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Abstract

In this research article, we present certain notions of bipolar neutrosophic graphs. We
study the dominating and independent sets of bipolar neutrosophic graphs. We describe
novel multiple criteria decision making methods based on bipolar neutrosophic sets and
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neutrosophic graphs. We also show that there are some flaws in Broumi et al. [11]’s definition.
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1 Introduction

A fuzzy set [27] is an important mathematical structure to represent a collection of objects
whose boundary is vague. Fuzzy models are becoming useful because of their aim in reduc-
ing the differences between the traditional numerical models used in engineering and sciences
and the symbolic models used in expert systems. In 1994, Zhang [29] introduced the notion
of bipolar fuzzy sets and relations. Bipolar fuzzy sets are extension of fuzzy sets whose mem-
bership degree ranges [−1, 1]. The membership degree (0, 1] indicates that the object satisfies
a certain property whereas the membership degree [−1, 0) indicates that the element satisfies
the implicit counter property. Positive information represent what is considered to be possible
and negative information represent what is granted to be impossible. Actually, a variety of
decision making problems are based on two-sided bipolar judgements on a positive side and
a negative side. Nowadays bipolar fuzzy sets are playing a substantial role in chemistry, eco-
nomics, computer science, engineering, medicine and decision making problems. Samarandache
[22] introduced the idea of neutrosophic probability, sets and logic. Peng et al. [19], in 2014,
described some operational properties and studied a new approach for multi-criteria decision
making problems using neutrosophic sets. Ye [25, 26] discussed trapezoidal neutrosophic sets
and simplified neutrosophic sets with applications in multi-criteria decision making problems.
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The other terminologies and applications of neutrosophic sets can be seen in [13, 23, 25, 26].
In a neutrosophic set, the membership value is associated with truth, false and indeterminacy
degrees but there is no restriction on their sum. Deli et al. [12] extended the ideas of bipolar
fuzzy sets and neutrosophic sets to bipolar neutrosophic sets and studied its operations and
applications in decision making problems.
Graph theory has numerous applications in science and engineering. However, in some cases,
some aspects of graph theoretic concepts may be uncertain. In such cases, it is important to
deal with uncertainty using the methods of fuzzy sets and logics. Based on Zadeh’s fuzzy rela-
tions [28], Kaufmann [14] defined a fuzzy graph. The fuzzy relations between fuzzy sets were
also considered by Rosenfeld [20] and he developed the structure of fuzzy graphs, obtaining
analogs of several graph theoretical concepts. Later on, Bhattacharya [8] gave some remarks
on fuzzy graphs, and some operations on fuzzy graphs were introduced by Mordeson and Peng
[16]. The complement of a fuzzy graph was defined by Mordeson [17]. Bhutani and Rosenfeld
introduced the concept of M -strong fuzzy graphs in [9] and studied some of their properties.
The concept of strong arcs in fuzzy graphs was discussed in [10]. The theory of fuzzy graphs
has extended widely by many researchers as it can be seen in [15, 17]. The idea of domination
was first arose in chessboard problem in 1862. Somasundaram and Somasundaram [24] intro-
duced domination and independent domination in fuzzy graphs. Gani and Chandrasekaran [18]
studied the notion of fuzzy domination and independent domination using strong arcs. Akram
[1, 2] introduced bipolar fuzzy graphs and discuss its various properties. Akram and Dudek [3]
studied regular bipolar fuzzy graphs. Several new concepts on bipolar neutrosophic graphs and
bipolar neutrosophic hypergraphs have been studied in [4-7]. In this research article, we present
certain notions of bipolar neutrosophic graphs. We study the dominating and independent sets
of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods
based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We develop an algorithm
for computing domination in bipolar neutrosophic graphs. We also show that there are some
flaws in Broumi et al. [11]’s definition.

2 Preliminaries

Let Y be a non-empty universe and Ỹ 2 is the collection of all 2−element subsets of Y . A pair

G∗ = (Y,E), where E ⊆ Ỹ 2 is a graph. The cardinality of any subset D ⊆ Y is the number of
vertices in D, it is denoted by |D|.

Definition 2.1. [27, 28] A fuzzy set µ in a universe Y is a mapping µ : Y → [0, 1]. A fuzzy
relation on Y is a fuzzy set ν in Y × Y .

Definition 2.2. [28] If µ is a fuzzy set on Y and ν a fuzzy relation in Y . We can say ν is a
fuzzy relation on µ if ν(y, z) ≤ min{µ(y), µ(z)} for all y, z ∈ Y .

Definition 2.3. [14] A fuzzy graph on a non-empty universe Y is a pair G = (µ, λ), where µ
is a fuzzy set on Y and λ is a fuzzy relation in Y such that λ(yz) ≤ min{µ(y), µ(z)} for all y,
z ∈ Y. Note that λ is a fuzzy relation on µ, and λ(yz) = 0 for all yz ∈ Ỹ 2 − E.

Definition 2.4. [29] A bipolar fuzzy set on a non-empty set Y has the form C = {(y, µp(y), µn(y)) :
y ∈ Y } where, µp : Y → [0, 1] and µn : Y → [−1, 0] are mappings.
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The positive membership value µp(y) represents the strength of truth or satisfaction of an ele-
ment y to a certain property corresponding to bipolar fuzzy set C and µn(x) denotes the strength
of satisfaction of an element y to some counter property of bipolar fuzzy set C. If µp(y) 6= 0
and µn(y) = 0, it is the situation when y has only truth satisfaction degree for property C. If
µn(y) 6= 0 and µp(y) = 0, it is the case that y is not satisfying the property of C but satisfying
the counter property to C. It is possible for y that µp(x) 6= 0 and µn(x) 6= 0 when y satisfies
the property of C as well as its counter property in some part of Y .

Definition 2.5. [1] Let Y be a nonempty set. A mapping D = (µp, µn) : Y ×Y → [0, 1]× [−1, 0]
is a bipolar fuzzy relation on Y such that µp(xy) ∈ [0, 1] and µn(xy) ∈ [−1, 0] for y, z ∈ Y .

Definition 2.6. [1] A bipolar fuzzy graph on Y is a pair G = (C,D) where C = (µp
C , µ

n
C) is a

bipolar fuzzy set on Y and D = (µp
D, µ

n
D) is a bipolar fuzzy relation in Y such that

µp
D(yz) ≤ µp

C(y) ∧ µp
C(z) and µn

D(yz) ≥ µn
C(y) ∨ µn

C(z) for all y, z ∈ Y.

Note that D is a bipolar fuzzy relation on C, and µp
D(yz) > 0, µn

D(yz) < 0 for yz ∈ Ỹ 2,

µp
D(yz) = µn

D(yz) = 0 for yz ∈ Ỹ 2 − E.

Definition 2.7. [23] A neutrosophic set C on a non-empty set Y is characterized by a truth
membership function tC : Y → [0, 1], indeterminacy membership function IC : Y → [0, 1] and a
falsity membership function fC : Y → [0, 1]. There is no restriction on the sum of tC(x), IC(x)
and fC(x) for all x ∈ Y .

Definition 2.8. [12] A bipolar neutrosophic set on a empty set Y is an object of the form

C = {(y, tpC(y), I
p
C(y), f

p
C(y), t

n
C(y), I

n
C(y), f

n
C(y)) : y ∈ Y }

where, tpC , I
p
C , f

p
C : Y → [0, 1] and tnC , I

n
C , f

n
C : Y → [−1, 0]. The positive values tpC(y), I

p
C(y), f

p
C(y)

denote respectively the truth, indeterminacy and false membership degrees of an element y ∈ Y
whereas tnC(y), I

n
C(y), f

n
C(y) denote the implicit counter property of the truth, indeterminacy and

false membership degrees of the element y ∈ Y corresponding to the bipolar neutrosophic set C.

3 Bipolar neutrosophic graphs

In this section, we discuss the concept of a bipolar neutrosophic graph and its various properties.

Definition 3.1. A bipolar neutrosophic relation on a non-empty set Y is a bipolar neutrosophic
subset of Y × Y of the form D = {(yz, tpD(yz), I

p
D(yz), f

p
D(yz), t

n
D(yz), I

n
D(yz), f

n
D(yz)) : yz ∈

Y × Y } where, tpD, I
p
D, f

p
D, t

n
D, I

n
D, f

n
D are defined by the mappings tpD, I

p
D, f

p
D : Y × Y → [0, 1]

and tnD, I
n
D, f

n
D : Y × Y → [−1, 0].

Definition 3.2. A bipolar neutrosophic graph on a non-empty set Y is a pair G = (C,D),
where C is a bipolar neutrosophic set on Y and D is a bipolar neutrosophic relation in Y such
that

tpD(yz) ≤ tpC(y) ∧ tpC(z), IpD(yz) ≤ IpC(y) ∧ IpC(z), fp
D(yz) ≤ fp

C(y) ∨ fp
C(z),

tnD(yz) ≥ tnC(y) ∨ tnC(z), InD(yz) ≥ InC(y) ∨ InC(z), fn
D(yz) ≥ fn

C(y) ∧ fn
C(z),

for all y, z ∈ Y . Note that D(yz) = (0, 0, 0, 0, 0, 0) for all yz ∈ Y × Y \ E.
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Example 3.1. Here we discuss an example of a bipolar neutrosophic graph such that Y =
{x, y, z}. Let C be a bipolar neutrosophic set on Y given in Table. 1 and D be a bipolar
neutrosophic relation in Y given in Table. 2.

Table 1: Bipolar neutrosophic set C
x y z

tpC 0.3 0.5 0.4
IpC 0.4 0.4 0.3
fp
C 0.5 0.2 0.2
tnC -0.6 -0.1 -0.5
InC -0.5 -0.8 -0.5
fn
C -0.2 -0.2 -0.5

Table 2: Bipolar neutrosophic relation D
xy yz xz

tpD 0.3 0.3 0.3
IpD 0.4 0.3 0.3
fp
D 0.5 0.2 0.5
tnD -0.1 -0.1 -0.5
InD -0.5 -0.5 -0.5
fn
D -0.2 -0.5 -0.5

Routine calculations show that G = (C,D) is a bipolar neutrosophic graph. The bipolar
neutrosophic graph G is shown in Fig. 3.1.
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Figure 3.1: Bipolar neutrosophic graph G

Definition 3.3. Let G1 = (C1,D1) and G2 = (C2,D2) be two bipolar neutrosophic graphs
where, C1 and C2 are bipolar neutrosophic sets on Y1 and Y2, D1 andD2 are bipolar neutrosophic
relations in Y1 and Y2, respectively . The union ofG1 andG2 is a pairG1∪G2 = (C1∪C2,D1∪D2)
such that for all y, z ∈ Y ,

1. If y ∈ Y1, y 6∈ Y2 then, (C1 ∪ C2)(y) = C1(y).

2. If y ∈ Y2, y 6∈ Y1 then, (C1 ∪ C2)(y) = C2(y).

3. If y ∈ Y1 ∩ Y2 then,

(C1 ∪C2)(y) = (tpC1
(y) ∨ tpC2

(y),
IpC1

(y) + IpC2
(y)

2
, fp

C1
(y) ∧ fp

C2
(y), tnC1

(y) ∧ tnC2
(y),

InC1
(y) + InC2

(y)

2
, fn

C1
(y) ∨ fn

C2
(y)),
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If E1 and E2 are the sets of edges in G1 and G2 then, D1 ∪D2 can be defined as:

1. If yz ∈ E1, yz 6∈ E2 then, (D1 ∪D2)(yz) = D1(yz).

2. If yz ∈ E2, yz 6∈ E1 then, (D1 ∪D2)(yz) = D2(yz).

3. If yz ∈ E1 ∩ E2 then,

(D1 ∪D2)(yz) = (tpD1
(yz) ∨ tpD2

(yz),
IpD1

(yz) + IpD2
(yz)

2
, fp

D1
(yz) ∧ fp

D2
(yz), tnD1

(yz) ∧ tnD2
(yz),

InD1
(yz) + InD2

(yz)

2
, fn

D1
(yz) ∨ fn

D2
(yz)).

Definition 3.4. The intersection of two bipolar neutrosophic graphs G1 = (C1,D1) and G2 =
(C2,D2) is a pair G1∩G2 = (C1∩C2,D1∩D2) where, C1, C2, D1 and D2 are given in Definition
3.3. The membership values of vertices and edges in G1 ∩G2 can be defined as,

(C1 ∩ C2)(y) = (tpC1
(y) ∧ tpC2

(y),
IpC1

(y) + IpC2
(y)

2
, fp

C1
(y) ∨ fp

C2
(y), tnC1

(y) ∨ tnC2
(y),

InC1
(y) + InC2

(y)

2
, fn

C1
(y) ∧ fn

C2
(y)), for all y ∈ Y1 ∩ Y2.

(D1 ∩D2)(yz) = (tpD1
(yz) ∧ tpD2

(yz),
IpD1

(yz) + IpD2
(yz)

2
, fp

D1
(yz) ∨ fp

D2
(yz), tnD1

(yz) ∨ tnD2
(yz),

InD1
(yz) + InD2

(yz)

2
, fn

D1
(yz) ∧ fn

D2
(yz)), for all yz ∈ E1 ∩ E2.

Definition 3.5. The join of two bipolar neutrosophic graphs G1 = (C1,D1) and G2 = (C2,D2)
is defined by the pair G1 + G2 = (C1 + C2,D1 + D2) such that, C1 + C2 = C1 ∪ C2, for all
y ∈ Y1 ∪ Y2, and the membership values of the edges in G1 +G2 are defined as,

1. D1 +D2 = D1 ∪D2, for all yz ∈ E1 ∪E2.

2. Let E
′

be the set of all edges joining the vertices of G1 and G2 then for all yz ∈ E
′

, where
y ∈ Y1 and z ∈ Y2,

(D1 +D2)(yz) = (tpD1
(yz) ∧ tpD2

(yz),IpD1
(yz) ∧ IpD2

(yz), fp
D1

(yz) ∨ fp
D2

(yz), tnD1
(yz) ∨ tnD2

(yz),

InD1
(yz) ∨ InD2

(yz), fn
D1

(yz) ∧ fn
D2

(yz)).

Definition 3.6. The Cartesian product of two bipolar neutrosophic graphsG1 and G2 is denoted
by the pair G1�G2 = (C1�C2,D1�D2) and defined as,

tpC1�C2
(y) = tpC1

(y) ∧ tpD2
(y), IpC1�C2

(y) = IpC1
(y) ∧ IpC2

(y), fp
C1�C2

(y) = fp
C1
(y) ∨ fp

C2
(y),

tnC1�D2
(y) = tnC1

(y) ∨ tnC2
(y), InC1�C2

(y) = InC1
(y) ∨ InC2

(y), fn
C1�C2

(y) = fn
C1
(y) ∧ fn

C2
(y).

for all y ∈ Y1 × Y2. The membership values of the edges in G1�G2 can be calculated as,

1. tpD1�D2
((y1, y2)(y1, z2)) = tpC1

(y1)∧t
p
D2

(y2z2), tnD1�D2
((y1, y2)(y1, z2)) = tnC1

(y1)∨t
n
D2

(y2z2),
for all y1 ∈ Y1, y2z2 ∈ E2,

5



2. tpD1�D2
((y1, y2)(z1, y2)) = tpD1

(y1z1)∧t
p
C2
(y2), tnD1�D2

((y1, y2)(z1, y2)) = tnD1
(y1z1)∨t

n
C2
(y2),

for all y1z1 ∈ E1, y2 ∈ Y2,

3. IpD1�D2
((y1, y2)(y1, z2)) = IpC1

(y1)∧I
p
D2

(y2z2), InD1�D2
((y1, y2)(y1, z2)) = InC1

(y1)∨I
n
D2

(y2z2),
for all y1 ∈ Y1, y2z2 ∈ E2,

4. IpD1�D2
((y1, y2)(z1, y2)) = IpD1

(y1z1)∧I
p
C2
(y2), InD1�D2

((y1, y2)(z1, y2)) = InD1
(y1z1)∨I

n
C2
(y2),

for all y1z1 ∈ E1, y2 ∈ Y2,

5. fp
D1�D2

((y1, y2)(y1, z2)) = fp
C1
(y1)∨f

p
D2

(y2z2), fn
D1�D2

((y1, y2)(y1, z2)) = fn
C1
(y1)∧fn

D2
(y2z2),

for all y1 ∈ Y1, y2z2 ∈ E2,

6. fp
D1�D2

((y1, y2)(z1, y2)) = fp
D1

(y1z1) ∨ fp
C2
(y2), fn

D1�D2
((y1, y2)(z1, y2)) = fn

D1
(y1z1) ∧

fn
C2
(y2), for all y1z1 ∈ E1, y2 ∈ Y2.

Definition 3.7. The direct product of two bipolar neutrosophic graphs G1 = (C1,D1) and
G2 = (C2,D2) is denoted by the pair G1 ×G2 = (C1 ×C2,D1 ×D2) such that,

tpC1×C2
(y) = tpC1

(y) ∧ tpD2
(y), IpC1×C2

(y) = IpC1
(y) ∧ IpC2

(y), fp
C1×C2

(y) = fp
C1
(y) ∨ fp

C2
(y),

tnC1×C2
(y) = tnC1

(y) ∨ tnC2
(y), InC1×C2

(y) = InC1
(y) ∨ InC2

(y), fn
C1×C2

(y) = fn
C1
(y) ∧ fn

C2
(y),

for all y ∈ Y1 × Y2.

1. tpD1×D2
((y1, y2)(z1, z2)) = tpD1

(y1z1) ∧ tpD2
(y2z2), tnD1×D2

((y1, y2)(z1, z2)) = tnD1
(y1z1) ∨

tnD2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

2. IpD1×D2
((y1, y2)(z1, z2)) = IpD1

(y1z1) ∧ IpD2
(y2z2), InD1×D2

((y1, y2)(z1, z2)) = InD1
(y1z1) ∨

InD2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

3. fp
D1×D2

((y1, y2)(z1, z2)) = fp
D1

(y1z1) ∨ fp
D2

(y2z2), fn
D1×D2

((y1, y2)(z1, z2)) = fn
D1

(y1z1) ∧
fn
D2

(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2.

Proposition 3.1. Let G1 and G2 be any two bipolar neutrosophic graphs then G1∪G2, G1∩G2,
G1 +G2, G1�G2 and G1 ×G2 are bipolar neutrosophic graphs.

Definition 3.8. A bipolar neutrosophic graph G = (C,D) is called strong bipolar neutrosophic
graph if
tpD(yz) = tpC(y) ∧ tpC(z), IpD(yz) = IpC(y) ∧ IpC(z), fp

D(yz) = fp
C(y) ∨ fp

C(z),
tnD(yz) = tnC(y) ∨ tnC(z), InD(yz) = InC(y) ∨ InC(z), fn

D(yz) = fn
C(y) ∧ fn

C(z),
for all yz ∈ supp(D).

Definition 3.9. A bipolar neutrosophic graph G = (C,D) is called complete bipolar neutro-
sophic graph if
tpD(yz) = tpC(y) ∧ tpC(z), IpD(yz) = IpC(y) ∧ IpC(z), fp

D(yz) = fp
C(y) ∨ fp

C(z),
tnD(yz) = tnC(y) ∨ tnC(z), InD(yz) = InC(y) ∨ InC(z), fn

D(yz) = fn
C(y) ∧ fn

C(z),
for all y, z ∈ Y.

Definition 3.10. The complement of a bipolar neutrosophic graph G = (C,D) is defined as a
pair Gc = (Cc,Dc) such that, Cc(y) = C(y), for all y ∈ Y , and the he membership values of the
edges in Gc can be calculated as,
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tpDc(yz) = tpC(y) ∧ tpC(z) − tpD(yz), IpDc(yz) = IpC(y) ∧ IpC(z)− IpD(yz),
fp
Dc(yz) = fp

C(y) ∨ fp
C(z) − fp

D(yz), tnDc(yz) = tnC(y) ∨ tnC(z) − tnD(yz),
InDc(yz) = InC(y) ∨ InC(z)− InD(yz), fn

Dc(yz) = fn
C(y) ∧ fn

C(z) − fn
D(yz),

for all yz ∈ Ỹ 2.

Remark 3.1. A bipolar neutrosophic graph G is called self complementary if G = Gc.

Theorem 3.1. Let G be a self complementary bipolar neutrosophic graph then,

∑

y 6=z

tpD(yz) =
1

2

∑

y 6=z

tpC(y) ∧ tpC(z),
∑

y 6=z

IpD(yz) =
1

2

∑

y 6=z

IpC(y) ∧ IpC(z),

∑

y 6=z

fp
D(yz) =

1

2

∑

y 6=z

fp
C(y) ∨ fp

C(z),
∑

y 6=z

tnD(yz) =
1

2

∑

y 6=z

tnC(y) ∨ tnC(z),

∑

y 6=z

InD(yz) =
1

2

∑

y 6=z

InC(y) ∨ InC(z),
∑

y 6=z

fn
D(yz) =

1

2

∑

y 6=z

fn
C(y) ∧ fn

C(z).

Theorem 3.2. Let G = (C,D) be a bipolar neutrosophic graph such that for all y, z ∈ Y ,

tpDc(yz) =
1

2
(tpC(y) ∧ tpC(z)), I

p
Dc(yz) =

1

2
(IpC(y) ∧ IpC(z)), f

p
Dc(yz) =

1

2
(fp

C(y) ∨ fp
C(z)),

tnDc(yz) =
1

2
(tnC(y) ∨ tnC(z)), I

n
Dc(yz) =

1

2
(InC(y) ∨ InC(z)), f

n
Dc(yz) =

1

2
(fn

C(y) ∧ fn
C(z)).

Then G is self complementary bipolar neutrosophic graph.

Proof. Let Gc = (Cc,Dc) be the complement of a bipolar neutrosophic graph G = (C,D) then,
by Definition. 3.10,

tpDc(yz) = tpC(y) ∧ tpC(z)− tpD(yz)

tpDc(yz) = tpC(y) ∧ tpC(z)−
1

2
(tpC(y) ∧ tpC(z))

tpDc(yz) =
1

2
(tpC(y) ∧ tpC(z))

tpDc(yz) = tpD(yz)

Similarly, it can be proved that tnDc(yz) = tnD(yz), I
p
Dc(yz) = IpD(yz), InDc(yz) = InD(yz),

fp
Dc(yz) = fp

D(yz) and fn
Dc(yz) = fn

D(yz). Hence, G is self complementary.

Definition 3.11. The degree of a vertex y in a bipolar neutrosophic graph G = (C,D) is
denoted by deg(y) and defined by the 6−tuple as,

deg(y) = (degpt (y), deg
p
I(y), deg

p
f (y), deg

n
t (y), deg

n
I (y), deg

n
f (y)),

= (
∑

yz∈E

tpD(yz),
∑

yz∈E

IpD(yz),
∑

yz∈E

fp
D(yz),

∑

yz∈E

tnD(yz),
∑

yz∈E

InD(yz),
∑

yz∈E

fn
D(yz)).

The term degree is also referred as neighborhood degree.
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Definition 3.12. The closed neighborhood degree of a vertex y in a bipolar neutrosophic graph
is denoted by deg[y] and defined as, deg[y] = deg(y) + C(y).

Definition 3.13. A bipolar neutrosophic graph G is known as a regular bipolar neutrosophic
graph if all vertices of G have same degree. A bipolar neutrosophic graph G is known as a totally
regular bipolar neutrosophic graph if all vertices of G have same closed neighborhood degree.

Theorem 3.3. A complete bipolar neutrosophic graph is regular.

Theorem 3.4. Let G = (C,D) be a bipolar neutrosohic graph then C = (tp, Ip, fp, tn, In, fn) is
a constant function if and only if the following statements are equivalent:
(1) G is a regular bipolar neutrosophic graph,
(2) G is totally regular bipolar neutrosophic graph.

Proof. Assume that C is a constant function and for all y ∈ Y ,

tpC(y) = kt, I
p
C(y) = kI , f

p
C(y) = kf , t

n
C(y) = k

′

t, I
n
C(y) = k

′

I , f
n
C(y) = k

′

f

where, kt, kI , kf , k
′

t, k
′

I , k
′

f are constants.
(1) ⇒ (2) Suppose thatG is a regular bipolar neutrosophic graph and deg(y) = (pt, pI , pf , nt, nI , nf )
for all y ∈ Y .
Now consider,
deg[y] = deg(y) + C(y) = (pt + kt, pI + kI , pf + kf , nt + k

′

t, nI + k
′

I , nf + k
′

f ), for all y ∈ Y .
It is proved that G is totally regular bipolar neutrosophic graph.
(2) ⇒ (1) Suppose that G is totally regular bipolar neutrosophic graph and for all y ∈ Y
deg[y] = (p

′

t, p
′

I , p
′

f , n
′

t, n
′

I , n
′

f ).

⇒ deg(y) + C(y) = (p
′

t, p
′

I , p
′

f , n
′

t, n
′

I , n
′

f ),

⇒ deg(y) = (p
′

t − kt, p
′

I − kI , p
′

f − kf , n
′

t − k
′

t, n
′

I − k
′

I , n
′

f − k
′

f ),
for all y ∈ Y . Thus G is a regular bipolar neutrosophic graph.
Conversely, assume that the conditions are equivalent. Let deg(y) = (ct, cI , cf , dt, dI , df ) and
deg[y] = (c

′

t, c
′

I , c
′

f , d
′

t, d
′

I , d
′

f ).
Since by definition of closed neighborhood degree for all y ∈ Y ,
deg[y] = deg(y) + C(y),
⇒ C(y) = (c

′

t − ct, c
′

I − cI , c
′

f − cf , d
′

t − dt, d
′

I − dI , d
′

f − df ),

for all y ∈ Y. Hence C = (c
′

t − ct, c
′

I − cI , c
′

f − cf , d
′

t − dt, d
′

I − dI , d
′

f − df ), a constant function
which completes the proof.

Definition 3.14. A bipolar neutrosophic graph G is said to be irregular if at least two vertices
have distinct degrees. If all vertices do not have same closed neighborhood degrees then G is
known as totally irregular bipolar neutrosophic graph.

Theorem 3.5. Let G = (C,D) be a bipolar neutrosophic graph and C = (tpC , I
p
C , f

p
C , t

n
C , I

n
C ,

fn
C) be a constant function then G is an irregular bipolar neutrosophic graph if and only if G is
a totally irregular bipolar neutrosophic graph.

Proof. Assume that G is an irregular bipolar neutrosophic graph then at least two vertices of G
have distinct degrees. Let y and z be two vertices such that deg(y) = (r1, r2, r3, s1, s2, s3) and
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deg(z) = (r
′

1, r
′

2, r
′

3, s
′

1, s
′

2, s
′

3) where, ri 6= r
′

i , for some i = 1, 2, 3.
Since, C is a constant function let C = (k1, k2, k3, l1, l2, l3). Therefore,

deg[y] = deg(y) + (k1, k2, k3, l1, l2, l3)

deg[y] = (r1 + k1, r2 + k2, r3 + k3, s1 + l1, s2 + l2, s3 + l3)

and deg[z] = (r
′

1 + k1, r
′

2 + k2, r
′

3 + k3, s
′

1 + l1, s
′

2 + l2, s
′

3 + l3).

Clearly ri+ki 6= r
′

i+ki , for some i = 1, 2, 3 therefore y and z have distinct closed neighborhood
degrees. Hence G is a totally irregular bipolar neutrosophic graph.
The converse part is similar.

Definition 3.15. If G = (C,D) is a bipolar neutrosophic graph and y, z are two vertices in G
then we say that y dominates z if

tpD(yz) = tpC(y) ∧ tpC(z), IpD(yz) = IpC(y) ∧ IpC(z), fp
D(yz) = fp

C(y) ∨ fp
C(z),

tnD(yz) = tnC(y) ∨ tnC(z), InD(yz) = InC(y) ∨ InC(z), fn
D(yz) = fn

C(y) ∧ fn
C(z).

A subset D
′

⊆ Y is a dominating set if for each z ∈ Y \ D
′

there exists y ∈ D
′

such that y
dominates z. A dominating set D

′

is minimal if for every y ∈ D
′

, D
′

\ {y} is not a dominating
set. The domination number of G is the minimum cardinality among all minimal dominating
sets of G, denoted by λ(G).

Example 3.2. Consider a bipolar neutrosophic graph as shown in Fig. 3.2. The set {x,w} is
a minimal dominating set and λ(G) = 2.

b b

b b

x(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7) y(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

z(0.5, 0.2, 0.3,−0, 3,−0.2,−0.5) w(0.5, 0.2, 0.2,−0, 2,−0.3,−0.5)

(0.4, 0.2, 0.2,−0, 2,−0.2,−0.4)

(0.5, 0.1, 0.3,−0, 2,−0.2,−0.7)

(0
.4
,
0
.1
,
0
.2
,
−
0
,
2
,
−
0
.3
,
−
0
.6
)

(0
.5
,
0
.2
,
0
.3
,
−
0
,
2
,
−
0
.2
,
−
0
.7
)

b

t(
0
.7
,
0
.3
,
0
.1
,
−
0
,
2
,
−
0
.3
,
−
0
.7
)

(0.4, 0.1, 0.1,−0, 2,−0.3,−0.7)

(0.
5, 0

.2,
0.2

,−
0, 2

,−
0.3

,−
0.7

)

Figure 3.2: Bipolar neutrosophic graph G.

Theorem 3.6. Let G1 and G2 be two bipolar neutrosophic graphs with D
′

1 and D
′

2 as dominating
sets then following conditions hold,

(1) If Y1 ∩ Y2 = ∅ then, λ(G1 ∪G2) = λ(G1) + λ(G2).

(2) If for every y ∈ Y1 ∩ Y2 6= ∅, C1(y) = C2(y) and for yz ∈ E1 ∩E2, D1(yz) = D2(yz) then,
λ(G1 ∪G2) = λ(G1) + λ(G2)− |D

′

1 ∩D
′

2|.

Proof. (1). The proof is obvious.
(2). Since D

′

1 and D
′

2 are dominating sets of G1 and G2, D
′

1∪D
′

2 is a dominating set of G1∪G2.
Therefore, λ(G1∪G2) ≤ |D

′

1∪D
′

2|. It only remains to show that D
′

1∪D
′

2 is a minimal dominating
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set. On contrary, assume that D
′

= D
′

1 ∪ D
′

2 \ {y} is a minimal dominating set of G1 ∪ G2.
There are two cases,
Case 1. If y ∈ D

′

1 and y /∈ D
′

2, then D
′

1 \ {y} is not a dominating set of G1 which implies that
D

′

1 ∪D
′

2 \ {y} = D
′

is not a dominating set of G1 ∪ G2. A contradiction, hence D
′

1 ∪D
′

2 is a
minimal dominating set and

λ(G1 ∪G2) = |D
′

1 ∪D
′

2|,

⇒ λ(G1 ∪G2) = λ(G1) + λ(G2)− |D
′

1 ∩D
′

2|.

Case 2. If y ∈ D
′

2 and y /∈ D
′

1, same contradiction can be obtained.

Theorem 3.7. If G1 and G2 are two bipolar neutrosophic graphs then the following conditions
are satisfied,

(1) If Y1 ∩ Y2 = ∅ then, λ(G1 +G2) = 2.

(2) If for every y ∈ Y1 ∩ Y2 6= ∅, C1(y) = C2(y) and for yz ∈ E1 ∩E2, D1(yz) = D2(yz) then,
λ(G1 +G2) = min{λ(G1), λ(G2), 2}.

Proof. (1). Let y1 ∈ Y1 and y2 ∈ Y2, since G1 +G2 is a bipolar neutrosophic graph, we have

tpD1+D2
(y1y2) = tpC1+C2

(y1) ∧ tpC1+C2
(y2), tnD1+D2

(y1y2) = tnC1+C2
(y1) ∨ tnC1+C2

(y2)

IpD1+D2
(y1y2) = IpC1+C2

(y1) ∧ IpC1+C2
(y2), InD1+D2

(y1y2) = InC1+C2
(y1) ∨ InC1+C2

(y2)

fp
D1+D2

(y1y2) = fp
C1+C2

(y1) ∨ fp
C1+C2

(y2), fn
D1+D2

(y1y2) = fn
C1+C2

(y1) ∧ fn
C1+C2

(y2).

Hence any vertex of G1 dominates all vertices of G2 and similarly any vertex of G2 dominates
all vertices of G1. So, {y1, y2} is a dominating set of G1 +G2.

(2). If D is a minimal dominating set of G1 +G2 then, D is one of the following forms,

1. D = D1 where, λ(G1) = |D1|,

2. D = D2 where, λ(G2) = |D2|,

3. D = {y1, y2} where, y1 ∈ Y1 and y2 ∈ Y2. {y1} and {y2} are not dominating sets of G1 or
G2, respectively.

Hence, λ(G1 +G2) = min{λ(G1), λ(G2), 2}.

Theorem 3.8. Let G1 = (C1,D1) and G2 = (C2,D2) be two bipolar neutrosophic graphs. If
for y1 ∈ Y1, C1(y1) > 0 where, 0 = (0, 0, 0, 0, 0, 0), and y2 dominates z2 in G2 then, (y1, y2)
dominates (y1, z2) in G1�G2.

Proof. Since y2 dominates z2 therefore,

tpD2
(y2z2) = tpC2

(y2) ∧ tpC2
(z2), I

p
D2

(y2z2) = IpC2
(y2) ∧ IpC2

(z2), f
p
D2

(y2z2) = fp
C2
(y2) ∨ fp

C2
(z2),

tnD2
(y2z2) = tnC2

(y2) ∨ tnC2
(z2), I

n
D2

(y2z2) = InC2
(y2) ∨ InC2

(z2), f
n
D2

(y2z2) = fn
C2
(y2) ∧ fn

C2
(z2).
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For y1 ∈ Y1, take (y1, z2) ∈ Y1 × Y2. By Definition 3.6,

tpD1�D2
((y1, y2)(y1, z2)) = tpC1

(y1) ∧ tpD2
(y2z2),

= tpC1
(y1) ∧ {tpC2

(y2) ∧ tpC2
(z2)},

= {tpC1
(y1) ∧ tpC2

(y2)} ∧ {tpC1
(y1) ∧ tpC2

(z2)},

= tpC1�C2
(y1, y2) ∧ tpC1�C2

(y1, z2).

tnD1�D2
((y1, y2)(y1, z2)) = tnC1

(y1) ∨ tnD2
(y2z2),

= tnC1
(y1) ∨ {tnC2

(y2) ∨ tnC2
(z2)},

= {tnC1
(y1) ∨ tnC2

(y2)} ∨ {tnC1
(y1) ∨ tnC2

(z2)},

= tnC1�C2
(y1, y2) ∨ tnC1�C2

(y1, z2).

Similarly, it can be proved that

IpD1�D2
((y1, y2)(y1, z2)) = IpC1�C2

(y1, y2) ∧ IpC1�C2
(y1, z2),

InD1�D2
((y1, y2)(y1, z2)) = InC1�C2

(y1, y2) ∨ InC1�C2
(y1, z2),

fp
D1�D2

((y1, y2)(y1, z2)) = fp
C1�C2

(y1, y2) ∨ fp
C1�C2

(y1, z2),

fn
D1�D2

((y1, y2)(y1, z2)) = fn
C1�C2

(y1, y2) ∧ fn
C1�C2

(y1, z2).

Hence (y1, y2) dominates (y1, z2) and the proof is complete.

Proposition 3.2. If G1 and G2 are bipolar neutrosophic graphs and for z2 ∈ Y2, C2(z2) > 0

where, 0 = (0, 0, 0, 0, 0, 0), y1 dominates z1 in G1 then (y1, z2) dominates (z1, z2) in G1�G2.

Theorem 3.9. If D
′

1 and D
′

2 are minimal dominating sets of G1 = (C1,D1) and G2 = (C2,D2),
respectively. Then D

′

1 × Y2 and Y1 ×D
′

2 are dominating sets of G1�G2 and

λ(G1�G2) ≤ |D
′

1 × Y2|∧|Y1 ×D
′

2|. (1)

Proof. To prove Inequality. (1), we need to show that D
′

1 × Y2 and Y1 × D
′

2 are dominating
sets of G1�G2. Let (z1, z2) /∈ D

′

1 × Y2 then, z1 /∈ D
′

1. Since D
′

1 is a dominating set of G1, there
exists y1 ∈ D

′

1 that dominates z1. By Theorem 3.2, (y1, z2) dominates (z1, z2) in G1�G2. Since
(z1, z2) was taken to be arbitrary therefore, D

′

1 × Y2 is a dominating set of G1�G2. Similarly,
Y1 ×D

′

2 is a dominating set if G1�G2. Hence the proof.

Theorem 3.10. Let D
′

1 and D
′

2 be the dominating sets of G1 = (C1,D1) and G2 = (C2,D2),
respectively then, D

′

1 ×D
′

2 is a dominating set of the direct product G1 ×G2 and

λ(G1 ×G2) = |D
′

×|= |D
′

1 ×D
′

2 ∪ {(t1, t2) : t1y1 ∈ E1, y1 ∈ D
′

1, t2 ∈ D′
2}|. (2)

Proof. Let (z1, z2) ∈ Y1 × Y2 \D
′

× then there are two cases.

Case 1: If z1 ∈ Y1 \D
′

1 and z2 ∈ Y2 \ D
′

2. Since, D
′

1 and D
′

2 are dominating sets there exist
y1 ∈ D

′

1 and y2 ∈ D
′

2 such that y1 dominates z1 and y2 dominates z2. Consider,

tpD1×D2
((y1, y2)(z1, z2)) = tpD1

(y1z1) ∧ tpD2
(y2z2),

= {tpC1
(y1) ∧ tpC1

(z1)} ∧ {tpC2
(y2) ∧ tpC2

(z2)},

= {tpC1
(y1) ∧ tpC2

(y2)} ∧ {tpC1
(z1) ∧ tpC2

(z2)},

= tpC1×C2
(y1, y2) ∧ tpC1×C2

(z1, z2).
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Similarly, it can be proved for other truth, indeterminacy and falsity membership degrees. Hence
(y1, y2) dominates (z1, z2).
Case 2: If z1 ∈ D

′

1 and z2 ∈ Y2 \ D
′

2 then, there exists (t1, t2) ∈ {(t1, t2) : t1z1 ∈ E1, z1 ∈
D

′

1, t2 ∈ D
′

2} such that z1 dominates t1 and t2 dominates z2. Consider,

tpD1×D2
((t1, t2)(z1, z2)) = tpD1

(t1z1) ∧ tpD2
(t2z2),

= {tpC1
(t1) ∧ tpC1

(z1)} ∧ {tpC2
(t2) ∧ tpC2

(z2)},

= {tpC1
(t1) ∧ tpC2

(t2)} ∧ {tpC1
(z1) ∧ tpC2

(z2)},

= tpC1×C2
(t1, t2) ∧ tpC1×C2

(z1, z2).

On the same lines, the result can be obtained for other truth, indeterminacy and falsity mem-
bership degrees. Hence(z1, z2) is dominated by (t1, t2).

Since (y1, y2) was taken to be arbitrary therefore, every element of Y1×Y2 \D
′

× is dominated

by some element of D
′

×.

Clearly, no vertex in {(t1, t2) : t1y1 ∈ E1, y1 ∈ D
′

1, t2 ∈ D′
2} is dominated by any other vertex

in D
′

×. Therefore, it only remains to show that D
′

1 ×D
′

2 is minimal. On contrary, assume that

D
′

is a minimal such that |D
′

|< |D
′

1 ×D
′

2|. Let (t1, t2) ∈ D
′

1 ×D
′

2 such that (t1, t2) /∈ D
′

i.e.,
t1 ∈ D

′

1 and t2 ∈ D
′

2 then there exist t
′

1 ∈ Y1 \D
′

1 and t
′

2 ∈ Y2 \D
′

2 which are only dominated by
t1 and t2, respectively. Hence no element other than (t1, t2) dominates (t

′

1, t
′

2) so (t1, t2) ∈ D
′

.
A contradiction, thus D

′

1 ×D
′

2 is minimal.

Corollary 3.1. If G1 and G2 are two bipolar neutrosophic graphs, y1 dominates z1 in G1 and
y2 dominates z2 in G2 then (y1, z1) dominates (y2, z2) in G1 ×G2.

Definition 3.16. In a bipolar neutrosophic graph two vertices y and z are independent if

tpD(yz) < tpC(y) ∧ tpC(z), IpD(yz) < IpC(y) ∧ IpC(z), fp
D(yz) < fp

C(y) ∨ fp
C(z),

tnD(yz) > tnC(y) ∨ tnC(z), InD(yz) > InC(y) ∨ InC(z), fn
D(yz) > fn

C(y) ∧ fn
C(z). (3)

An independent set N of a bipolar neutrosophic graph is a subset N of Y such that for all
y, z ∈ N , Equations (3) are satisfied. An independent set is maximal if for every t ∈ Y \ N ,
N ∪ {t} is not an independent set. An independent number is the maximal cardinality among
all maximal independent sets of a bipolar neutrosophic graph. It is denoted by α(G).

Theorem 3.11. If G1 and G2 are bipolar neutrosophic graphs on Y1 and Y2, respectively such
that Y1 ∩ Y2 = ∅ then α(G1 ∪G2) = α(G1) + α(G2).

Proof. Let N1 and N2 be maximal independent sets of G1 and G2. Since N1 ∩N2 = ∅ therefore,
N1 ∪N2 is a maximal independent set of G1 ∪G2. Hence α(G1 ∪G2) = α(G1) + α(G2).

Theorem 3.12. Let G1 and G2 be two bipolar neutrosophic graphs then α(G1 +G2) = α(G1)∨
α(G2).

Proof. Let N1 and N2 be maximal independent sets. Since every vertex of G1 dominates every
vertex of G2 in G1 +G1. Hence, maximal independent set of G1 +G2 is either N1 or N2. Thus,
α(G1 +G2) = α(G1) ∨ α(G2).
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Theorem 3.13. If N1 and N2 are maximal independent sets of G1 and G2, respectively and
Y1 ∩ Y2 = ∅. Then α(G1�G2) = |N1 × N2|+|N | where, N = {(yi, zi) : yi ∈ Y1 \ N1, zi ∈
Y2 \N2, yiyi+1 ∈ E1, zizi+1 ∈ E2, i = 1, 2, 3, · · ·}.

Proof. N1 and N2 are maximal independent sets of G1 and G2, respectively. Clearly, N1×N2 is
an independent set of G1�G2 as no vertex of N1 ×N2 dominates any other vertex of N1 ×N2.
Consider the set of vertices N = {(yi, zi) : yi ∈ Y1 \N1, zi ∈ Y2 \N2, yiyi+1 ∈ E1, zizi+1 ∈ E2}.
It can be seen that no vertex (yi, zi) ∈ N for each i = 1, 2, 3, · · · dominates (yi+1, zi+1) ∈ N for
each i = 1, 2, 3, · · ·. Hence N

′

= (N1 ×N2) ∪N is an independent set of G1�G2.
Assume that S = N

′

∪ {(yi, zj)}, for some i 6= j, yi ∈ Y1 \ N1 and zj ∈ Y2 \ N2, is a maximal
independent set. Without loss of generality, assume that j = i + 1 then, (yi, zj) is dominated
by (yi, zi). A contradiction, hence N

′

is a maximal independent set and α(G1�G2) = |N
′

|=
|N1 ×N2|+|N |

Theorem 3.14. If D
′

× is a minimal dominating sets of G1×G2 then, Y1×Y2\D
′

× is a maximal
independent set of G1 × G2 and α(G1 × G2) = n1n2 − λ(G1 × G2) where, n1 and n2 are the
number of vertices in G1 and G2.

The proof is obvious.

Theorem 3.15. An independent set of a bipolar neutrosophic graph G = (C,D) is maximal if
and only if it is independent and dominating.

Proof. If N is a maximal independent set of G, then for every y ∈ Y \ N , N ∪ {y} is not an
independent set. For every vertex y ∈ Y \N , there exists some z ∈ N such that

tpD(yz) = tpC(y) ∧ tpC(z), IpD(yz) = IpC(y) ∧ IpC(z), fp
D(yz) = fp

C(y) ∨ fp
C(z),

tnD(yz) = tnC(y) ∨ tnC(z), InD(yz) = InC(y) ∨ InC(z), fn
D(yz) = fn

C(y) ∧ fn
C(z).

Thus y dominates z and hence N is both independent and dominating set.
Conversely, assume thatD is both independent and dominating set but not maximal independent
set. So there exists a vertex y ∈ Y \N such that N ∪{y} is an independent set i.e., no vertex in
N dominates y, a contradiction to the fact that N is a dominating set. Hence N is maximal.

Theorem 3.16. Any maximal independent set of a bipolar neutrosophic graph is a minimal
dominating set.

Proof. If N is a maximal independent set of a bipolar neutrosophic graph then by Theorem 3.15,
N is a dominating set. Assume that N is not a minimal dominating set then, there always exist
at least one z ∈ N for which N \{z} is a dominating set. On the other hand if N \{z} dominates
Y \ {N \ {z}}, at least one vertex in N \ {z} dominates z. A contradiction to the fact that N is
an independent set of bipolar neutrosophic graph G. Hence N is a minimal dominating set.

4 Multi-criteria decision making methods

Multiple criteria decision making refers to making decisions in the presence of multiple, usually
conflicting criteria. Multi-criteria decision making problems are common in everyday life. In
this section, we present multi-criteria decision making methods for the identification of risk in
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decision support systems. The method is explained by an example for prevention of accidental
hazards in chemical industry. The application of domination in bipolar neutrosophic graphs is
given for the construction of transmission stations.

(1) An outranking approach for safety analysis using bipolar neutrosophic infor-
mation

The proposed methodology can be implemented in various fields in different ways e.g., multi-
criteria decision making problems with bipolar neutrosophic information. However, our main
focus is the identification of risk assessments in industry which is described in the following steps.
The bipolar neutrosophic information consists of a group of risks\alternatives R = {r1, r2, · · · , rn}
evaluated on the basis of criteria C = {c1, c2, · · · , cm}. Here ri, i = 1, 2, · · · , n is the possibility
for the criteria ck, k = 1, 2, · · · ,m and rik are in the form of bipolar neutrosophic values. This
method is suitable if we have a small set of data and experts are able to evaluate the data in the
form of bipolar neutrosophic information. Take the values of rik as rik = (tpik, I

p
ik, f

p
ik, t

n
ik, I

n
ik, f

n
ik).

Step 1. Construct the table of the given data.
Step 2. Determine the average values using the following bipolar neutrosophic average operator,

Ai =
1

n
(

m∑

j=1

tpij −
m∏

j=1

tpij,

m∏

j=1

Ipij,

m∏

j=1

fp
ij,

m∏

j=1

tnij,

m∑

j=1

Inij −
m∏

j=1

Inij,

m∑

j=1

fn
ij −

m∏

j=1

fn
ij), (4)

for each i = 1, 2, · · · , n.
Step 3. Construct the weighted average matrix.
Choose the weight vector w = (w1, w2, · · · , wn) . According to the weights for each alterna-
tive, the weighted average table can be calculated by multiplying each average value with the
corresponding weight as:

βi = Aiwi, i = 1, 2, · · · , n.

Step 4. Calculate the normalized value for each alternative\risk βi using the formula,

αi =
√

(tpi )
2 + (Ipi )

2 + (fp
i )

2 + (−1 + tni )
2 + (−1 + Ini )

2 + (−1 + fn
i )

2, (5)

for each i = 1, 2, · · · , n. The resulting table indicate the preference ordering of the alternatives\risks.
The alternative\risk with maximum αi value is most dangerous or more preferable.

Example 4.1. Chemical industry is a very important part of human society. These industries
contain large amount of organic and inorganic chemicals and materials. Many chemical products
have a high risk of fire due to flammable materials, large explosions and oxygen deficiency etc.
These accidents can cause the death of employs, damages to building, destruction of machines
and transports, economical losses etc. Therefore, it is very important to prevent these accidental
losses by identifying the major risks of fire, explosions and oxygen deficiency.
A manager of a chemical industry Y wants to prevent such types of accidents that caused the
major loss to company in the past. He collected data from witness reports, investigation teams
and near by chemical industries and found that the major causes could be the chemical reac-
tions, oxidizing materials, formation of toxic substances, electric hazards, oil spill, hydrocarbon
gas leakage and energy systems. The witness reports, investigation teams and industries have
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different opinions. There is a bipolarity in people’s thinking and judgement. The data can be
considered as bipolar neutrosophic information. The bipolar neutrosophic information about
company Y old accidents are given in Table. 3 and Table. 4.

Table 3: Bipolar neutrosophic Data

Fire Oxygen Deficiency

Chemical Exposures (0.5,0.7,0.2,-0.6,-0.3,-0.7) (0.1,0.5,0.7,-0.5,-0.2,-0.8)
Oxidizing materials (0.9,0.7,0.2,-0.8,-0.6,-0.1) (0.3,0.5,0.2,-0.5,-0.5,-0.2)
Toxic vapour cloud (0.7,0.3,0.1,-0.4,-0.1,-0.3) (0.6,0.3,0.2,-0.5,-0.3,-0.3)
Electric Hazard (0.3,0.4,0.2,-0.6,-0.3,-0.7) (0.9,0.4,0.6,-0.1,-0.7,-0.5)
Oil Spill (0.7,0.5,0.3,-0.4,-0.2,-0.2) (0.2,0.2,0.2,-0.7,-0.4,-0.4)
Hydrocarbon gas leakage (0.5,0.3,0.2,-0.5,-0.2,-0.2) (0.3,0.2,0.3,-0.7,-0.4,-0.3)
Ammonium Nitrate (0.3,0.2,0.3,-0.5,-0.6,-0.5) (0.9,0.2,0.1,0.0,-0.6,-0.5)

Table 4: Bipolar neutrosophic Data

Large Explosion

Chemical Exposures (0.6,0.2,0.3,-0.4,0.0,-0.1)
Oxidizing materials (0.9,0.5,0.5,-0.6,-0.5,-0.2)
Toxic vapour cloud (0.5,0.1,0.2,-0.6,-0.2,-0.2)
Electric Hazard (0.7,0.6,0.8,-0.7,-0.5,-0.1)
Oil Spill (0.9,0.2,0.7,-0.1,-0.6,-0.8)
Hydrocarbon gas leakage (0.8,0.2,0.1,-0.1,-0.9,-0.2)
Ammonium Nitrate (0.6,0.2,0.1,-0.2,-0.3,-0.5)

By applying the bipolar neutrosophic average operator 4 on Table. 3 and Table. 4, the
average values are given in Table. 5.

Table 5: Bipolar neutrosophic average values

Average Value

Chemical Exposures (0.39,0.023,0.014,-0.04,-0.167,-0.515)
Oxidizing materials (0.619,0.032,0.001,-0.08,-0.483,-0.165)
Toxic vapour cloud (0.53,0.003,0.001,-0.04,-0.198,-0.261)
Electric Hazard (0.570,0.032,0.032,-0.014,-0.465,-0.422)
Oil Spill (0.558,0.007,0.014,-0.009,-0.384,-0.445)
Hydrocarbon gas leakage (0.493,0.004,0.002,-0.011,-0.543,-0.229)
Ammonium Nitrate (0.546,0.003,0.001,0.0,-0.464,-0.417)

With regard to the weight vector (0.35, 0.80, 0.30, 0.275, 0.65, 0.75, 0.50) associated to each
cause of accident, the weighted average values are obtained by multiplying each average value
with corresponding weight and are given in Table. 6.
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Table 6: Bipolar neutrosophic weighted average table

Weighted Value

Chemical Exposures (0.1365,0.0081,0.0049,-0.0140,-0.0585,-0.1803)
Oxidizing materials (0.4952,0.0256,0.0008,-0.0640,-0.3864,-0.1320)
Toxic vapour cloud (0.1590,0.0009,0.0003,-0.012,-0.0594,-0.0783)
Electric Hazard (0.2850,0.0160,0.0160,-0.0070,-0.2325,-0.2110)
Oil Spill (0.1535,0.0019,0.0039,-0.0025,-0.1056,-0.1224)
Hydrocarbon gas leakage (0.3205,0.0026,0.0013,-0.0072,-0.3530,-0.1489)
Ammonium Nitrate (0.4095,0.0023,0.0008,0.0,-0.3480,-0.2110)

Using Formula. 5, the resulting normalized values are shown in Table. 8.

Table 7: Normalized values

Normalized
value

Chemical Exposures 1.5966
Oxidizing materials 1.5006
Toxic vapour cloud 1.6540
Electric Hazard 1.6090
Oil Spill 1.4938
Hydrocarbon gas leakage 1.6036
Ammonium Nitrate 1.5089

The accident possibilities can be placed in the following order: toxic vapour cloud ≻ electric
hazard ≻ hydrocarbon gas leakage ≻ chemical exposures ≻ ammonium nitrate ≻ oxidizing
materials ≻ Oil spill where, the symbol ≻ represents partial ordering of objects. It can be easily
seen that the formation of toxic vapour clouds, electrical and energy systems and hydrocarbon
gas leakage are the major dangers to the chemical industry. There is a very little danger due
to oil spill. Chemical exposures, oxidizing materials and ammonium nitrate has an average
accidental danger. Therefore, industry needs special precautions to prevent the major hazards
that could happen due the formation of toxic vapour clouds.

(2) Domination in bipolar neutrosophic graphs
Domination has a wide variety of applications in communication networks, coding theory, fixing
surveillance cameras, detecting biological proteins and social networks etc. Consider the example
of a TV channel that wants to set up transmission stations in a number of cities such that every
city in the country get access to the channel signals from at least one of the stations. To
reduce the cost for building large stations it is required to set up minimum number of stations.
This problem can be represented by a bipolar neutrosophic graph in which vertices represent
the cities and there is an edge between two cities if they can communicate directly with each
other. Consider a network of ten cities {C1, C2, · · · , C10}. In the bipolar neutrosophic graph,
the positive degree of each vertex represents the level of truth, indeterminacy and falsity of
strong signals it can transmit to other cities and the negative degree of each vertex represents
the level of truth, indeterminacy and falsity of weaker signals it can transmit to other cities.
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Figure 4.1: Domination in bipolar neutrosophic graph

The bipolar neutrosophic value of each edge represents the degree of truth, indeterminacy and
falsity of strong and weak communication between the cities. The graph is shown in Fig. 4.1.
D = {C8, C10} is the minimum dominating set. It is concluded that building only two large
transmitting stations in C8 and C10, a high economical benefit can be achieved.
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The method of calculating the minimum number of stations is described in the following
Algorithm. 1.

Table 8: Algorithm for the selection of minimum locations

Algorithm 1

1. Begin
2. Enter the membership values B(xi) of n number
of possible locations A = {C1, C2, . . . , Cn}.
3. Input the adjacency matrix [Cij ]n×n of transmission stations.
4. k = 0
5. D = ∅
6. do i from 1 → n
7. do j from i+ 1 → n
8. if Cij = A(Ci) ∩A(Cj) then
9. Ci ∈ D, k = k + 1, xk = Ci

10. end if
11. end do
12. end do
13. Arrange X \D = {xk+1, xk+2, . . . , xn} = J
14. do i from 1 → k
15. D′ = D \ {xi}
16. if D′ is a dominating set then
17. D = D′

18. J = J ∪ {xi}
19. end if
20. end do
21. if D ∪ J = Y then
22. print: D is a minimal dominating set.
23. else
24. print: There is no dominating set.
25. end if

5 Comments on Broumi et al.’s Bipolar Neutrosophic Graphs

Broumi et al. [11] defined bipolar single-valued neutrosophic graphs in the following way:

Definition 5.1. [11] Let A = (TP
A , IPA , FP

A , TN
A , INA , FN

A ) and B = (TP
B , IPB , FP

B , TN
B , INB , FN

B ) be
bipolar single valued neutrosophic graph on set Y . If B = (TP

B , IPB , FP
B , TN

B , INB , FN
B ) is a bipolar

single valued neutrosophic relation on A = (TP
A , IPA , FP

A , TN
A , INA , FN

A ) then

TP
B (xy) ≤ TP

A (x) ∧ TP
A (y), IPB (xy) ≥ IPA (x) ∨ IPA (y), FP

B (xy) ≥ FP
A (x) ∨ FP

A (y),

TN
B (xy) ≥ TN

A (x) ∨ TN
A (y), INB (xy) ≤ INA (x) ∧ INA (y), FN

B (xy) ≤ FN
A (x) ∧ FN

A (y),

for all x, y ∈ Y .

Broumi et al. [11] defined complement of a bipolar neutrosophic graph as follows:
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Figure 5.1: Bipolar single valued neutrosophic graph G according to [11]
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Figure 5.2: Complement of G according to [11]

Definition 5.2. [11] The complement of a bipolar neutrosophic graph G = (A,B) is a bipolar
single valued neutrosophic graph G = (A,B) where, A = A = (TP

A , IPA , FP
A , TN

A , INA , FN
A ), B =

(TP
B , IPB , FP

B , TN
B , INB , FN

B ) and is defined by

TP
B (xy) = TP

A (x) ∧ TP
A (y)− TP

B (xy), IPB (xy) = IPA (x) ∨ IPA (y)− IPB (xy),

FP
B (xy) = FP

A (x) ∨ FP
A (y)− FP

B (xy), TN
B (xy) = TN

A (x) ∨ TN
A (y)− TN

B (xy),

INB (xy) = INA (x) ∧ INA (y)− INB (xy), FN
B (xy) = FN

A (x) ∧ FN
A (y)− FN

B (xy),

for all xy ∈ Y × Y .

We illustrate Definitions 5.1-5.2 [11] by the following example.

Example 5.1. The complement G of G is obtained by using Definitions 5.1-5.2 [11] as shown
in Fig. 5.2. It can be seen from Fig. 5.2 that IpB(yz), f

p
B(yz), I

p
B(yt), f

p
B(yt) 6∈ [0, 1] and InB(yz),

fn
B(yz), I

n
B(yt), f

n
B(yt) 6∈ [−1, 0]. Hence G is not a bipolar single valued neutrosophic graph.

6 Conclusions

Bipolar fuzzy graph theory has many applications in science and technology. A bipolar neu-
trosophic graph is a generalization of the notion bipolar fuzzy graph. We have introduced the
idea of bipolar neutrosophic graph and operations on bipolar neutrosophic graphs. We have
investigated the dominating and independent sets of certain graph products. Two applications
of bipolar neutrosophic sets and bipolar neutrosophic graphs are studied in chemical industry
and construction of radio channels. We are planning to extend our research of fuzzification to
(1) Bipolar fuzzy rough graphs; (2) Bipolar fuzzy rough hypergraphs, (3) Bipolar fuzzy rough
neutrosophic graphs, and (4) Decision support systems based on bipolar neutrosophic graphs.

19



References

[1] M. Akram, Bipolar fuzzy graphs, Information Sciences, 181(24)(2011) 5548-5564.

[2] M. Akram, Bipolar fuzzy graphs with application, Knowledge Based Systems, 39(2013) 1-8.

[3] M. Akram and W. A. Dudek, Regular bipolar fuzzy graphs, Neural Computing and Appli-
cations, 21(1)(2012) 197-205.

[4] M. Akram and M. Sitara, Bipolar neutrosophic graph structures, Journal of the Indonesian
Mathematical Society, 23(1)(2017) 55-76.

[5] M. Akram and Maryam Nasir, Certain Bipolar Neutrosophic Competition Graphs, Journal
of the Indonesian Mathematical Society, 23(2)(2017), 1-23.

[6] M. Akram and Anam Luqman, Novel applications of bipolar neutrosophic hypergraphs,
Journal of intelligent and fuzzy systems, 2017 (In Press).

[7] M. Akram and Shum, K. P., Bipolar neutrosophic planar graphs, Journal of Mathematical
Research with Applications, 2017 (In Press).

[8] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letters, 6(5)(1987)
297-302.

[9] K. R. Bhutani and A. Battou, On M−strong fuzzy graphs, Information Sciences,
155(1)(2003) 103-109.

[10] K. R. Bhutani and A. Rosenfeld, Strong arcs in fuzzy graphs, Information Sciences,
152(2003) 319-322.

[11] S. Broumi, M. Talea, A. Bakali and F. Smarandache, On bipolar single valued neutrosophic
graphs, Journal of New Theory, 11(2016) 84-102.

[12] I. Deli, M. Ali and F. Smarandache, Bipolar neutrosophic sets and their application based
on multi-criteria decision making problems,In Advanced Mechatronic Systems (ICAMechS),
International Conference IEEE, (2015), 249-254.
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