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Abstract

In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating
and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods
based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing
domination in bipolar neutrosophic graphs.
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1 Introduction

A fuzzy set[30] is animportantmathematicastructureto represena collectionof objectswhoseboundaryis vague.
Fuzzymodelsarebecomingusefulbecaus®f theiraimin reducingthe differencedbetweerthetraditionalnumerical
modelsusedin engineeringandsciencesandthe symbolicmodelsusedin expertsystemslin 1994,Zhang[37] intro-
ducedthenotionof bipolarfuzzy setsandrelations.Bipolar fuzzy setsareextensiorof fuzzy setswhosemembership
degreeranges—1,1]. Themembershiglegreg(0, 1] indicatesthatthe objectsatisfiesa certainpropertywhereagshe
membershiglegreg—1,0) indicateshatthe elementatisfiegsheimplicit counterproperty.Positiveinformationrep-
resentwhatis consideredo bepossibleandnegativanformationrepresentvhatis grantedo beimpossible Actually,
a variety of decisionmaking problemsare basedon two-sidedbipolarjudgementon a positive sideanda negative
side.Nowadaydipolarfuzzy setsare playinga substantiatole in chemistry economicsgcomputersciencegngineer-
ing, medicineanddecisionmakingproblems.Smarandachf3] introducedthe ideaof neutrosophigrobability, sets
andlogic. Pengetal. [2(], in 2014,describedsomeoperationabropertiesand studieda new approachfor multi-
criteria decisionmaking problemsusing neutrosophicets. Ye [28, 29] discussedrapezoidaheutrosophisetsand



simplified neutrosophic sets with applications in mulitenia decision making problems. The other terminologies
and applications of neutrosophic sets can be seePdir?B, 29, 9, 8, 11, 25]. In a neutrosophic set, the membership
value is associated with truth, false and indeterminacyetesggbut there is no restriction on their sum. Deli et &) [
extended the ideas of bipolar fuzzy sets and neutrosoptida®ipolar neutrosophic sets and studied its operations
and applications in decision making problems.

Graph theory has numerous applications in science and esgigy. However, in some cases, some aspects of graph
theoretic concepts may be uncertain. In such cases, it isrit to deal with uncertainty using the methods of fuzzy
sets and logics. Based on Zadeh's fuzzy relati®i$ Kaufmann [L2] defined a fuzzy graph. The fuzzy relations
between fuzzy sets were also considered by Roseri?é]dahd he developed the structure of fuzzy graphs, obtaining
analogs of several graph theoretical concepts. Later oaft&harya%] gave some remarks on fuzzy graphs, and
some operations on fuzzy graphs were introduced by Mordasd®eng7]. The complement of a fuzzy graph was
defined by Mordesorifp]. Bhutani and Rosenfeld introduced the conceptle$trong fuzzy graphs irg] and studied
some of their properties. The concept of strong arcs in fgzaphs was discussed ifi][ The theory of fuzzy graphs
has extended widely by many researchers as it can be sets) . The idea of domination was first arose in chess-
board problem in 1862. Somasundaram and Somasundathintroduced domination and independent domination
in fuzzy graphs. Gani and Chandrasekarb® ptudied the notion of fuzzy domination and independentidation
using strong arcs. Akrani] 2] introduced bipolar fuzzy graphs and discuss its variogperties. Akram and Dudek
[3] studied regular bipolar fuzzy graphs. In this researcltlastwe introduce the concept of bipolar neutrosophic
graphs. We present the dominating and independent setpafbhneutrosophic graphs. We describe an outranking
approach for risk analysis and construction of minimum nends radio channels using bipolar neutrosophic sets and
bipolar neutrosophic graphs. We also develop an algoritmadmputing domination in bipolar neutrosophic graphs.

2 Preliminaries

LetY be a non-empty universe an@ is the collection of all 2 element subsets of. A pair G* = (Y,E), where
E C Y2is agraph. The cardinality of any subs& C Y is the number of vertices iD, it is denoted byD|.

Definition 2.1. [30, 31] A fuzzy selt in a universeY is a mappingt : Y — [0,1]. A fuzzy relatioron is a fuzzy set
vinY xY.

Definition 2.2. [31] If u is a fuzzy set orY andv a fuzzy relation inY. We can say is a fuzzy relation oru if
v(y,z2) <min{u(y),(2)} forallx,y €Y.

Definition 2.3. [12] A fuzzy graplon a non-empty universéis a pairG = (i, A ), wherep is a fuzzy set ofy and
A is a fuzzy relation irY such thafA (y2) < min{u(y),u(z)} forally, z€ Y. Note thatA is a fuzzy relation onu, and
A(y2) =0 forallyze Y2 —E.

Definition 2.4. [32] A bipolar fuzzy set on a non-empty s¥éthas the fornC = {(y, uP(y), u"(y)) :y € Y} where,
uP:Y —[0,1) andu":Y — [—1,0] are mappings.

The positive membership valyeP(y) represents the strength of truth or satisfaction of an ebéméo a certain
property corresponding to bipolar fuzzy €andu"(x) denotes the strength of satisfaction of an elenyegntsome
counter property of bipolar fuzzy sét If uP(y) # 0 andu"(y) =0, itis the situation whephas only truth satisfaction
degree for propertg. If u"(y) # 0 anduP(y) =0, itis the case thatis not satisfying the property & but satisfying



the counter property t@. It is possible fory that uP(x) # 0 andu"(x) # 0 wheny satisfies the property & as well
as its counter property in some part\of

Definition 2.5. [1] Let Y be a nonempty set. A mappiy= (uP,u"):Y xY — [0,1] x [-1,0] is a bipolar fuzzy
relation onY such thafuP(xy) € [0,1] andu"(xy) € [-1,0] fory,z€ Y.

Definition 2.6. [1] A bipolar fuzzy graph orY is a pairG = (C,D) whereC = (ug,ug) is a bipolar fuzzy set ol
andD = (u5, uB) is a bipolar fuzzy relation ity such that

H5(y2) < HE(Y) A HE(2) andub(y2) > E(y) v HE(2) for all y,z € X.

Note thatD is a bipolar fuzzy relation o, and u5(y2) > 0, u(y2) < 0 for yze Y2, ub(y2) = u3(y2) = 0 for
yze Y2—E.

Definition 2.7. [24] A neutrosophic se€ on a non-empty seY is characterized by a truth membership function
tc 1 Y — [0,1], indeterminacy membership functid@: Y — [0, 1] and a falsity membership functidig : Y — [0, 1].
There is no restriction on the sumtgf{x), Ic(x) and fc(x) for all x € X.

Definition 2.8. [10] A bipolar neutrosophic set on a empty ¥eis an object of the form

C={(t&y).1EW), &), L), 1E()., fE(y)) :ye Y}

wheretf, 12, f8:Y —[0,1] andt?, 18, 8 : Y — [-1,0]. The positive valueg(y),12(y), ff(y) denote respectively the
truth, indeterminacy and false membership degrees of anegigy € Y Whereasc(y), 2(y), f2(y) denote the implicit
counter property of the truth, indeterminacy and false mensiip degrees of the elemgnt Y corresponding to the
bipolar neutrosophic s€t.

3 Bipolar neutrosophic graphs

Definition 3.1. A bipolar neutrosophic relation on a non-empty'¢é$ a bipolar neutrosophic subsetYok Y of the
formD = {(yzt5(y2),15(y2), f5(y2),t5(y2),15(y2), 5(y2) : yze Y x Y} wheretf, 15, £5.t5,15, 5 are defined by the
the mapping$s, 15, f5: Y x Y — [0,1] andt], 13, f3 : Y x Y — [~1,0] such that for alyz< supgD),

0 < suptb(y2) +supl5(y2) + supfb(y2) < 3 and— 3 < inftd(y2) +inflg(y2) +inf f5(y2) <O0.

Definition 3.2. A bipolar neutrosophic graph on a non-emptyXes a pairG = (C,D), whereC is a bipolar neutro-
sophic set orX andD is a bipolar neutrosophic relation ¥isuch that

th(y2 <ty Atl(2), 152 <18y)VIE@, f5y2 <fl(y)VE(),
B2 2 E(y) VIc(2), Ip(yd =1y AIc(@), fo(yd = fe(y)Afc(z) forally,zeY,
0 < suptd(y) +supl S (y) + supfS(y) < 3 and— 3 < inft](y) +infI5(y) +infti(y) <0 forallye,
0 < suptS(y2) +suplS(y2) +supf(yz) < 3 and -3 < inft}(yz) +infl5(yz +inff5(y2 <0 forally,ze.



Note thatD(yz) = (0,0,0,0,0,0) forallyze Y x Y \ E.

Example 3.1. Here we discuss an example of a bipolar neutrosophic gragihthatY = {x,y,z}. LetC be a bipolar
neutrosophic set oX given in Table.1 and be a bipolar neutrosophic relation ¥ given in Table.2. Routine

Table 1 | x y z Table2 | xy yz XZ

t{é 03 05 04 té’) 03 03 03
| 0.4 04 03 15 0.4 04 04
f?; 05 02 02 fd 05 02 05
{2 -06 -0.1 -05 th 01 -01 -05
12 -0.5 -0.8 -05 13 -0.8 -0.8 -05
f2 -0.2 -0.2 -05 f3 -0.2 -05 -05

1.

(0.3,0.4,0.5,—-0.5,-0.5,-0.5)

2(0.4,0.3,0.2,-0.5,—0.5,~0.5)

Figure 1: Bipolar neutrosophic grapG

Definition 3.3. Let G; = (Cy,D1) andG; = (C,, D>) be two bipolar neutrosophic graphs wheZg andC, are bipolar
neutrosophic sets of andY,, D; andD5 are bipolar neutrosophic relations¥pandY,, respectively andupgD;) =
E; andsupfD2) = E,. Theunionof G; andG; is a pairG; U G, = (C; UC,, D1 UD3) such that

&), YEYL YEYs 18,(¥), YEYL YEYs
e, =1 &), yeYLyeYe 18 e, =14 1&W), yEVY, yeY,
EYVE @, yenniny, IEWAIE @), yeinY,
f2 (), yEYL YEYs &, (v), yeEYL, Y¢Ys
f8e,M=13 &), yeY,yeYs  €o() =4 &), yéY, YEY:
fRyAfl (@, yeniny, WAL @, yeiny
1E,(y), yeYL yE Y2 f&, (), yeYL y¢ Y2
IC,uc, (V) =1 1&,); yéEYLyeYs 8, =1 &), YEY, YEY,
IE,YVIG(2), yenrnY, fEWVIE@), yeviny;



and membership values of edges are

t5,(v2), yz€ Ey, yz¢ B
tD]_UDz yZ tlgz (yZ), yz¢ Ela yzZe E2

t5, (Y2 Vt5,(y2), yze E1NE;

15,(v2), yze By, yz¢ Ep
ID1UD2 yZ IDpz (yZ), yz¢ E17 yze E2

15,y AI5,(y2), yze E1NE;

5, (y2), yze By, yz¢ Ep
D1UD2 yZ f|§2 (yZ), yz¢ E17 yze EZ

5 (y) A 15, (v2), yze E1NE;

t5, (v2), yze E1, yz¢ B>
tD].UDZ yZ th (yZ), yz¢ Ela yzZe E2

t5, (YD A5, (¥2), yze EaNE;

15, (y2), yze Ey, yz¢ E>
15,up,(¥2 = { 18,(y2), yz¢ By, yze B

I8, (Y2 VI, (Y2, yze EiNE;

f5, (Y2, yze By, yz¢ By
fo,up, (Y2 = ¢ f5,(y2), yz¢ E1, yze B2
f5,(y2 vV 15,(y2), yze E1NE;

Definition 3.4. Theintersectionof two bipolar neutrosophic grapl@ = (C1,D1) andG; = (C,,D») is a pairG; N

G, = (C1NCy,D1NDy) whereCq, Cy, D1 andD;, are given in Definitior8.3. The membership values of vertices and
edges inG1 NG, can be defined as,

C
e, V) =&, VIEWY), 1&nc,Y) =IEWMAILY), fCnc,(Y) = TEWATS(Y), foral yeYinYs.

t5,n0,(¥2) =t5. (Y2 AtS(y2), 15 p,(y2 =15,y VIS, (y2), 5 p,(y2 =15 (y2 V15 (v2)
n
D

tB]_ﬁDz (yz) :tB]_ (yz) \ th (yz)? IB]_QDZ (yz) =1 1 (yz) A IBZ (yz)? fB]_ﬁDz (yz) = fB]_ (yz) A f[gz (yz)7
forall yze E;NE,.

Definition 3.5. Thejoin of two bipolar neutrosophic grapl@®; = (C;,D1) andG, = (Cp,D») is defined by the pair
G1+ Gz = (C1 +Cy,D1+ Dy) such thatC; + C, = C,UC, for all x e YUY, and

1. D1+ Dy, =D;UD;forallyze E;NEy,



2. LetE bethe setofall edges joining the vertices®afandG, then for allyze E, wherey € Y; andz e Y,

t5,10,V2 =& W VE,@, 155,02 =18 V) AIE(2), f5,.0,(y2 = f& WA E,(2),
15,+0, (Y2 =1C, (¥) AG, (D), 15,+0,(¥2 =16, (¥) V15, (2), f5,40,(¥2) = 16, (V) V 1, (2).
Definition 3.6. TheCartesian producof two bipolar neutrosophic grapi& andG; is denoted by the pat;0G, =
(C10C,,D10D;) and defined as,
e, ¥) = & (N ALE, (¥), 18,00, (¥) = 1E M VIE V), 8 oc, ) = &) VIS
t€,00,(¥) =1&,(¥) VIE,(Y), 1,00, (¥) =1&, (V) MG, (Y), fCnc,(¥) = 18, (V) A 1S, (Y).

forall yeY;xY,.

1. thDZ((ylayz)(yLZz)) = tgl(yl) /\tlgz(YZZZ)a t5,00,((Y1,¥2) (Y1, 22)) = 1€, (Y1) V1D, (Y222),
forall y; € Y1,y»2> € B,

2. 18100, ((2,Y2) (21.¥2)) =18, (120) AME(¥2), 1,00, ((Y1.¥2)(20,¥2)) = B, (v420) VEE, (v2),
forall y1z1 € E1,y2 € Yz,

3. 15,00, ((Y1,¥2) (Y1, 22)) = I1& (Y1) V15, (Y222), 18,000, (Y1, Y2) (V1,22)) = 1&, (Y1) A1, (Y222),
forall y; € Y1,y,2> € B,

418,00, ((V1,Y2) (,Y2)) = 15, az) VI, (v2), 18,00, ((V1,¥2)(Z1,Y2)) = 1B, (v121) A1, (v2),
forally1z1 € E1,y2 € Yz,

5. 18 00, ((Y1,Y2) (Y1, 22)) = f& (Y1) V 15, (¥222), 5,00, ((V1,¥2) (Y1, 22)) = & (y1) A 15, (222),
forall y; € Y1,y»2> € B,

6. 15 0p,((Y1,¥2)(21,¥2)) = 5 (1za) V £, (y2), 15, 0p, ((V1,¥2)(21,¥2)) = 5, (yaz1) A £, (y2),
forall yyz; € E1,y2 € Y.

Definition 3.7. Thedirect productof two bipolar neutrosophic grapi®& = (C;,D1) andG; = (C,, D») is denoted by
the pairG; x G, = (C1 x Cy,D1 x D3) such that,

t& v, () =& (V) A5, (Y), 18, ) =1E W VIE(Y), fE e, =fE (VI y),
€ xc,(¥) =& () VIS (Y), IC,xc, (¥) = 18, (¥) AIE,(Y), i€, wc, (¥) = 16, (¥) A TS, (Y),

forall yeYixY,.
1 t5, o, (Y1,Y2) (21, 22)) = t5, (Y1z1) A5, (Yaz2), B, p,((Y1,Y2)(Z1,22)) =5, (Y121) VB, (VaZ2),
for all V173 € El,yzzz € By,

215 0, ((Y1,Y2)(z1,22)) = 15, (y1z1) VIS, (Y222), 18, p, (Y1, Y2)(21,22)) = I8, (Yaza) A5, (¥222),
for all V173 € El,yzzz € By,

3. 15 0, ((Y1,¥2)(z1,22)) = 5, (y1za) V 15, (y2z2), 5,0, ((Y1,¥2) (21, 22)) = 5, (ya22) A 5, (Y222),
for all V173 € El,yzzz € Eo.



Proposition 3.1. Let G; and G be any two bipolar neutrosophic graphs thep@5;, G1 NGy, G + Gy, G10G; and
G1 x G, are bipolar neutrosophic graphs.

Definition 3.8. A bipolar neutrosophic grap8 = (C,D) where,E = supgD), is calledstrong bipolar neutrosophic
graphif

tS(y2 =8y Atl(2), 1502 =18y vIE@), iy =1l(y)Vv i),
th(y2 =t2(y) VIE(2), 15(y2 =IE(Y)AIC(2), To(y2 = fE(y) A fE(z) forall yzeE.

Definition 3.9. A bipolar neutrosophic grapB = (C,D) is calledcomplete bipolar neutrosophic grajih

5y =ty A2, 15(y2 =18(y)vI&(2), fS(y2=1l(y VL2,
32— 18 &

B2 =tc(y) V£, oy =Ic(AIE(2). fo(yd =TE(y)Afc(z) forall yzeY.

Definition 3.10. The complementf a bipolar neutrosophic gragh= (C, D) is defined as a paft® = (C¢,D€) such
that, for ally € Y andyze Y?,

ty) =&y, 1&y) =18y, fEW=1EWy), y=ty, &Y=y, &y =1Ey.
tSe(y2 =t A @ -t8(yd, 150y =12y VIE@D - 15y2,  fl(y2 =fE(y) v iE(2) -
toe(y2) =tC(y) VIE(2) —t5(y2),  Ipe(y2 = I¢ b

Remark3.1 A bipolar neutrosophic grap® is said to beself complementarn§ G = G°.

Theorem 3.1. Let G be a self complementary bipolar neutrosophic graphthe

;tDyz ;tc t2(2), glpyz ;lp y)VI1E(2), ;nyz ;fp y)V 2(2)
;ZtB(yZ)ZE;ZtS(y)MS(ZL ;l b(y2) = ;lc y) VIe(2), ;foyz ;fc

Theorem 3.2. Let G= (C,D) be a bipolar neutrosophic graph such that for alzy Y,

I\)lH

(- v 7E(@),
(fe(y) A 18(2).

By = SN AED), 182 = S8 VIED),  Hhelya) =

NI R NI
NI N -

ey = 3@OVED). 152 = 5080 AA@).  TEe(y2) =

Then G is self complementary bipolar neutrosophic graph.

Proof. Let G® = (C°®, DC) be the complement of bipolar neutrosophic gr&k (C, D), then by definition3.1Q

tBe(¥2) =) AMED) ~ 15 (y2)

tBe(y2) = t2() A2 — 2 () M)
B2 = 5 (20 M)

tBe(¥2 =t5(y2)



the(y2) =tE(y) VIE(2) —t5(y2)

t:(y2) = () Vi) - 3 () Vi)
. 1

toe(y2) = >

e (Y2 =5 (y2)

Similarly, it can be proved thaf. (y2) = 15(y2), 18:(y2) = 15(y2), flc(y2) = f5(y2) andf5:(y2) = f5(y2). Hence,
G is self complementary. O

Definition 3.11. Thedegreeof a vertexy in a bipolar neutrosophic grafih= (C,D) is denoted by deg) and defined
by the 6-tuple as,

degy) = (ded’(y), ded’(y), ded (y), ded'(y), ded'(y), ded(y)),

thy2, S 15(y2, § 5(y2, § t5(y2, S 18(y2d, § f5(y2).
= (2,502 21602, 3 502, 3 1802, 3 1802, 3. 18

The term degree is also referredresghborhood degree

Definition 3.12. The closed neighborhood degree of a vestéx a bipolar neutrosophic graph is denoted by [geg
and defined as,

dedy] = des:f’ , deg[yl, ded'ly], ded'ly], ded}y]
= (de(_:iO (y) +t&(y), dedP(y) +18(y), ded (y) + fE(y deg‘ y), ded'(y) +
ded (y) + fp

Definition 3.13. A bipolar neutrosophic grap® is known as aegular bipolar neutrosophic graph if all vertices of
G have same degree. A bipolar neutrosophic gi@ps known as aotally regular bipolar neutrosophic graph if all
vertices ofG have same closed neighborhood degree.

Theorem 3.3. A complete bipolar neutrosophic graph is totally regular.

Theorem 3.4. Let G= (C,D) be a bipolar neutrosohic graph then€ (tP, 1P fPt" I" ") is a constant function if
and only if the following statements are equivalent:

(1) G is a regular bipolar neutrosophic graph,

(2) G is totally regular bipolar neutrosophic graph.

Proof. Assume tha€ is a constant function and for alle Y,

/

2(y) =k, 18(y) = ki, 1(y) =k, €(y) =k, 1&(y) =k, £() =K
where k;, ki, ks, k{, k;, k'f are constants.
(1) = (2) Suppose thab is a regular bipolar neutrosophic graph and@&e (pt, pi, Ps, Nk, i, ng) forallyey.

Now consider,
dedy] = (ded’(y) +t&(y), ded’(y) +18(y), ded (y) + fE(y), ded\(y) +12(y), ded'(y) +t&(y), ded (y) + fE(y)) = (pt +



ke, pi + ki, pr + ke, e+ kg, +k,ne +K;)  forallye.
Itis proved thatG is totally regular bipolar neutrosophic graph.
(2) = (1) Suppose thas is totally regular bipolar neutrosophic graph and foyallY dedy] = (p, b, Py, N, Ny, Ny).-

(ded(y) + k., ded’(y) + ki, ded(y) + ki, ded'(y) + k., ded\(y) + ki, ded (y) + ki) = (P, Pi» Pr, . My, M),
deda(y)vded)(y)vdegf(y)ade@(y)vdedl(y)ade@(y))"" ktvkhkfaktvklka) = (p[a pla pfv n’[v nlv nf)v
(ded’(y), ded(y), dedf(y),ded'(y),ded'(y),ded (v)) = (P — ki, P — ki, Py — ki, i — ke, 0y — K, ng —Kp),

forall yeY. ThusGis a regular bipolar neutrosophic graph.

Conversely, assume that the conditions are equivalentdgy) = (, ¢, cr, c, di, df) and defy] = (c, ¢;, C;, d, dj, dy).
Since by definition of closed neighborhood degree foy allY,

dedy] = deqy) ( PY),1E(y), FE(Y), tc(y) &), 1Ey),

= (L2).12(y), 1) L8). 12(). 1(y)) = dedy] - degly),

= (8W)1EY). W)L IEW). () = (6~ 0.6 —a.¢; —cr.df —dv.df —dh.df —d),

forall yeY.HenceC= ( -G, cI — c|7cf — cf,dI ok, dI d,d; —df), a constant function which completes the
proof. O

Definition 3.14. A bipolar neutrosophic grap@ is said to barregular if at least two vertices have distinct degrees. If
all vertices do not have same closed neighborhood degrer&tis known adotally irregular bipolar neutrosophic
graph.

Theorem 3.5. Let G= (C,D) be a bipolar neutrosophic graph and€ (t2,12, f2,t2,12, f0) be a constant function
then G is an irregular bipolar neutrosophic graph if and oifi{s is a totally irregular bipolar neutrosophic graph.

Proof. Assume thaG is an irregular bipolar neutrosophic graph then at leastugrtices ofG have distinct degrees.
Lety andzbe two vertices such that dgg = (r1,r2,r3,s1,%,S3) and degz) = (r’l, r/z, ré,s’l,slz,%/) where 1 # ri’ , for
somei =1,2,3.

Since,C is a constant function l& = (kj, ky, ks, l1,12,13). Therefore,

deqy] = degy)+(k17 k27 K31 |la |27 |3)
dedy] = (r1+ky,ra+ ko, r3+ ks, s14 11,2+ 12,53+ 13)
and degg] = (ry+ka, o+ ko, Fs + Ka, Sy + 11,5 + l2,55 + |3).

Clearlyr; + ki # ri' +ki , for somel = 1,2, 3 thereforey andz have distinct closed neighborhood degrees. Héhie
a totally irregular bipolar neutrosophic graph.
The converse part is similar. O

Definition 3.15. If G = (C,D) be a bipolar neutrosophic graph apa are two vertices irG then we say thay
dominates f



A subsetD’ C Y is adominating setf for eachze Y\ D' there existy € D' such thaty dominatesz. A dominating
setD’ is minimal if for everyy € D', D'\ {y} is not a dominating set. Th#gomination numbeof G is the minimum
cardinality among all minimal dominating sets®f denoted by (G).

x(05,0.2,0.3,-0,2,-0.2,~0.7) ¥(0.6,0.1,0.2,-0,2,~0.3,~0.7)
5,0.1,0.3,~0,2,~0.3, 0. (
(0.5,0.1,0.3,-0,2,~0.3,-0.7) o.q_ae
0
. -
- . 2 5
< © ~05 S
=] (=] I [
T i 92 o
o o3 S
o (=] ]
T T o
o N 5
S S 7
T T o
o o )
S S o
S g A
= < 02 S
S S o =
0-’5"0‘7'\
o
(0.4,02,02,-0,2,~0.3,-0.4)

2(0.5,0.2,0.3,-0,3,-0.2,-0.5) w(05,0.2,02,-0,2,-0.3,-05)

Figure 2: Bipolar neutrosophic grapB.

Example 3.2. Consider a bipolar neutrosophic graph as shown ir2Fihe set{x, w} is a minimal dominating set
andA(G)=2

Theorem 3.6.1f G; and & are two bipolar neutrosophic graphs Witl"/hland D'2 as dominating sets then(G; UG,) =
A(G1) +A(Gp) — [DyNDy|.

Proof. SinceD; and D, are dominating sets dB; and G, D; UD, is a dominating set 06; U G,. Therefore,
A(G1UG,) < |D;UD,|. It only remains to show thad; U D, is the minimal dominating set. On contrary, assume
thatD' = D/1 U D'Z\ {y} is a minimal dominating set @&; U G,. There are two cases,

Casellfye D'l andx ¢ D'z, thenD/1 \ {y} is not a dominating set d&; which implies thaD’lu D’Z\ {y} =D is not

a dominating set 0B, U G,. A contradiction, henc®; UD, is a minimal dominating set and

A(G1UGy) = [D; UDy),
= A(GLUGy) = A(G1) +A(Gy) — DN Dy).

Case 2.If y € D, andy ¢ D, same contradiction can be obtained. O

Theorem 3.7. If G; and G are two hipolar neutrosophic graphs with Y'Y, £ 0 then,

A(Gy+ Gyp) = min{A (Gy),A (Gy), 2}

Proof. Lety; € Y1 andy; € Y», sinceG; + G, is a bipolar neutrosophic graph, we have

t81+D2 (ylyz) = tgl+C2 (yl) A t£1+C2 (y2) ) t81+D2 (ylyZ) = t81+C2 (yl) \ t81+C2 (yz)
15,10, Y1Y2) =18 1, V) VIE 1, (V2), 15,40, (Y1Y2) = 181, (V1) AIE v, (¥2)

fglmz (Y1y2) = f£1+c2 (1) Vv f£1+C2 (Y2), fBy+0, Y1Y2) = 1E1c, (V1) A 1E1c, (V2)-
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Hence any vertex oB; dominates all vertices db, and similarly any vertex o6, dominates all vertices db;. So,
{y1,¥2} is a dominating set oB; + G,. If D is a minimum dominating set @& + G, thenD is one of the following
forms,

1. D=D; where,A (Gl) = |D1|,
2.D=D> where,A (Gz) = |D2|,

3. D={y1,¥2} wherey; € Y; andy, € Y,. {y1} and{y»} are not dominating sets & or G,, respectively.

Hence,
A(G1+G2) = min{A(G1),A(Gy),2}.

O
Theorem 3.8. Let G, = (C;,D1) and G = (Cy,D>) be two bipolar neutrosophic graphs. If fog ¥ X;, Ci(y1) >0
where,0=(0,0,0,0,0,0), and y, dominates zin G, then(yi,y») dominategyi,z) in G10OGs.

Proof. Sincey, dominates, therefore,
t], (Y2z2) =t (v2) A&, (22), 15, (y222) =18 (y2) VIE,(22), f5,(y222) = 1€ (y2) v 1€, (22),
1D, (Y222) =1C, (Y2) V15, (22), 15, (Y222) =1, (y2) NG, (22), D, (V222) = G, (y2) A TG, (22).
Fory; € Y1, take(y1,2) € Y1 X Y,. By definition3.6,
t5,00, (V1,Y2) (Y1,22)) =t& (Y1) At (Va22),
=t& (y) MG, (Y2) A E (22)},
= {t& (y1) AtE,(y2)} At (y1) At ()},

= tgl\]CZ (yl7 YZ) A tngCZ (yl7 22) .

tc, (y1) V1B, (y222),

t&, (1) V{tS, (y2) VIS, (22)},

{t&, (1) VG, (y2)} V{tg, (1) VG, ()}
=100, (Y1,Y2) VI ac, (Y1, 22).-

t5,00,((Y1,Y2) (Y1, 22))

Similarly, it can be proved that

15,00, (Y1,Y2) (Y1, 22)) = 1€ 06, (Y1, Y2) V18,1, (Y1, 2),
18,00, ((Y1,Y2) (1, 22)) = 1,0, (Y1, ¥2) AIE,ac, (Y1, 22),
8,00, (Y1,Y2) (Y1,22)) = (? ¢, Y1:Y2) V 1€ o, (Y1, 22),
f0,00,((Y1,¥2) (Y1, 22)) = 1€, 0c, (Y1, ¥2) A T o, (Y1, 22)-
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Hence(y1,y») dominategy;, z,) and the proof is complete. O
Proposition 3.2. If G; and G are bipolar neutrosophic graphs and for  Y», C»(z) > 0 where,0=(0,0,0,0,0,0),
y; dominates zin Gz then(yi, ) dominategz, z) in G10G;.

Theorem 3.9. If D'1 and D'2 are minimal dominating sets of1G= (C;,D1) and & = (C;,D>), respectively. Then
D] x Xz and X x D, are dominating sets of {81G, and

A (G10Gg) < Dy x Yo| A[Yy x Dy, (3.1)

Proof. To prove inequalityd.1, we need to show thiﬁl/l x Yo andYy x D'2 are dominating sets @&,0G;. Let(z1,2) ¢
D x Y2 then,z ¢ D;. SinceD] is a dominating set oB;, there existy; € D; that dominateg;. By theorem3.2,
(y1,22) dominatesz;,2) in G1OG,. Since(z,2z) was taken to be arbitrary therefoEél x Y, is a dominating set of
G10Gy. Similarly,Y; x D/2 is a dominating set i6;0G,. Hence the proof. O

Theorem 3.10. Let D'1 and D'2 be the dominating sets ofiG= (C1,D;) and G = (Cy,D5), respectively. Thenp< D'2
is a dominating set of the direct produci G G, and

A(Gy x Gp) = |Dj x Dy. (3.2)

Proof. Let(z1,2) € Y1 x Yo\ D'1 X D’2 thenzy €Y1\ D'1 andz € Yo\ D'2. Since,D'1 and D'2 are dominating sets there
existy; € D’1 andy, € D’2 such that; dominatesy andy, dominates,. Consider,

t5,x0, (Y1,Y2) (21,22)) =1, (Y121) At (¥222),
= {t&, (y) A& (2)} A G, (v2) A E, ()},
= {t§ (o) A, (y2)} A tE (20) AE,(22)),

= th]_XCZ (yleZ) /\tglxcz (Z:]_7 22)

It shows that(ys,y,) dominategz;,2). Since(y1,Y2) was taken to be arbitrary therefore, every elementof Y \
D; x D, is dominated by some element®f x D,. It only remains to show tha; x D, is a minimal dominating set.
On contrary, assume thBf is a minimal dominating set @b x G, such tha{D'| < |D'1 X D'2|. Let (tg,t2) € D/1 X D/2
such thaity,t;) ¢ D' i.e.,t; € D] andt € D, then there exist; € Y; \ D; andt, € Y2\ D, which are only dominated
by t; andty, respectively. Hence no element other tliant,) dominates{t/l,t'z) so(t1,tz) € D'. A contradiction, thus
A(G1 x Gp) = |D x Dy|. O

Corollary 3.1. If G; and G are two bipolar neutrosophic graphs; ominates zin G; and y, dominates zin Gy
then(y1,z;) dominategy,,z) in Gy x Gy.

Definition 3.16. In a bipolar neutrosophic graph two vertioeandz areindependenif

B2 <€)A@, 1502 <IEY)VIE@, 52
D D

tH(y2 > (Y VIE(D),  15(y2) > 1e(y) AIE( fc(2). 3-3)

An independent set Nf a bipolar neutrosophic graph is a subletf Y such that for ally,z € N equations3.3 are
satisfied. An independent setrizaximalif for everyt € Y\ N, NU{t} is not an independent set. Andependent
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numberis the maximal cardinality among all maximal independetg sé€a bipolar neutrosophic graph. It is denoted
by a(G).

Theorem 3.11. If G; and & are bipolar neutrosophic graphs on énd ¥, respectively such thag Y, = 0 then
G(Gl U Gz) = G(Gl) + G(Gz).

Proof. Let N; andN, be maximal independent sets®f andG,. SinceN; NN, = 0 thereforeN; UN;, is a maximal
independent set @, U G,. Hencea (G1UGy) = a(G1) + a(Gy). O

Theorem 3.12. Let G; and G be two bipolar neutrosophic graphs theriG; + G;) = a(Gy) V a(Gy).

Proof. LetN; andN, be maximal independent sets. Since every vert&@afominates every vertex @&, in G; + Gs.
Hence, maximal independent set®@f + G; is eitherN; or Np. Thus,a (G + Gp) = a(G1) vV a(Gy). O

Theorem 3.13. If N; and N are maximal independent sets of @nd &, respectively and MY, = 0. Then
a(G10Gz) = INg x No| 4 [N| where, N= {(yi,Z) : ¥i € Y1\ N1,z € Y2\ No,ViYi;1 € E1,zz1 € Ep, 1=1,23,---}.

Proof. Ny andN, are maximal independent sets@®f andG,, respectively. Clearly\; x N, is an independent set of
G10G; as no vertex oN; x N, dominates any other vertex bif x Na.

Consider the set of verticd$ = {(i,z) : i € Y1\ N1,z € Y2\ N2, ViVi+1 € E1,z71 € Ez}. It can be seen that no
vertex(yi,z) € N for eachi = 1,2, 3, --- dominatesy;,1,z1) € N for eachi = 1,2,3,---. HenceN = (N; x No) UN

is an independent set 60G,.

Assume thaB=N'U {(¥i,zj)}, for somei # j, yi € Y1\ N1 andz; € Yo\ Np, is a maximal independent set. Without
loss of generality, assume that= i + 1 then,(yi, z;) is dominated byyi,z). A contradiction, hencdl' is a maximal
independent set arml(G10G;) = [N'| = [Ny x Na| + |N| O

Theorem 3.14. If D} and B, are minimal dominating sets of;Gand G then, ¥ x Y, \ D} x D, is a maximal inde-
pendent set of Gx G anda (Gy x Gz) = ninp — A (G1 x Gy) where, n and rp are the number of vertices in;Gnd
G,.

The proof is obvious.
Theorem 3.15. An independent set of a bipolar neutrosophic graps @GC, D) is maximal if and only if it is indepen-

dent and dominating.

Proof. If N is a maximal independent set@f then for everyy € Y\ N, NU{y} is not an independent set. For every
vertexy € Y \ N, there exists somee N such that

(2 =& ALE@), 15(y2) = IE(y) VIE(
B(y2 =tE(y) VIE(D), 15(y2 =IC(y) AlE(

Thusy dominatesx and hencé\ is both independent and dominating set.
Conversely, assume thBtis both independent and dominating set but not maximal ieddent set. So there exists

13



a vertexx € X\ N such thalN U {x} is an independent set i.e., no verteNrdominates, a contradiction to the fact
thatN is a dominating set. Hend¢ is maximal. O

Theorem 3.16. Any maximal independent set of a bipolar neutrosophic giaghminimal dominating set.

Proof. If N is a maximal independent set of a bipolar neutrosophic gtiagih by Theoren3.15 N is a dominating
set. Assume thal is not a minimal dominating set then, there always exist astl®nez € N for which N\ {z}
is a dominating set. On the other handNif, {z} dominatesX\ {N\ {z}}, at least one vertex iN \ {z} dominates
z A contradiction to the fact thatl is an independent set of bipolar neutrosophic gr@pHenceN is a minimal
dominating set. O

4 Multiple criteria decision making methods

Multiple criteria decision making refers to making decrsan the presence of multiple, usually conflicting, creri
Multiple criteria decision making problems are common iergday life. In this section, we present multiple criteria
decision making methods for the identification of risk in idamn support systems. The method is explained by an
example for prevention of accidental hazards in chemiahstry. The application of domination in bipolar neutro-
sophic graphs is given for the construction of transmisstations.

(1) An outranking approach for safety analysis using bipola neutrosophic sets

The proposed methodology can be implemented in variousfieldifferent ways e.g., multi-criteria decision making
problems with bipolar neutrosophic information. Howewar main focus is the identification of risk assessments in
industry which is described in the following steps.

The bipolar neutrosophic information consists of a groupsk®\alternativef = {r1,r»,--- ,rh} evaluated on the ba-
sis of criteriaC = {c1,Cp, -+ ,Cm}. Hererj, i=12,--- 'nis the possibility for the criteria,, k=1,2,--- ;mandrj are

in the form of bipolar neutrosophic values. This method itadile if we have a small set of data and experts are able to
evaluate the data in the form of bipolar neutrosophic infation. Take the values ok asri = (t}, 15, L. th 1%, ).

Step 1.Construct the table of the given data.

Step 2.Determine the average values using the following bipolatmsophic average operator,

Aa:}(gtp—ﬁt-p m|_F_’ mf_P mtn gm_ﬁm mf_n_mf.n) (4.1)
njzl'l lelj’ulj’ﬂu’ﬂmjzlu 1:1”’;1” JI:lllJv :

foreachi=1,2,---,n.

Step 3.Construct the weighted average matrix.

Choose the weight vectar = (wq,w»,- -+ ,Wy) . According to the weights for each alternative, the weidlaeerage
table can be calculated by multiplying each average valtie tve corresponding weight as:

Bi:AiWia i:1727"'1n'

14



Step 4.Calculate the normalized value for each alternaisk 3 using the formula,

@i = \/(tip)2+ ()2 +(F7)2+ (1 -tN2+ (~1+11)2+ (-1 )2, (4.2)

foreach =1,2,---,n. Theresulting table indicate the preference orderingeélternativesrisks. The alternativeisk
with maximuma; value is most dangerous or more preferable.

Example 4.1. Chemical industry is a very important part of human socidtigese industries contain large amount
of organic and inorganic chemicals and materials. Many ét@&rproducts have a high risk of fire due to flammable
materials, large explosions and oxygen deficiency etc. dhesidents can cause the death of employs, damages to
building, destruction of machines and transports, econahidsses etc. Therefore, it is very important to prevent
these accidental losses by identifying the major risks ef fxplosions and oxygen deficiency.

A manager of a chemical industry Y wants to prevent such tgbeecidents that caused the major loss to company
in the past. He collected data from witness reports, ingatin teams and near by chemical industries and found that
the major causes could be the chemical reactions, oxidmiagrials, formation of toxic substances, electric hazard
oil spill, hydrocarbon gas leakage and energy systems. Timess reports, investigation teams and industries have
different opinions. There is a bipolarity in people’s thiml and judgement. The data can be considered as bipolar
neutrosophic information. The bipolar neutrosophic infation about company Y old accidents is given in Teble

Table 1: Bipolar neutrosophic Data

Fire Oxygen Deficiency Large Explosion

Chemical Exposures (0.5,0.7,0.2,-0.6,-0.3,-0.7)  (051Q07,-0.5,-0.2,-0.8)  (0.6,0.2,0.3,-0.4,0.0,-0.1)
Oxidizing materials (0.9,0.7,0.2,-0.8,-0.6,-0.1)  (0.8,0.2,-0.5,-0.5,-0.2)  (0.9,0.5,0.5,-0.6,-0.5,-0.2)
Toxic vapour cloud (0.7,0.3,0.1,-0.4,-0.1,-0.3)  (0.8,0.2,-0.5,-0.3,-0.3)  (0.5,0.1,0.2,-0.6,-0.2,-0.2)
Electric Hazard (0.3,0.4,0.2,-0.6,-0.3,-0.7)  (0.904,0.1,-0.7,-0.5)  (0.7,0.6,0.8,-0.7,-0.5,-0.1)
Oil Spill (0.7,0.5,0.3,-0.4,-0.2,-0.2)  (0.2,0.2,0.2%00.4,-0.4)  (0.9,0.2,0.7,-0.1,-0.6,-0.8)
Hydrocarbon gas leakage (0.5,0.3,0.2,-0.5,-0.2,-0.2) .3,§®,0.3,-0.7,-0.4,-0.3)  (0.8,0.2,0.1,-0.1,-0.2}0
Ammonium Nitrate (0.3,0.2,0.3,-0.5,-0.6,-0.5)  (0.9,0.2,0.0,-0.6,-0.5) (0.6,0.2,0.1,-0.2,-0.3,-0.5)

By applying the bipolar neutrosophic average operatbon Tablel, the average values are given in TabBle.

Table 2: Bipolar neutrosophic average values

Average Value

Chemical Exposures (0.39,0.023,0.014,-0.04,-0.16x15).
Oxidizing materials (0.619,0.032,0.001,-0.08,-0.483,65)
Toxic vapour cloud (0.53,0.003,0.001,-0.04,-0.19860)2
Electric Hazard (0.570,0.032,0.032,-0.014,-0.4652P)4
Oil Spill (0.558,0.007,0.014,-0.009,-0.384,-0.445)
Hydrocarbon gas leakage (0.493,0.004,0.002,-0.011303.229)
Ammonium Nitrate (0.546,0.003,0.001,0.0,-0.464,-0)417

With regard to the weight vect@d.35,0.80,0.30,0.275,0.65,0.75,0.50) associated to each cause of accident, the
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weighted average values are obtained by multiplying eaehaaye value with corresponding weight and are given in
Table3.

Table 3: Bipolar neutrosophic weighted average table

Average Value

Chemical Exposures (0.1365,0.0081,0.0049,-0.014%85,00.1803)
Oxidizing materials (0.4952,0.0256,0.0008,-0.0643364,-0.1320)
Toxic vapour cloud (0.1590,0.0009,0.0003,-0.012,-040%500783)
Electric Hazard (0.2850,0.0160,0.0160,-0.0070,-0.2825110)
Oil Spill (0.1535,0.0019,0.0039,-0.0025,-0.1056,-@4Y
Hydrocarbon gas leakage (0.3205,0.0026,0.0013,-0.a03330,-0.1489)
Ammonium Nitrate (0.4095,0.0023,0.0008,0.0,-0.348Q,:00)

Using formula4.2, the resulting normalized values are shown in Table

Table 4: Normalized values

Normalized value

Chemical Exposures 1.5966
Oxidizing materials 1.5006
Toxic vapour cloud 1.6540
Electric Hazard 1.6090
Oil Spill 1.4938
Hydrocarbon gas leakage 1.6036
Ammonium Nitrate 1.5089

The accident possibilities can be placed in the followirdpor Toxic vapour cloud- Electric Hazard- Hydrocar-
bon gas leakage Chemical Exposures Ammonium Nitrate- Oxidizing materials- Oil Spill where, the symbol
>~ represents partial ordering of objects. It can be easily Heat the formation of toxic vapour clouds, electrical and
energy systems and hydrocarbon gas leakage are the magmrddo the chemical industry. There is a very little dan-
ger due to oil spill. Chemical Exposures, oxidizing materamd ammonium nitrate has an average accidental danger.
Therefore, industry needs special precautions to prehenirtajor hazards that could happen due the formation of
toxic vapour clouds.

(2) Domination in bipolar neutrosophic graphs

Domination has a wide variety of applications in commundarahetworks, coding theory, fixing surveillance cameras,
detecting biological proteins and social networks etc. <ier the example of a TV channel that wants to set up
transmission stations in a number of cities such that evigyyircthe country get access to the channel signals from
at least one of the stations. To reduce the cost for buildinggl stations it is required to set up minimum number of
stations. This problem can be represented by a bipolarasaphic graph in which vertices represent the cities and
there is an edge between two cities if they can communicasettli with each other. Consider the network of ten
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cities{C1,Cy,- -+ ,C10}. In the bipolar neutrosophic graph, the degree of eachweef@esents the level of signals it
can transmit to other cities and the bipolar neutrosopHigevaf each edge represents the degree of communication
between the cities. The graph is shown in Figir®. = {Cs,Cy0} is the minimum dominating set. Itis concluded that
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Figure 3: Domination in bipolar neutrosophic graph

building only two large transmitting stations@ andC;, a high economical benefit can be achieved.
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The method of calculating the minimum number of stationsasadibed in the following algorithm 1.
Algorithm 1

1. Enter the total number of possible locations
2. Input the adjacency matri&i; Jnxn Of transmission statiors;,Cs, ..., Cy.
3.k=0,D=0

4. doi from1l—n
dojfromi+1—n
if (tP, 1P FP NN £7)(CCy) = (tP,IP, FP NI £M)(C) A (tP,IP, P " 1" 1) (C)) then
CeD k=k+1,x=C
end if
end do
end do

Ul

. ArrangeX \ D = {X;1,%12,---s %} =J, p=0, g=1

6. doi from1—k

D' = D\ Xk-if1, Xk it1=Xnt1

dojfromk—n+1

domfroml—k—1
if (EP, 1P FP NI M) (XmX;) = (tP, 1P, FP 1M ™) (Xm) A (P, 1P, FP ™17, £7)(x;) then
D=D, p=p+1, k=k-1, dy=x, q=q+1, stop the loop
else if(m=k—1) then
D=D,D =0
end if
end do

end do

end do

7. if (DU(UY,di)ud = X) then
D is a minimal dominating set.
else
There is no dominating set.
end if

5 Conclusions

Bipolar fuzzy graph theory has many applications in sciemaktechnology, especially in the fields of neural networks,
operations research, artificial intelligence and decisiaking. A bipolar neutrosophic graph is a generalization of
the notion bipolar fuzzy graph. We have introduced the idea@imlar neutrosophic graph and operations on bipolar
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neutrosophic graphs. Some properties of regular, totelyylar, irregular and totally irregular bipolar neutrokiap
graphs are discussed in detail. We have investigated théndting and independent sets of certain graph products.
Two applications of bipolar neutrosophic sets and bipotartrosophic graphs are studied in chemical industry and
construction of radio channels. We are extend our resedréiepification to (1) Bipolar fuzzy rough graphs; (2)
Bipolar fuzzy rough hypergraphs, (3) Bipolar fuzzy roughutnesophic graphs, and (4) Decision support systems
based on bipolar neutrosophic graphs.
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