh(Ei) 6= ∅ for all Ei ∈ E, where h(Ei)
is the height of neutrosophic hyperedge Ei. A minimal neutrosophic transversal τ for H is a
transversal of H if τ ′ ⊂ τ, then τ ′ is not a neutrosophic transversal of H.

Proposition 2.43. If τ is a neutrosophic transversal of a neutrosophic hypergraph H = (V,E),
then h(τ) > h(Ei) for all Ei ∈ E, and if τ is a minimal neutrosophic transversal of H, then
h(τ) = ∨{h(Ei) | Ei ∈ E} = h(H).

Theorem 2.44. For a neutrosophic hypergraph H, Tr(H) 6= ∅, where Tr(H) denotes the family
of minimal neutrosophic transversals of H.
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Proposition 2.45. For neutrosophic hypergraph H = (V,E), the following statements are equiv-
alent:

(i) τ is a neutrosophic transversal of H

(ii) For every Ei ∈ E, h(Ei) = (r′, s′, t′), and each 0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′, τ (r,s,t) ∩

E
(r,s,t)
i 6= ∅

If the (r, s, t)−cut τ (r,s,t) is a subset of V (r,s,t) for all (r, s, t), then

(iii) For each (r, s, t), 0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′, τ (r,s,t) is a neutrosophic transversal of
H(r,s,t)

(iv) Each neutrosophic transversal τ of H contains a neutrosophic transversal τ ′ for each

(r, s, t), 0 < r ≤ r′, 0 < s ≤ s′, t ≥ t′, τ ′(r,s,t) is a transversal of H(r,s,t)

Observation: If τ is a minimal neutrosophic transversal of neutrosophic graph H, then
τ (r,s,t) not necessarily belongs to Tr(H(r,s,t) for each (r, s, t), satisfying 0 < r ≤ r′, 0 < s ≤ s′, t ≥
t′. Let Tr∗(H) represents the collection of those minimal neutrosophic transversal, τ of H, where
τ (r,s,t) is a minimal neutrosophic transversal of H(r,s,t), for each (r, s, t), 0 < r ≤ r′, 0 < s ≤
s′, t ≥ t′, i.e., Tr∗ = {τ ∈ Tr(H) | h(τ) = h(H) and τ (r,s,t) ∈ Tr(H(r,s,t))}.

Example 2.46. Consider the neutrosophic hypergraph H = (V,E), where V = {v1, v2, v3} and
E = {E1, E2, E3}, which is represented by the following incidence matrix:

MH E1 E2 E3

v1 (0.9, 0.6, 0.1) (0, 0, 0) (0.4, 0.3, 0.2)
v2 (0.4, 0.3, 0.2) (0.4, 0.3, 0.2) (0.4, 0.3, 0.2)
v3 (0, 0, 0) (0, 0, 0) (0.4, 0.3, 0.2)

Clearly, h(H) = 0.9, the only minimal transversal τ of neutrosophic hypergraph H is
τ(H) = {(v1, 0.9, 0.6, 0.1), (v2 , 0.4, 0.3, 0.2)}. F(H) of H is F(H) = {(0.9, 0.6, 0.1), (0.4, 0.3, 0.2)},
τ (0.9,0.6,0.1) = {a} and τ (0.4,0.3,0.2) = {a, b}. Since {b} is the only minimal neutrosophic transver-
sal of the H(0.4,0.3,0.2), E(0.4,0.3,0.2) = {{v1, v2}, {v2}, {v1, v2, v3}}, it follows that the only minimal
transversal τ of H is not a member of Tr∗(H). Hence Tr∗(H) = ∅.
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