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Abstract In this paper, a method for adjusting the pro-

portional-integral-derivative (PID) coefficients based on

the neutrosophic similarity measure is proposed. First,

rough PID coefficients were determined by the Ziegler–

Nichols method, and the upper and lower limit values for

the search range of the PID coefficients were determined.

At each step of the search range, we applied a unit step

function to the system and obtained the transient response

characteristics. The obtained values were converted into a

neutrosophic set (real set) by using defined membership

functions. Then, the optimal PID coefficients were

obtained using the similarity ratio between the real and

ideal (target) neutrosophic sets. In calculating the simi-

larity ratio, the Hamming, Euclidean, Set-theoretic, Jac-

card, and Dice approaches were applied, and the results

were compared. Finally, the proposed method was tested

on two transfer functions, and it was demonstrated that

the proposed method can be used to adjust PID

coefficients.

Keywords Decision making � Neutrosophic logic �
Neutrosophic similarity measure � PID tuning

1 Introduction

A wide range of controller design methods including fuzzy

logic controllers, lead-lag compensators, sliding mode con-

trollers, and proportional-integral-derivative (PID) con-

trollers have been proposed for various applications. The

PID controller is preferred in process control applications,

because of its robustness, ease of design, zero steady-state

error, low oscillation rate, fast system response, and high

stability [1, 2]. The PID controller has three basic parameters

called Kp, Ki, and Kd. The setting of these parameters, in a

process called PID tuning, is very important in PID con-

troller design. PID tuningmethods are divided into twomain

classes: closed-loop and open-loop methods. Ziegler–Ni-

chols is an example of a closed-loop method, and Cohen–

Coon is an example of an open-loop method.

Software-based approaches for adjusting the PID coeffi-

cients are available. Genetic algorithms (GA), particle swarm

optimization (PSO), and Fuzzy Logic approaches are among

the most widely studied topics in the literature on software-

based controller design [3–5]. An efficient and quick PID

tuning method based on the modified genetic algorithm

(MGA) has been proposed [3]. In [3], an optimization method

based on integrating a classical genetic algorithm structure

with a systematic neighborhood structure was used. In an

alternative approach, the results obtained from a PSO-based

PID tuning method were compared with results from a Zieg-

ler–Nichols PID tuning method [4]. In another software-based

PID tuning study, a method using fuzzy logic for optimal PID

controller design was proposed [5]. In this study, the

researchers used the fuzzy set point weighting method, and

also investigated the effects of differentmembership functions.

Since Zadeh first proposed fuzzy logic in 1965 [6],

researchers have introduced a range of innovations to the

concept, including L-fuzzy sets [7], interval-valued fuzzy sets
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[8–10], four valued logic [11], intuitionistic fuzzy sets [12],

interval-valued intuitionistic fuzzy sets [13], vague sets [14].

Smarandache proposed the concepts of neutrosophy and

neutrosophic sets [15–17]. These are a special case of fuzzy

logic. Unlike classical fuzzy logic, they have True (T),

Indeterminate (I), and False (F) membership values. Neu-

trosophy resembles the logic of human thought by

including uncertainty. Today, neutrosophic sets and neu-

trosophic logic approaches are applied in image processing,

robot control, and computer science [18–20]. Following the

introduction of neutrosophic sets, neutrosophic similarity

measures were proposed in [21]. This method identifies the

percentage similarity between two or more neutrosophic

sets, and is used mainly in decision-making processes.

In control applications, reach of a system to the reference

value in a short time and with minimal errors is aimed. Also,

minimum overshoot ratio must be obtained. The process of

setting the PID coefficients is intended to meet as many as

possible of these characteristics. The process of determining

the optimal values of the PID coefficients can in fact be

considered as the decision-making process. In this process,

setting the PID coefficients according to the unit step

response of a system can lead to ‘‘good,’’ ‘‘bad,’’ or

‘‘uncertain/indeterminate’’ (‘‘neither good nor bad’’) out-

comes. These can be considered as linguistic expressions in

fuzzy logic. When designing the fuzzy logic controller for a

temperature control application, the designer may use terms

like ‘‘a little cold,’’ or ‘‘a little hot,’’ and the same is true

when reviewing the unit step responses of a system. For

example, in the assessment of a direct current motor step

response graph, a designer commenting on the rise time (or

any other unit step parameter) can judge the response

‘‘good,’’ ‘‘medium,’’ or ‘‘bad,’’ according to the unit step

response he/she wants from the system. Here ‘‘good’’ can be

considered as the T value, ‘‘medium’’ (‘‘neither good nor

bad’’) can be considered as the I value, and ‘‘bad’’ can be

considered as the F value in the neutrosophic set concept.

By using this approach, designers are able to provide the

appropriate PID coefficients to the membership values,

without resorting to numerical values obtained from inten-

sive mathematical operations. The interpretation can be

made by looking at how close to 1 the T membership value

of each unit step response characteristic (rising time, settling

time, peak time, etc.) is, and how close to 0 the I and

F membership values are.

In this study, a method based on the neutrosophic simi-

larity measure is proposed for adjusting PID coefficients,

using some of the measures currently available in the liter-

ature. Our suggested method differs from currently used PID

tuning methods. Many PID tuning methods use performance

indices, and such methods are called minimum error criteria

methods. Frequently used performance indices are the

integral of the absolute value of the error (IAE), the integral

of the square value of the error (ISE), the integral of the time

weighted absolute value of the error (ITAE), and the integral

of the time weighted square of the error (ITSE) [1]. Some

PID tuning methods apply transfer function models such as

Internal Model Control (IMC) [1] and the pole placement-

zero cancelation method [22]. The method used in this study

does not take into account performance indexes and it does

not need to know the transfer function. Based on neutro-

sophic similarity measures, it contains time-domain step-

response characteristics (rising time, settling time, overshoot

ratio, undershoot ratio, peak time, and steady-state error) and

is a decision-making process. The proposed method is

intended to stay at the design values of all the unit step

response characteristics. The method requires no complex

mathematical calculations.

Our proposed approach was applied to two sample

transfer functions.

2 Preliminaries

In this section some of the preliminaries that form the basis

of the proposed study are described.

2.1 PID Control

PID control is a feedback method commonly used in

control applications. The PID controller takes into account

the error rate, total error, and the derivative of the error.

The error rate, sum of errors, and derivative of errors are

separately multiplied by coefficients called Kp, Ki, and Kd

respectively. The goal of the process is to reduce the error

to zero. PID tuning is a process to achieve zero error with

the desired steady-state characteristics by finding the

optimal Kp, Ki, and Kd values. In some applications, one or

any two of the Kp, Ki, Kd values can take the zero value,

and in such cases the PID controller takes on P, PI, and PD

controller form. System block diagrams for a PID con-

trolled feedback system, in the time domain and s domain

respectively, are given in Figs. 1 and 2.

From Fig. 1,

Fig. 1 PID controlled feedback system in the time domain
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eðtÞ ¼ rðtÞ � yðtÞ ð1Þ

uðtÞ ¼ KpeðtÞ þ Ki

Z
eðtÞdt þ Kd

d

dt
eðtÞ ð2Þ

and from Fig. 2,

GcðsÞ ¼ Kp þ
Ki

s
þ Kds ð3Þ

if Ti ¼ Kp

Ki
and Td ¼ Kd

Kp
changed;

GcðsÞ ¼ Kp

Tds
2 þ s þ 1

Ti

s

 !
ð4Þ

Here r(t) is the reference value, e(t) is the error value,

u(t) is the control signal, and y(t) is the output signal. Gc(s)

shows the transfer function of the PID controller in s

domain. The s domain representation of the control signal

can also be expressed as follows:

UðsÞ ¼ EðsÞ Kp þ
Ki

s
þ Kds

� �
ð5Þ

Equations 2, 3, and 5 show that the PID controller

includes the Kp, Ki, and Kd coefficients. These coefficients

can also take the Kp, Ti, and Td shape, as shown in Eq. 4.

The PID tuning procedure searches for the optimal Kp, Ki,

and Kd or Ti and Td values.

2.2 Neutrosophic Logic, Neutrosophic Sets,

and Neutrosophic Similarity Measure

In contrast with classical fuzzy logic, the neutrosophic set

contains true, indeterminate, and false membership values.

In neutrosophic logic or the neutrosophic set approach, the

value of a phenomenon is illustrated by the T, F, and

I membership values. For example, in an x(0.7, 0.4, 0.2)

illustration, the T membership value of the x phenomenon

is 0.7, the I value is 0.4, and the F value is 0.2. In some

cases, and especially in engineering problems, these values

may be assigned to a 0–1 range. There is no limitation on

the sum of T ? I ? F [15]. In neutrosophic sets, there is no

limitation on the range of T, F, and I membership values.

They have real values and can be discrete, continuous,

single-valued, finite (countable or uncountable), or infinite,

or a union or intersection of subsets of various sets [16].

Wang et al. proposed the interval neutrosophic set (INS)

and single-valued neutrosophic set (SVNS) for solving

engineering problems [23, 24]. Ye later introduced the

simplified neutrosophic set (SNS) [25].

The similarity measure is a method used to determine

the degree of similarity between two or more sets which is

often applied to decision-making problems. Distance-

based, probability-based, fuzzy set theory-based, and graph

theory-based approaches are available for the similarity

measure. The neutrosophic similarity measure is used to

determine the degree of similarity between two or more

neutrosophic sets, and is also widely used in decision

making. A wide range of approaches are available for

solving such decision-making problems [25–32].

2.3 Some Definitions and Theorems

This section reviews the definitions and theorems which

have been suggested by different researchers concerning

neutrosophic sets. We review neutrosophic set descriptions

and some features of neutrosophic sets and the single-

valued neutrosophic set concept [24, 33], soft sets, and

neutrosophic soft set (NSS) concepts [34–36]. We discuss

the definitions and theorems of both neutrosophic Ham-

ming, Euclidean, and Set-theoretic similarity measures [28]

and neutrosophic Jaccard, Dice, and Cosine similarity

measures [29].

Definition 1 [24] X be a universe of discourse. An ele-

ment in X denoted by x. For a neutrosophic set A in X;

TA(x): Truth-membership function

IA(x): Indeterminacy-membership function.

FA(x): Falsity-membership function

The functions TA(x), IA(x) and FA(x) are real standard or

nonstandard subsets of ]0-, 1?[.

TA(x): X ?]0-, 1?[

IA(x): X ?]0-, 1?[

FA(x): X ?]0-, 1?[

There is no restriction on the sum of TA(x), IA(x)

and FA(x), so 0- B sup TA(x) ? sup IA(x) ? sup

FA(x) B 3?.

Definition 2 [24] The complement of a neutrosophic set

A is denoted by Ac

TA
c (x) = {1?}-TA(x)

IA
c (x) = {1?}-IA(x)

FA
c (x) = {1?}-FA(x) for all x [ X.

Fig. 2 PID controlled feedback system in the S domain
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Definition 3 [24] A neutrosophic set A and other neu-

trosophic set B, A ( B, if and only if;

inf TA(x) B inf TB(x), sup TA(x) B sup TB(x)

inf IA(x) C inf IB(x), sup IA(x) C sup IB(x)

inf FA(x) C inf FB(x), sup FA(x) C sup FB(x)

for all x [ X.

Definition 4 [24] A single-valued neutrosophic set

(SVNS) A in X. A = {hx, TA(x), IA(x), FA(x)i: x [ X}.

TA(x): X ? [0,1]

IA(x): X ? [0,1]

FA(x): X ? [0,1]

0 B TA(x) ? IA(x) ? FA(x) B 3 for all x [ X.

Definition 5 [24] The complement of an SVNS A is

denoted by Ac and for all x [ X;

TA
c (x) = FA(x)

IA
c (x) = 1-IA(x)

FA
c (x) = TA(x)

That is, Ac = {hx, FA(x), 1-IA(x), TA(x)i: x [ X}.

Definition 6 [24]A andB are SVNS,A ( B, if and only if;

TA(x) B TB(x)

IA(x) C IB(x)

FA(x) C FB(x)

for all x [ X.

Definition 7 [24] SVNS A and SVNS B are equal, written

as A = B, if and only if A ( B and B ( A.

Definition 8 [34, 35] U is the initial universe and E is a

set of parameters. P(U) denotes the power set of U and

A ( E. (F,A) is called a soft set over U, and F is a map-

ping given by F: A ? P(U).

Definition 9 [36] U is the universe set, E the set of

parameters, A ( E and NS(U) the set of all neutrosophic

sets of U. The collection (F,A) is the NSS over U, F is a

mapping given by F: A ? NS(U).

Definition 10 [28] U = {x1, x2, x3,…, xn} is an initial

universe and E = {e1, e2, e3,…, en} is a set of parameters.

NS(U) denotes the set of all neutrosophic sets over the

U. A and B are NSS over the U, A and B are mappings given

by A,B: E ? NS(U). Hamming, Normalized Hamming,

Euclidean, and Normalized Euclidean distances between

A and B sets are given in Eqs. 6, 7, 8, 9 respectively.

LHðA;BÞ ¼ 1

6

Xn

i¼1

Xm

j¼1

TAðxiÞðejÞ � TBðxiÞðejÞ
�� ��
þ IAðxiÞðejÞ � IBðxiÞðejÞ
�� ��

þ FAðxiÞðejÞ � FBðxiÞðejÞ
�� ��

8><
>:

9>=
>; ð6Þ

LNHðA;BÞ ¼ 1

6n

Xn

i¼1

Xm

j¼1

TAðxiÞðejÞ � TBðxiÞðejÞ
�� ��
þ IAðxiÞðejÞ � IBðxiÞðejÞ
�� ��

þ FAðxiÞðejÞ � FBðxiÞðejÞ
�� ��

8><
>:

9>=
>; ð7Þ

LEðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

6

Xn

i¼1

Xm

j¼1

TAðxiÞðejÞ � TBðxiÞðejÞ

� �2

þ IAðxiÞðejÞ � IBðxiÞðejÞ

� �2

þ FAðxiÞðejÞ � FBðxiÞðejÞ

� �2

0
BBBBB@

1
CCCCCA

vuuuuuuuut

ð8Þ

LNEðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

6n

Xn

i¼1

Xm

j¼1

TAðxiÞðejÞ � TBðxiÞðejÞ

� �2

þ IAðxiÞðejÞ � IBðxiÞðejÞ

� �2

þ FAðxiÞðejÞ � FBðxiÞðejÞ

� �2

0
BBBBB@

1
CCCCCA

vuuuuuuuut

ð9Þ

Definition 11 [28] U is a universe, E the set of parame-

ters and A, B NSS over U. Based on the distances similarity

measure (SM) between A and B is given below:

SMðA;BÞ ¼ 1

1þ LðA;BÞ ð10Þ

Another similarity measure of A and B is given below:

SMðA;BÞ ¼ e�aLðA;BÞ ð11Þ

L(A,B) is the distance between the interval-valued NSS

A and B and a is steepness measure and it is a positive real

number.

Definition 12 [28] S = {x1, x2, x3,…, xn} is the universe

and E = {e1, e2, e3,…, en} is a set of parameters.

NS(U) denotes the set of all Neutrosophic Subsets of

S. A and B are NSS over S. A and B are mappings given by

A, B : E ? NS(U). Similarity Measure SM(A,B) between

A and B based on Set-theoretic approach is given below:

SMðA;BÞ ¼

Pn
i¼1

Pm
j¼1

TAðxiÞðejÞ ^ TBðxiÞðejÞ

� �

þ IAðxiÞðejÞ ^ IBðxiÞðejÞ

� �

þ FAðxiÞðejÞ ^ FBðxiÞðejÞ

� �

2
66664

3
77775

Pn
i¼1

Pm
j¼1

TAðxiÞðejÞ _ TBðxiÞðejÞ

� �

þ IAðxiÞðejÞ _ IBðxiÞðejÞ

� �

þ FAðxiÞðejÞ _ FBðxiÞðejÞ

� �

2
66664

3
77775

ð12Þ
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Theorem 1 [28] SM(A,B) similarity measure between

A and B sets then:

(i) SM(A,B) = SM(B,A)

(ii) 0 B SM(A,B) B 1

(iii) SM(A,B) = 1 if and only if A = B

Definition 13 [29] SJ, SD, SC represents to Jaccard, Dice,

and Cosine vector similarity measures, respectively. The

three vector similarity measures of SVNSs:

SJðA;BÞ

¼ 1

n

Xn

i¼1

TAðxiÞTBðxiÞþ IAðxiÞIBðxiÞþFAðxiÞFBðxiÞð Þ
T2

AðxiÞþ I2AðxiÞþF2
AðxiÞ

� 	
þ T2

BðxiÞþ I2BðxiÞþF2
BðxiÞ

� 	
� TAðxiÞTBðxiÞþ IAðxiÞIBðxiÞþFAðxiÞFBðxiÞð Þ

0
BB@

1
CCA

ð13Þ

SDðA;BÞ

¼ 1

n

Xn

i¼1

2 TAðxiÞTBðxiÞ þ IAðxiÞIBðxiÞ þ FAðxiÞFBðxiÞð Þ
T2

AðxiÞ þ I2AðxiÞ þ F2
AðxiÞ

� 	
þ T2

BðxiÞ þ I2BðxiÞ þ F2
BðxiÞ

� 	
 !

ð14Þ

SCðA;BÞ ¼ 1

n

Xn

i¼1

TAðxiÞTBðxiÞ þ IAðxiÞIBðxiÞ þ FAðxiÞFBðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

AðxiÞ þ I2AðxiÞ þ F2
AðxiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

BðxiÞ þ I2BðxiÞ þ F2
BðxiÞ

p
ð15Þ

The cosine measure is undefined if the A and/or B mem-

bership values are equal to zero, and the Jaccard and Dice

measures are undefined if all A and B membership values

are equal to zero.

Theorem 2 [29] According to the Jaccard, Dice, and

Cosine similarity measures [30–32], Sk(A, B) similarity

measure (k = J, D, C) implements the properties given

below:

(i) 0 B Sk(A,B) B 1;

(ii) Sk(A,B) = Sk(B,A);

(iii) Sk(A,B) = 1 if A = B, i.e., TA(xi) = TB(xi),

IA(xi) = IB(xi), and FA(xi) = FB(xi) for all xi[ X.

2.4 Neutrosophic Similarity Measure Between Two

Neutrosophic Sets

In this section, an example is given for calculating the

similarity measure between two neutrosophic sets. In this

example A represents the ideal neutrosophic set, B repre-

sents the real neutrosophic set, and E represents the

parameter set. e1, e2, e3, and e4 represent the neutrosophic

components of the E parameter set. If x has E parameters, it

can represent an object, a status, or a person. Consider the

problem of selecting a manager for a company when three

suitable candidates are available. In this example, i repre-

sents the ideal characteristics, x, y, and z represent the

managerial candidates, and E represents the required

characteristics of a manager. In this case, the e1, e2, e3 and

e4 values represent talent, experience, communication

skills, and practical intelligence. Assume that these values

have been measured in a screening test given to the can-

didates. A is the ideal set and B is the real set from the

screening tests.

The values in Tables 1, 2, 3, and 4 were fed into Eqs. 6,

8, 10, 12, 13, 14, and 15, and the similarity measure for

each candidate is given in Table 5.

Table 5 shows that the Hamming, Euclidean, and Set-

theoretic approaches produced similar results, while the

Jaccard approach produced higher results than the other

three approaches. Dice and Cosine reached the maximum

similarity measure ratio. The results suggest that y is the

most suitable candidate based on the expected criteria, as

the measures of candidate y showed the largest similarity

ratio in all approaches.

Table 1 Ideal neutrosophic set

A e1 e2 e3 e4

i (0.8,0.3,0.2) (0.7,0.3,0.3) (0.8,0.2,0.1) (0.6,0.5,0.4)

Table 2 Neutrosophic set of candidate x

B e1 e2 e3 e4

x (0.2,0.4,0.8) (0.7,0.8,0.7) (0.7,0.3,0.3) (0.5,0.9,0.5)

Table 3 Neutrosophic set of candidate y

B e1 e2 e3 e4

y (0.6,0.4,0.3) (0.7,0.5,0.5) (0.7,0.2,0.4) (0.8,0.2,0.3)

Table 4 Neutrosophic set of candidate z

B e1 e2 e3 e4

z (0.6,0.4,0.5) (0.6,0.2,0.2) (0.2,0.5,0.5) (0.5,0.2,0.7)
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2.5 Ziegler–Nichols PID Tuning Method

The Ziegler–Nichols method is a well-known closed-loop

PID tuning method, first proposed in the early 1940s. Using

this method, it is possible to obtain rough Kp, Ki, and Kd

values based on values of the time domain transient

response characteristics. Two Ziegler–Nichols tuning

methods are available [37].

2.6 First Ziegler–Nichols Method

In this method, the unit step signal is applied to the system.

Then, the values obtained from the unit step response curve

of the system are processed in the formulas given in

Table 6, to determine the PID coefficients. The unit step

response curve example of a system is given in Fig. 3.

2.7 Second Ziegler–Nichols Method

In this method, primarily Ti and Td values are set up to

zero. Then, Kp value is increased until the system output

reach oscillation. Kp value at which output of the system

oscillates with a constant amplitude is Ku and the period of

the oscillation is Pu. So, PID coefficients are determined

according to Table 7, where Ku is called critical gain and

the Pu is called critical period.

3 The Proposed Method

In this study, a multi-criteria decision-making application

was used to determine the appropriate PID coefficients by

the similarity measure. Determining PID coefficients can

be considered as a multi-criteria decision-making process,

because it must take account of a variety of criteria such as

rise time, overshoot ratio, settling time, and steady-state

error when controlling a system. The use of these criteria is

made possible by choosing the appropriate PID coeffi-

cients. In this study, neutrosophic Hamming, Euclidean,

Set-theoretic, Jaccard, and Dice similarity measures were

used to determine the appropriate PID coefficients. The

unit step response properties obtained from the system

were passed from the membership functions, and neutro-

sophic values were calculated. In some cases the mem-

bership functions had zero value and the cosine similarity

measures were therefore undefined. The cosine similarity

measure was therefore not used in this study. The proposed

method was tested by two example transfer functions

having second and third degree open-loop characteristic

equations. A flow chart is given Fig. 4 to summarize the

methodology.

First, rough Kp, Ki, and Kd values were determined using

the Ziegler–Nichols method. Next, a similarity rate mea-

surement algorithm was run in MATLAB. In this algorithm,

the Kp, Ki, and Kd values were increased one by one around

the Kp, Ki, and Kd Ziegler–Nichols values, from a given

lower value to an upper value, in step-up nested loops. At the

end of each increment, the transient response values of the

system were measured. These values were then passed to the

neutrosophic membership functions (Neutrosophication)

and a neutrosophic set called a real set derived. The

Table 5 Neutrosophic SM of

candidate x, y, z according to

different SM criteria

Candidates SM(A,B)

Hamming Euclidean Set-theoretic Jaccard Dice Cosine

x 0.65 0.67 0.57 0.70 0.80 0.83

y 0.76 0.79 0.71 0.88 0.94 0.93

z 0.67 0.71 0.56 0.72 0.82 0.81

Table 6 Rule table of first Ziegler–Nichols method

Controller type Kp Ti Td

P T/L ? 0

PI 0.9 (T/L) L/3 0

PID 1.2 (T/L) 2L 0.5L

Fig. 3 Unit step response curve of a system

Table 7 Rule table of second Ziegler–Nichols method

Controller type Kp Ti Td

P 0.5 Ku ? 0

PI 0.45 Ku
1
1:2 Pu 0

PID 0.6 Ku 0.5 Pu 0.125 Pu
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similarity measure between the actual (real) set and a pre-

viously prepared ideal neutrosophic set was calculated, and

the resulting similarity measure recorded in an SM array.

Finally, it was determined whether the maximum value in

the SM array satisfied the appropriate PID values.

3.1 Neutrosophic Membership Functions

and Neutrosophication

Neutrosophication is similar to fuzzification, though

fuzzification methods such as largest and smallest mem-

bership degree (min, max) are not used. Instead, the

membership value of the phenomenon is directly trans-

ferred to the T, I, and F subsets. In this study, triangle and

trapezoid membership functions were used. The range of T,

I, and F values in the membership function, and type of

membership function used, may vary from application to

application. In the neutrosophication process, the rising

time, settling time, % overshoot ratio, % undershoot ratio,

peak time, and steady-state error values obtained from the

transient response characteristics of the system are passed

through the membership functions in Fig. 5, and the real

neutrosophic set B is obtained.

In Fig. 5, T corresponds to the true membership func-

tion, I corresponds to the indeterminate membership

function, and F corresponds to the false membership

function. In Fig. 5a, a range of 0–3 s is defined as the good

(T) value for the rise time, a range of 2.5–3.5 s is neither

good nor bad, and a range of (I), greater than 3 s is bad (F).

Now, consider the rise time value of 1.7227 given in

Table 8. This value was passed through the membership

function in Fig. 5a. A 0.851 value was obtained from the

true membership function, and a 0 value was obtained from

the I and F membership functions. Thus, the neutrosophic

membership value of the rise time was (T, I, F) = (0.851,

0, 0). As another example, consider the 4.8543 valued peak

time. When this value was passed through T, I, and

F membership functions, it took values of 0, 0.14, and 0.42,

respectively. Thus, the neutrosophic membership value was

(T, I, F) = (0, 0.14, 0.42) for the peak time. Examples of

step response characteristics and the neutrosophic provi-

sions obtained by neutrosophication are shown in Table 8.

As in fuzzy logic design, the type and range of the

membership functions are determined by the known char-

acteristics of the system to be controlled and the experience

of the designer. For example, the selection of a member-

ship function representing a fast rise time is generally not

suitable in temperature control applications. Conversely,

the selection of a membership function representing a slow

rise time is also not suitable in servo motor control appli-

cations. The type and range of a membership functions are

also a function of the designer’s experience and expertise.

The example membership functions used in this study were

selected after considering the desirable system responses in

general control applications. For example, an overshoot

ratios of less than 5 % is in the goal in most applications,

and undershoot and steady-state errors are undesirable in

all applications. In many control applications, rise times of

4–5 s or longer are not preferred.

In the neutrosophication process, selection of rise time,

settling time, % overshoot ratio, % undershoot ratio, peak

time, and steady-state error values from transient state

characteristics of the system have a large impact on per-

formance, because these values represent a large proportion

of the transient state characteristics of the system. In this

study, the target unit step values were compared with the

values obtained from the system to determine the appro-

priate PID coefficients. A sufficient number of features

must be used in determining the similarity ratio. Using too

few unit steps adversely affects the estimates of the rate of

similarity. For example, consider only the rise time and the

settling time. In some cases, two different step responses

with similar rise times and settling times may have dif-

ferent % overshoot rates and different steady-state errors.

One of these systems may even undershoot. Therefore, six

transient state features of the system (rise time, settling

                     Step1 

                     Step2 

                    Step3      

       Step4 

Step5

Step6

Find rough Kp, Ki and Kd values by using Ziegler Nichols 
Method. 

Define to upper and lower searching range limits around 
Kp, Ki and Kd  values obtained by using Ziegler Nichols 

Method. Assign lower limit value to Kp, Ki and Kd . 

Apply unit step signal to system to be controlled with 
PID controller. Obtain unit step response characteristics. 
Pass unit step response characteristics on membership 

functions given Fig. 5. (Neutrosophication)

Create real neutrosophic set using neutrosophic unit step 
response characteristics. Calculate Similarity Measure 
(SM) by using given Equations 6, 8, 10, 12, 13, 14. Put 
obtained SM value and correspond actual Kp, Ki and Kd  

values to SM array.  

Increase “1” value in per loop once Kp, after Ki and lastly 
Kd. Update PID controller’s Kp, Ki and Kd  coefficients. 

Repeat Step3-Step5 from lower  Kp limit to upper Kp
limit. Choose maximum SM value from SM array. 
Assign Kp, Ki and Kd  values according to correspond 
maximum SM value.  

Start 

End 

Fig. 4 The flow chart of the methodology
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time, % overshoot rate, % undershoot rate, peak time, and

steady-state error) were used. These features are members

of the E parameter set in the real neutrosophic set B, where

e1–e6 refer to the rise time, settling time, % overshoot ratio,

% undershoot ratio, peak time, and steady-state error val-

ues, respectively.

3.2 Application Example 1

In this application, the proposed method was tested on a

transfer function which was a quadratic open-loop char-

acteristic equation. Consider the following transfer

function:

Fig. 5 Membership functions used for the unit step response characteristics. a Rising time b Settling time c % Overshoot ratio d % Undershoot

ratio e Peak time. f Steady-state error (absolute values of negative values are taken)

Table 8 An example for step

response characteristics and

neutrosophic provisions

Step response characteristics Step response value Neutrosophic provision

Rising time 1.7227 (0.851,0,0)

Settling time 35.6180 (0,0,1)

% Overshoot ratio 50.5434 (0,0,1)

% Undershoot ratio 0 (1,0,0)

Peak time 4.8543 (0,0.14,0.42)

Steady-state error 0 (1,0,0)
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GðsÞ ¼ 1

ðs þ 1Þðs þ 4Þ ð16Þ

The first Ziegler–Nichols method was performed on the

G(s) transfer function and rough PID values were obtained

as Kp = 7, Ki = 4, and Kd = 2. Then, the three-loop

similarity ratio measurement algorithm was run in

MATLAB. The lower and upper limits were selected,

based on the Kp = 7, Ki = 4, and Kd = 2 values.

1 B Kp B ?20 (for minimum Kp[ 1)

-20 B Ki B ?20

-20 B Kd B ?20

In the algorithm, Kp, Ki, and Kd values were changed

respective to per unit increase, and the coefficients of

the PID controller were reworked using these new

values. Then, a unit step signal was applied to the

G(s) transfer function using MATLAB’s ‘‘feed-

back(Gc(s)*G(s),1)’’ command at the end of each step.

The unit step response characteristics of the system

were obtained using MATLAB’s ‘‘stepinfo’’ function,

and these characteristics were subjected to the neutro-

sophication process through the membership functions

shown in Fig. 5. The values from the neutrosophication

process were arranged to form a neutrosophic set and

the real B neutrosophic set was obtained. The similarity

ratio between the A ideal neutrosophic set given in

Table 9 and the B real set was calculated using the 6, 8,

10, 12, 13, and 14 equations to generate the SM values.

The results from this calculation were transferred to an

SM(A,B) array. When the three nested loop search

algorithm completed, it was decided that the Kp, Ki, Kd

values corresponding to the maximum SM value within

the SM(A,B) array were appropriate PID coefficients. In

this example, the SM value reached the maximum value

at the 12771-th order in the SM(A,B) array in calcula-

tions made using the Hamming, Euclidean, Set-theo-

retic, Jaccard, and Dice approaches.

For application 1, the algorithm used is given below. The

same algorithm was used for application 2. In this algorithm,

MF is used as an abbreviation of membership function.

for P = 1:1:Max_ Kp _Value

for I = Min_ Ki _Value:1: Max_ Ki _Value

for D = Min_ Kd _Value:1: Max_ Kd _Value

Kp = P;Ki = I;Kd = D;

Gc = (Kp ? Ki*1/s ? Kd*s);

Gcl = feedback(G*Gc,1);

SS = stepinfo(Gcl,1);

Pass Rise Time on MF for obtain T,I,F (Fig. 5a)

Pass Settling Time on MF for obtain T,I,F (Fig. 5b)

Pass Overshoot on MF for obtain T,I,F (Fig. 5c)

Pass Undershoot on MF for obtain T,I,F (Fig. 5d)

Pass Peak Time on MF for obtain T,I,F (Fig. 5e)

Pass Steady-State Error on MF for obtain T,I,F

(Fig. 5f)

Calculate SMs using Eqs. 6, 8, 10, 12, 13, 14

Put calculated SM values and correspond P,I,D

values to SM array

end

end

end

Choose maximum SM value and correspond P,I,D val-

ues from SM array. And assign these P,I,D values as Kp, Ki,

Kd coefficients of PID controller.

The e1–e6 values given in Table 9 were determined by

the peak value of the T membership function in Fig. 5.

Here, while the T membership value was 1, the I and

F values were 0. This shows the desired values.

The similarity measuring algorithm required a total of

45,387 steps. The highest value in the SM(A, B) sequence

order of this value and the corresponding Kp, Ki, and Kd

values are shown in Table 10.

The change in the similarity ratio against the number of

steps is shown in Fig. 6.

In Fig. 6a, the initial (lowest) value of the Hamming and

Euclidean similarity measures was approximately 0.5,

which is a negative result in the Hamming and Euclidean

approaches. A 0.5 minimum initial value represents a 50 %

similarity ratio, which may cause errors. In Fig. 6b, c, the

initial value of the similarity measure of the set-theoretic

Jaccard and Dice approaches were approximately 0.2.

In Fig. 7, the step response curves are drawn for theKp,Ki,

and Kd values in each 10,000 steps of the similarity mea-

suring algorithm. Graphics 1-4 represent the step responses

to the Kp, Ki, and Kd values at the 10,000–40000-th steps.

Graphic 5 represents the step response to the Kp, Ki, and Kd

values obtained by the proposedmethod at the 12771-th step.

The unit step response curves following the proposed

method (Kp = 8, Ki = 8, and Kd = 1) and the Ziegler–

Table 10 Obtained maximum value from SM(A,B) array and corre-

spond PID values

Method SM(A,B) Array order Kp Ki Kd

Hamming 0.9183 12771 8 8 1

Euclidean 0.8719 12771 8 8 1

Set-theoretic 0.911 12771 8 8 1

Jaccard 0.9729 12771 8 8 1

Dice 0.9855 12771 8 8 1

Table 9 The A ideal neutrosophic set

A e1 e2 e3 e4 e5 e6

i (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0)
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Fig. 6 Similarity ratio change graph obtained from the similarity ratio measuring algorithm
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Nichols method (Kp = 7, Ki = 4, and Kd = 2) are pre-

sented in Fig. 8.

The real neutrosophic set for Kp = 8, Ki = 8, and

Kd = 1 is given in Table 11.

Table 11 shows that the B real set is close to the A ideal

set Table 9. In this example, Table 10 shows that the SM

values were close to each other and close to 1 on all

similarity measures. This indicates that the desired step

response has been obtained.Table 12 shows the unit step

response characteristics according to Kp, Ki, Kd values

obtained by using different similarity measures.

3.3 Application Example 2

The proposed method was then tested on an open-loop

transfer function with a third degree characteristic equa-

tion, using the same methods and the same membership

functions as in the first example. Consider the following

transfer function:

GðsÞ ¼ 1

sðs þ 1Þðs þ 5Þ ð17Þ

In this example, the first Ziegler–Nichols method was

used as in the first example and values of Kp = 18,

Ki = 13, and Kd = 6 were obtained. Same as Example 1,

lower and upper limits were used for Kp, Ki, and Kd search

range. The search range is given below.

1 B Kp B ?20 (for minimum Kp[ 1)

-20 B Ki B ?20

-20 B Kd B ?20

Fig. 7 Step response curves obtained from the G(s) transfer function

according to Kp, Ki and Kd values in each 10,000 step in the similarity

measuring algorithm

Fig. 8 Step response of the system according to proposed method

and Ziegler–Nichols method

Table 11 B real neutrosophic set for application example 1

B e1 e2 e3 e4 e5 e6

r (0.66,0,0) (0.92,0,0) (0.99,0,0) (1,0,0) (0.88,0,0) (1,0,0)

Table 12 Transient response characteristics of G(s) according to Kp,

Ki, Kd values obtained Set-theoretic, Hamming, euclidean, Jaccard,

Dice methods

Transient response

characteristics

Set-theoretic, Hamming, Euclidean,

Jaccard, Dice

Rising time 1.0027

Settling time 2.3000

% Over shoot 2.0152

% Undershoot 0

Peak time 2.2295

Steady-state error 0

Table 13 Obtained maximum value from SM(A,B) array and corre-

spond PID values

Method SM(A,B) Array order Kp Ki Kd

Hamming 0.8904 10394 7 0 6

Euclidean 0.8586 12076 8 0 7

Set-theoretic 0.8769 10394 7 0 6

Jaccard 0.9668 12076 8 0 7

Dice 0.9827 12076 8 0 7
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Fig. 9 Similarity ratio change graph obtained from the similarity ratio measuring algorithm
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The similarity ratio measuring algorithm took a total of

63,878 steps. The maximum value at the end of the algo-

rithm run from the SM(A,B) array is shown in Table 13.

The similarity ratio change is related to the step number

graph in Fig. 9.

In Fig. 9a, the results are consistent with the results of

the other examples. The initial (lowest) value of the

Hamming and Euclidean similarity measures was approx-

imately 0.5; this may be considered negative aspect of the

Hamming and Euclidean approaches. In Fig. 9b, c, the

initial values of the similarity measure under the set-the-

oretic, Jaccard, and Dice approaches were approximately

0.2.

Figure 10 shows the step response curves drawn

according to the Kp, Ki, and Kd values in each 10,000 steps

of the similarity measuring algorithm, where 1–6 repre-

sents the 10000–60000-th step response and 7–8 represents

the 10394-th and 12076-th step response under the pro-

posed method.

Figure 11 compares the step responses of the

G(s) transfer function using the Kp, Ki, and Kd values

obtained by the Ziegler–Nichols method and the proposed

method.

In Tables 14 and 15, the real neutrosophic set found by

the proposed method is similar to a target (ideal) neu-

trosophic set. There are very small differences between

the Set-theoretic, Hamming, and Euclidean approaches,

and the Jaccard and Dice approaches. Curves 2 and 3 in

Fig. 11 and the values in Table 16 demonstrate that the

unit step responses of the system under the Set-theoretic,

Hamming, Euclidean, Jaccard, and Dice approaches were

very similar.

Fig. 10 Step response curves obtained from the G(s) transfer

function according to Kp, Ki, and Kd values in each 10,000 step in

the similarity measuring algorithm

Fig. 11 Step response of the system according to proposed method

and Ziegler–Nichols method. 1 Ziegler–Nichols, 2 Set-theoretic and

Hamming, 3 Euclidean, Jaccard, and Dice

Table 14 Obtained B real neutrosophic set according to Set-theoretic

and Hamming similarity measurement

B e1 e2 e3 e4 e5 e6

r (0.80,0,0) (0.84,0,0) (0.98,0,0) (1,0,0) (0.62,0,0) (1,0,0)

Table 15 Obtained B real neutrosophic set according to Euclidean,

Jaccard, and Dice

B e1 e2 e3 e4 e5 e6

r (0.69,0,0) (0.90,0,0) (0.82,0,0) (1,0,0) (0.83,0,0) (1,0,0)

Table 16 Transient response characteristics according to Set-theo-

retic, Hamming, Euclidean, Jaccard, Dice SM

Transient response

characteristic

Set-theoretic,

Hamming

Euclidean,

Jaccard, Dice

Rising time 1.2063 1.0373

Settling time 2.8848 2.7353

% Overshoot 2.0334 2.3509

% Undershoot 0 0

Peak time 2.7442 2.3344

Steady-state error 0 0
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4 Conclusions

We have shown through two transfer function examples

that any of the Hamming, Euclidean, Set-theoretic, Jaccard,

and Dice approaches to the neutrosophic similarity mea-

sure can be used in the PID tuning procedure. Since in

some cases the denominator would be undefined, the cosine

similarity measure was not tested. In tests carried out on

two different second and third order transfer functions, the

values obtained from the different neutrosophic SM

approaches were found to be approximately the same. The

most important advantage of the proposed method is that it

does not require any complex calculations. In both example

applications, the same membership functions were used for

the neutrosophication process. Depending on the type of

application being addressed, the membership functions

may be revised.

Another advantage of the proposed method is that it is

based on time domain values, and does not require the

transfer function of the system to be known. This makes it

suitable for application in real systems with unknown

transfer functions. The Ziegler–Nichols method was used

in the study to narrow down the search range for the

appropriate PID coefficients. The method can also be used

alone, without the Ziegler–Nichols method. In future

studies, the proposed method will be tested in real system

platforms, and will be compared with other PID tuning

methods from the literature. In addition, a graphical user

interface (GUI) running in MATLAB is planned, to

improve its practicality.
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