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Abstract: A food web on n living things x1, x2, · · · , xn, i.e., a biological n-system

can be mathematically characterized by action flow
−→
G

L
of order n with surplus flows

of growth rates ẋi of population on vertices vi, vector flow (xi, xj), end-operators

xifij , xjf
′

ji on edge (vi, vj), where fij , f
′

ji are 2 variable functions for integers 1 ≤

i, j ≤ n holding with a system of conservation equations

ẋi = xi




∑

vk∈N−(vi)

f ′

ki(xk, xi)−
∑

vl∈N+(vi)

fil(xi, xl)



 , 1 ≤ i ≤ n,

which is a system of n differential equations. Certainly, 0 ∈ Rn is one of its equilibrium

points. But the system

∑

vk∈N−(vi)

f ′

ki(xk, xi) =
∑

vl∈N+(vi)

fil(xi, xl), 1 ≤ i ≤ n

of equations may be solvable or not. However, even if it is non-solvable, it charac-

terizes biological systems also if it can be classified into solvable subsystems. The

main purpose of this paper is to characterize the biological behavior of such sys-

tems with global stability by a combinatorial approach, i.e., establish the relationship

between solvable subsystems of a biological n-system with Eulerian subgraphs of la-

beling bi-digraph of
−→
G

L
, characterize n-system with linear growth rate and the global

stability on subgraphs, and interpret also the biological behavior of GL-solutions of

non-solvable equations, which opened a way for characterizing biological system with

species more than 3, i.e., mathematical combinatorics. As we know, nearly all papers

discussed biological system with species less or equal to 3 in the past decades.
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§1. Introduction

There is a well-known biological law for living things in the natural world, i.e., the

survival of the fittest in the natural selection because of the limited resources of

foods. Thus, foods naturally result in connection with living things, i.e., food chain,

a linear network starting from producer organisms and ending at apex predator

species or decomposer species. And biologically, a food web is a natural interconnec-

tion of food chains, a resultant by a simple ruler ([28]), and generally a graphical

representation of what-eats-what in the ecological community such as those shown in

Fig.1 for 4 food chains: grass→ladybug→frog→snake→eagle, grass→ladybug→frog

→egret, grass→rabbit→ snake→eagle and grass→rabbit→eagle.

Fig.1

Actually, a food web is an interaction system in physics ([15]-[16], [25]) which

can be mathematically characterized by the strength of what action on what. For a

biological 2-system, let x, y be the two species with the action strength F ′(x→ y),

F (y → x) of x to y and y to x on their growth rate, respectively ([21]). Then, such

a system can be quantitatively characterized by differential equations
{

ẋ = F (y → x)

ẏ = F ′(x→ y)

on the populations of species x and y.

Usually, we denote 2 competing things by a directed edge (u, v) labeling with

vector flow (x, y) and end-operators F, F ′ respectively on its center and both ends,

where F, F ′ are action operators with F (x→ 0) = F ′(0→ y) = 0 if y = 0 or x = 0
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and the growth rates ẋ, ẏ of populations on vertices, such as those shown in Fig.2.

Particularly, F = xf, F ′ = yf ′ in the Kolmogorov model, where f , f ′ are 2 variable

functions, and f = λ− by, f ′ = µ + cx in the Lotka-Volterra model ([2], [20]).-(x, y)
ẋ ẏ
u v

F ′F

Fig.2

Then, a food web is nothing else but a topological digraph
−→
G , a 2-tuple

(
V (
−→
G), E(

−→
G )
)

with E(
−→
G ) ⊂ V (

−→
G )×V (

−→
G ) and a labeling L :

−→
G → R

⋃
S on

−→
G with L : V (

−→
G)→

R and E(
−→
G) → S, where R and S are predetermined sets ([19]). Particularly, if

R = {ẋ, ẏ}, the growth rates of populations and S = {(F, (x, y), F ′)}, a 3-tuple with

action operator F on the initial, F ′ on the end and vector (x, y) on the middle of

edge (u, v), we get the biological 2-system shown in Fig.2.

However, the law of conservation of matter concludes that matter is neither

created nor destroyed in chemical reactions. In other words, the mass of any one

element at the beginning of a reaction will equal to that of element at the end, i.e.,

the in and out-action must be conservative with the surplus on each vertex of
−→
G

L
.

Thus, a food web is an action flow ([18]) further, i.e., a topological digraph
−→
G

L

labeled with surplus flows of growth rates ẋi of population on vertices vi, vector flow

(xi, xj), initial and end operators Fij , F
′
ij on edge (vi, vj) for integers 1 ≤ i, j ≤ n,

where n ≥ 2 holding with a system of conservation equations

ẋi =
∑

vk∈N−(vi)

F ′
ki(xk → xi)−

∑

vl∈N+(vi)

Fil(xi → xl), 1 ≤ i ≤ n

and particularly,

ẋi = xi




∑

vk∈N−(vi)

f ′
ki(xk, xi)−

∑

vl∈N+(vi)

fil(xi, xl)



 , 1 ≤ i ≤ n (1.1)

in the Kolmogorov model. For example, a biological 4-system shown in Fig.3 is a

system of 4 ordinary differential equations





ẋ1 = x1 ((b52 − a11 − a12)x1 − a12x2 − a22x3 + b51x4)

ẋ2 = x2 (b11x1 + (b12 + b62 − a31)x2 − a32x3 + b61x4)

ẋ3 = x3 (b21x1 + b31x2 + (b22 + b32 − a41)x3 − a42x4)

ẋ4 = x4 (b41x3 − a52x1 − a62x2 + (b42 − a51 − a61)x4)

(1.2)
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Fig.3

where,

f1(x1, x2) = a11x1 + a12x2, f ′
1(x1, x2) = b11x1 + b12x2,

f2(x1, x3) = a21x1 + a22x3, f ′
2(x1, x3) = b21x1 + b22x3,

f3(x2, x3) = a31x2 + a32x3, f ′
3(x2, x3) = b31x2 + b32x3,

f4(x3, x4) = a41x3 + a42x4, f ′
4(x3, x4) = b41x3 + b42x4,

f5(x4, x1) = a51x4 + a52x1, f ′
5(x4, x1) = b51x4 + b52x1,

f6(x4, x2) = a61x4 + a62x2, f ′
6(x4, x2) = b61x4 + b62x2.

.

Definition 1.1 Let
−→
G

L
be a labeling topological digraph. A subgraph

−→
H of

−→
G is said

to be a labeling subgraph of
−→
G

L
if its vertices and edges are labeled by L|H , denoted

by
−→
H

L
≺
−→
G

L
and furthermore, if

−→
H

L
=
−→
G

L
∣∣∣
V (H)

, such a labeling subgraph is said

to be an induced subgraph of
−→
G

L
, denoted by

〈
V (
−→
H )
〉

G
.

For example, the 2 labeling graphs
−→
G

L

1 ,
−→
G

L

2 in Fig.4 are all labeling subgraphs

but only
−→
G

L

1 is an induced subgraph of the graph shown in Fig.3.

�6 ~ ?-s3ẋ1

ẋ3ẋ4

ẋ1 ẋ2

ẋ3ẋ4(x3, x4)
−→
G

L

1

(x4, x1)
(x1, x3)

x1f2

x3f
′
2

x3f4x4f
′
4

x4f5

x1f
′
5

(x1, x2)

(x2, x3)

(x1, x3)

(x4, x2)

−→
G

L

2

x1f1 x2f
′
1

x2f3

x3f
′
2

x1f2

x3f
′
2

x4f6

x2f
′
6

Fig.4

Clearly, a labeling subgraph of
−→
G

L
is also consisting of food chains but it maybe

not a food web if it is not an action flow again. Even it is, the sizes of species are
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not the same as they in
−→
G

L
because the conservative laws are completely changed.

For example, the system of conservation equations for the labeling subgraph
−→
G

L

1 is






ẋ1 = x1 ((b51 − a21)x1 − a22x3 + b51x4)

ẋ3 = x3 (b21x1 + (b22 − a41)x3 − a42x4)

ẋ4 = x4 (b41x3 − a52x1 + (b42 − a51)x4)

(1.3)

a very different system from that of (1.2).

The following terminologies are useful for characterizing food webs.

Definition 1.2 Let
−→
G be a digraph with

←−
G a digraph reversing direction on ev-

ery edge in
−→
G . A bi-digraph of

−→
G is defined by

−→
G
⋃←−

G and a labeling bi-digraph
(
−→
G
⋃←−

G
)L̂

of a labeling digraph
−→
G

L
is a labeling graph on

−→
G
⋃←−

G with a la-

beling L̂ : V (
−→
G
⋃←−

G) → L
(
V (
−→
G )
)
, L̂ : E

(
−→
G
⋃←−

G
)
→ L

(
E
(
−→
G
⋃←−

G
))

by

L̂ : (u, v) → {0, (x, y), yf ′}, (v, u) → {xf, (x, y), 0} if L : (u, v) → {xf, (x, y), yf ′}

for ∀(u, v) ∈ E(
−→
G ), such as those shown in Fig.5.

ẋ ẏ ẏ- �ẋ

-
u v

xf (x, y) yf ′
0

(x, y)
yf ′

xf
(x, y)

0

u v

Fig.5

Definition 1.3 A circuit in a digraph
−→
G is a nontrivial closed trail with different

edges in
−→
G and an Eulerian circuit in digraph

−→
G is a circuit of

−→
G containing every

edge of
−→
G .

A digraph
−→
G is Eulerian if it contains an Eulerian circuit.

Clearly, a bi-digraph of a digraph is an Eulerian graph. The main purpose

of this paper is to characterize the biological behavior of biological n-systems with

global stability by a combinatorial approach, i.e., establish the relationship between

solvable subsystems of a biological n-system with that of labeling Eulerian subgraphs

of labeling bi-digraph
(
−→
G
⋃←−

G
)L̂

of
−→
G

L
, characterize conditions of an n-system

with linear growth rate become distinct and global stability, and interpret also the

biological behavior of GL-solutions of non-solvable equations, which opened a way
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for characterizing biological system with species more than 3, i.e., mathematical

combinatorics, or differential equations over graphs.

For terminologies and notations not mentioned here, we follow references [1] for

mechanics, [25] for interaction particles, [2] and [20] for biological mathematics, [3]

for differential equations with stability, [6]-[7] for topological graphs, digraphs and

combinatorial geometry, [7] and [26] for Smarandache multispaces.

§2. Geometry Over Equilibrium Points

2.1 Equilibrium Sets

We consider the generalized Kolmogorov model on biological n-system ([2], [20]),

i.e., the system (1.1) of differential equations






ẋ1 = x1

(
∑

vk∈N−(v1)

f ′
k1(xk, x1)−

∑
vl∈N+(v1)

f1l(x1, xl)

)

ẋ2 = x2

(
∑

vk∈N−(v2)

f ′
k2(xk, x2)−

∑
vl∈N+(v2)

f2l(x2, xl)

)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ẋn = xn

(
∑

vk∈N−(vn)

f ′
kn(xk, xn)−

∑
vl∈N+(vn)

fnl(xn, xl)

)

satisfying conditions following:

(1) fij, f ′
ij ∈ C1 for integers 1 ≤ i, j ≤ n;

(2) For any integer i, 1 ≤ i ≤ n, there is (x0
1, x

0
2, · · · , x

0
n) ∈ R

n hold with

∑

vk∈N−(vi)

f ′
ki(x

0
k, x

0
i ) =

∑

vl∈N+(vi)

fil(x
0
i , x

0
1)

but ∑

vk∈N−(vi)

∂f ′
ki

∂xi

∣∣∣∣
(x0

k
,x0

i )

6=
∑

vl∈N+(vi)

∂fil

∂xi

∣∣∣∣
(x0

i ,x0
1)

.

For any integer i, 1 ≤ i ≤ n, define

Fi =
∑

vk∈N−(vi)

f ′
ki(xk, xi)−

∑

vl∈N+(vi)

fil(xi, xl).

Then it concludes that
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(1) Fi ∈ C1 for integers 1 ≤ i ≤ n;

(2) Fi|(x0
1,x0

2,···,x0
n) = 0 but

∂Fi

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

=
∑

vk∈N−(vi)

∂f ′
ki

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

−
∑

vl∈N+(vi)

∂fil

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

6= 0.

Applying the implicity function theorem, each equation

Fi(x1, x2, · · · , xn) = 0

is solvable, i.e., there is a solution manifold SFi
in Rn for any integer 1 ≤ i ≤ n,

and in this case furthermore, there is a unique solution on the Cauchy problem

of system (1.1) prescribed with an initial condition (x1(t0), x2(t0), · · · , xn(t0)) =

(x0
1, x

0
2, · · · , x

0
n).

An equilibrium set of system (1.1) are all points (x0
1, x

0
2, · · · , x

0
n) ∈ Rn holding

with 




x0
1

(
∑

vk∈N−(v1)

f ′
k1(x

0
k, x

0
1)−

∑
vl∈N+(v1)

f1l(x
0
1, x

0
l )

)
= 0

x0
2

(
∑

vk∈N−(v2)

f ′
k2(x

0
k, x

0
2)−

∑
vl∈N+(v2)

f2l(x
0
2, x

0
l )

)
= 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x0
n

(
∑

vk∈N−(vn)

f ′
kn(x

0
k, x

0
n)−

∑
vl∈N+(vn)

fnl(x
0
n, x0

l )

)

= 0

(2.1)

Clearly, only those solutions x0
i ≥ 0, 1 ≤ i ≤ n of system (2.1) have the biolog-

ical meaning, and (0, 0, · · · , 0) ∈ Rn is an obvious equilibrium point. We classify all

equilibrium points of system (2.1) into 3 categories following:

(C1) Only (0, 0, · · · , 0) ∈ R
n hold with system (2.1), i.e., the system






∑
vk∈N−(v1)

f ′
k1(x

0
k, x

0
1) =

∑
vl∈N+(v1)

f1l(x
0
1, x

0
l )

∑
vk∈N−(v2)

f ′
k2(x

0
k, x

0
2) =

∑
vl∈N+(v2)

f2l(x
0
2, x

0
l )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∑

vk∈N−(vn)

f ′
kn(x

0
k, x

0
n) =

∑
vl∈N+(vn)

fnl(x
0
n, x0

l )

(2.2)

is non-solvable in Rn.
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(C2) Only (0, · · · , 0, K1, 0, · · · , 0, K2, 0, · · · , 0, Ks, 0, · · · , 0) ∈ Rn hold system

(2.1) with numbers K1, K2, · · · , Ks > 0 on columns i1, i2, · · · , is respectively, i.e.,

for any integer j 6∈ {i1, i2, · · · , is}, the system






∑
vk∈N−(vi1

)

f ′
ki1

(x0
k, x

0
i1
) =

∑
vl∈N+(vi1

)

fi1l(x
0
i1
, x0

l )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∑

vk∈N−(vis )

f ′
kis

(x0
k, x

0
is
) =

∑
vl∈N+(vis )

fisl(x
0
is
, x0

l )

∑
vk∈N−(vj )

f ′
kj(x

0
k, x

0
j) =

∑
vl∈N+(vj)

fjl(x
0
j , x

0
l )

(2.3)

is non-solvable in Rn.

(C3) There are (K1, K2, · · · , Kn) ∈ Rn hold system (2.1) with Ki > 0 for

integers 1 ≤ i ≤ n.

2.2 Geometry Over Equations

Usually, one applies differential equations to characterize the reality of things by

their solutions. But can this notion describes the all behavior of things? Certainly

not ([8]-[19]), particularly in biology follows by the discussion following.

For an integer n ≥ 1, let u : R
n → R

n be differentiable mapping. Its n-

dimensional graph Γ[u] is defined by the ordered pairs

Γ[u] = {((x1, · · · , xn) , u (x1, · · · , xn))) |(x1, · · · , xn)}

in Rn+1. Clearly, the assumption on fij , f
′
ij, 1 ≤ i, j ≤ n concludes that the solution

manifold SFi
is nothing else but a graph Γ[Fi] in R

n.

Geometrically, the system






F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . .

Fn(x1, x2, · · · , xn) = 0

(2.4)

is solvable or not dependent on
n⋂

i=1

SFi
6= ∅ or not, and conversely, if

n⋂
i=1

SFi
6= ∅ or

not, we can or can not choose point (x1, x2, · · · , xn) in
n⋂

i=1

SFi
, a solution of (2.4).

We therefore get a simple but meaningful conclusion following.
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Theorem 2.1 A system of equations






F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . .

Fn(x1, x2, · · · , xn) = 0

under previous assumption is non-solvable or not if and only if

n⋂

i=1

SFi
= ∅ or 6= ∅.

If the intersection
n⋂

i=1

SFi
6= ∅, it is said to be a ∧-solution of equations (2.4).

Usually, one characterizes a system S of things T1, T2, · · · , Tn by equations (2.4)

with their solutions to hold on the dynamical behavior of these things. Is it always

right? The answer is negative at least in the non-solvable case of equations (2.4),

and even if they are solvable, it can be used only to characterize those of coherent

behaviors of things in S, not the individual such as those of discussions on multiverse

of particles in [15] and [16]. Then, what is its basis in philosophy? It results deeply

in an assumption on things, i.e., the behavior of things discussed is always consistent,

i.e., the system (2.4) is solvable. If it holds, the behavior of these things then can

be completely characterized by the intersection
n⋂

i=1

SFi
, i.e., the solution of system

(2.4). However, this is a wrong understanding on things because all things are

in contradiction in the nature even for human ourselves, and further on different

species. This fact also concludes that characterizing things by solvable system (2.4)

of equations is only part, not the global, and with no conclusion if it is non-solvable

in classical meaning.

Philosophically, things T1, T2, · · · , Tn consist of a group, or a union set
n⋃

i=1

Ti, and

if Ti is characterized by the ith equation in (2.4), they are geometrically equivalent

to the union
n⋃

i=1

SFi
, i.e., a Smarandache multispace, not the intersection

n⋂
i=1

SFi
.

For example, if things T1, T2, T3, T4 and T ′
1, T

′
2, T

′
3, T

′
4 are respectively character-

ized by systems of equations following

(LESN
4 )






x + y = 1

x + y = −1

x− y = −1

x− y = 1

(LESS
4 )






x = y

x + y = 2

x = 1

y = 1
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then it is clear that (LESN
4 ) is non-solvable because x + y = −1 is contradictious

to x + y = 1, and so that for equations x − y = −1 and x − y = 1, i.e., there are

no solutions x0, y0 hold with this system. But (LESS
4 ) is solvable with x = 1 and

y = 1. Can we conclude that things T ′
1, T

′
2, T

′
3, T

′
4 are x = 1, y = 1 and T1, T2, T3, T4

are nothing? Certainly not because (x, y) = (1, 1) is the intersection of straight line

behavior of things T ′
1, T

′
2, T

′
3, T

′
4 and there are no intersection of T1, T2, T3, T4 in plane

R2. However, they are indeed exist in R2 such as those shown in Fig.6.

-6
O

x

y

x + y = 1

x + y = −1x− y = 1

x− y = −1

A

B

C

D -
6

x

y

x = yx = 1

y = 1
P

x + y = 2

O

(LESN
4 ) (LESS

4 )

Fig.6

Denoted by the point set

La,b,c = {(x, y)|ax + by = c, ab 6= 0}

in R2. Then, we are easily know the straight line behaviors of T1, T2, T3, T4 and

T ′
1, T

′
2, T

′
3, T

′
4 are nothings else but the unions L1,−1,0

⋃
L1,1,2

⋃
L1,0,1

⋃
L0,1,1 and

L1,1,1

⋃
L1,1,−1

⋃
L1,−1,−1

⋃
L1,−1,1, respectively.

Definition 2.2 A ∨-solution, also called G-solution of system (2.4) is a labeling

graph GL defined by

V (G) = {SFi
, 1 ≤ i ≤ n};

E(G) =
{
(SFi

, SFj
) if SFi

⋂
SFj
6= ∅ for integers 1 ≤ i, j ≤ n

}
with a labeling

L : SFi
→ SFi

, (SFi
, SFj

)→ SFi

⋂
SFj

.

Example 2.3 The ∨-solutions of (LESN
4 ) and (LESS

4 ) are respectively labeling

graphs CL
4 and KL

4 shown in Fig.7 following.
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L1,−1,−1 L1,1,1

L1,−1,1L1,1,−1

L1,0,1 L1,−1,0

L0,1,1L1,1,2

A

B

C

D P

P

P

P

P P

CL
4

KL
4

Fig.7

Theorem 2.4 A system (2.4) of equations is ∨-solvable if Fi ∈ C1 and Fi|(x0
1,x0

2,···,x0
n)

= 0 but
∂Fi

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

6= 0 for any integer i, 1 ≤ i ≤ n.

Proof Applying the implicity function theorem, the proof is completed by

definition. �

Theorem 2.5 A system (1.1) of differential equations on food web
−→
G

L
is uniquely

∨-solvable if fij , f ′
ij ∈ C1 for integers 1 ≤ i, j ≤ n and (x1(0), x2(0), · · · , xn(0)) =

(x0
1, x

0
2, · · · , x

0
n) ∈ Rn.

Proof Applying the existence and uniqueness theorem on the Cauchy problem

of differential equations,

ẋi = xi




∑

vk∈N−(vi)

f ′
k1(xk, xi)−

∑

vl∈N+(vi)

f1l(xi, xl)





with (x1(0), x2(0), · · · , xn(0)) = (x0
1, x

0
2, · · · , x

0
n) ∈ Rn, it is uniquely solvable for any

integer 1 ≤ i ≤ n. Consequently, the system (1.1) is uniquely ∨-solvable in Rn by

definition. �

2.3 Equilibrium Sets of Linear Equations

Certainly, the Lotka-Volterra model on biological 2-system is a system of linear

growth rates. Generally, if all fij , f
′
ij are linear for integers 1 ≤ i, j ≤ n, then it

is a generalization of Lotka-Volterra model on biological n-system. We can further

characterize the equilibrium sets of linear system (2.4) by linear algebra.

11



Definition 2.6 For any positive integers i, j, i 6= j, the linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · ·ajnxn = bj

are called parallel if there exists a constant c such that

c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain 6= bj/bi.

The following criterion is known in [8].

Theorem 2.7([8]) For any integers i, j, i 6= j, the linear equation system

{
ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · ·ajnxn = bj

is non-solvable if and only if they are parallel.

By Theorem 2.7, we divide all linear equations Li, 1 ≤ i ≤ n in (2.4) into

parallel families

C1, C2, · · · , Cs

by the property that all equations in a family Ci are parallel and there are no

other equations parallel to equations in Ci for integers 1 ≤ i ≤ s. Denoted by

|Ci| = ni, 1 ≤ i ≤ s. Then we can characterize equilibrium sets of linear system

(2.1) by Theorem 2.6 in [8] following.

Theorem 2.8([8]) The equilibrium sets of system (2.1) with linear growth rates

fij , f
′
ij, 1 ≤ i, j ≤ n can be classified into 3 classes following:

(LC1) there is only point (0, 0, · · · , 0) ∈ R
n holding with linear system (2.1),

i.e., its ∨-solution

GL ≃ KL
n1,n2,···,ns

with n1 + n + 2 + · · · + ns = n, where ni = |Ci| and Ci is the parallel family for

integers 1 ≤ i ≤ s, s ≥ 2.

(LC2) there is only point (0, · · · , 0, c1, 0, · · · , 0, c2, 0, · · · , 0, cn−l, 0, · · · , 0) ∈ Rn

holding system (2.1) with numbers c1, c2, · · · , cn−l > 0 respectively on columns i1, i2,

· · · , in−l for 1 ≤ l < n, i.e., its ∨-solution

GL ≃ KL
n1,n2,···,nt

12



with n1 + n + 2 + · · · + nt = l, where ni = |Ci| and Ci is the parallel family for

integers 1 ≤ i ≤ t, s ≥ 2.

(LC3) there is an unique point (c1, c2, · · · , cn) ∈ Rn holding linear system (2.1)

with constant ci > 0 for integers 1 ≤ i ≤ n.

§3. Biology Over Equations

Classically, a solvable system (1.1) of differential equations characterizes dynamical

behaviors of a food web in area. However, the solvable systems are individual but

non-solvable systems are universal. Then what about biology over those of non-

solvable systems (1.1)? Are there no biological significance? The answer is negative.

Firstly, let us think about a food web how to run. Certainly, a food chain only

follows a direct, linear pathway of one animal at a time, and different thing T has

his own food chain for living, even for the same kind of things.

Eagle

Snake Rabbit

* � jY
Fig.8

For example, the eagle can lives respectively on the rabbit, on the snake or on

the both via its food chains snake→eagle or rabbit→eagle with interactions in Fig.1,

i.e., although the eagle preys on the snake and the rabbit but it is also dependent

on the 2 populations such as those shown in Fig.8, and its living web should be

consisted of circuits eagle→snake→eagle, eagle→rabbit→eagle or eagle→snake and

rabbit→eagle, Eulerian subgraphs.

Generally, a predator P preys on a living thing T , i.e., P action on T and there

are also T reacts on P at the same time, which implies the interaction between

living things, the in and out action exist together. We therefore know a biological

fact following.

Fact 3.1 A living thing must live in an Eulerian subgraph of bi-digraph of a food

web
−→
G

L
.

13



The following result characterizes action flows on Eulerian subgraphs with that

of solvable subsystems of equations (1.1).

Theorem 3.2 Let
−→
G

L
be a food web with solvable or non-solvable conservative

equations (1.1) on initial value (x1(0), x2(0), · · · , xn(0)) = (x0
1, x

0
2, · · · , x

0
n) and

−→
H

L
≺

(
−→
G

L⋃←−
G
)L̂

, a food web containing species T with solvable conservation equations

ẋi0 = xi0




∑

vk∈N−(vi0
)

f ′
ki0

(xk, xi0)−
∑

vl∈N+(vi0
)

fi0l(xi0 , xl)



 , 1 ≤ i0 ≤ |H| (3.2)

in
−→
H

L
where L(vi0) = ẋi0 . Then

−→
H is an Eulerian digraph and HL is an action

flow.

Proof If
−→
H

L
is a food web, by Fact 3.1

−→
H must be an Eulerian digraph.

Now let xi0 = f(x1, x2, · · · , xn), 1 ≤ i ≤ |H| be the solution of (2.5). Notice

that in solution xi0 , xi can be any chosen constant c, particularly, xi = 0 if i 6∈

{i0, 1 ≤ i ≤ |H|} in (3.2), i.e.,

xi0 = f(0, · · · , 0, x10 , 0, · · · , 0, x20, 0, · · · , 0, xn, 0 · · · , 0), 1 ≤ i ≤ |H|

is also the solution of (2.5) with fik(xi, xk) = 0, f ′
ki(xk, xi) = 0, which implies that

−→
H

L
is an action flow with conservation laws at each vertex. �

Let
−→
H 1,
−→
H 2, · · · ,

−→
H s be subgraphs of digraph

−→
G with

−→
H i 6=

−→
H j
−→
H i

⋂−→
H j = ∅

or 6= ∅ for integers 1 ≤6= j ≤ s. If
−→
G =

s⋃
i=1

−→
H i, they are called a subgraph multi-

decomposition of
−→
G . Furthermore, if each

−→
H i is Eulearian, such a decomposition is

called an Eulerian multi-decomposition, denoted by
−→
G =

s⊕
i=1

−→
H i. For example, an

Eulerian multi-decomposition of the graph on the left is shown on the right in Fig.9.

?Y3I: s�v1

v2

v3

v4
v5

?3k ?3Y ?3}v1

v2

v1

v2

v1

v2

v3
v4 v5

⊕ ⊕

Fig.9
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Particularly, if E
(
−→
H i

)⋂
E
(
−→
H j

)
= ∅ for integers 1 ≤ i 6= j ≤ s, such a decompo-

sition on
−→
G is called an Eulearian decomposition of

−→
G .

The next result characterizes food webs by Eulerian multi-decomposition.

Theorem 3.3 If there are Eulerian subgraphs
−→
H

L

i , 1 ≤ i ≤ s with solvable conser-

vative equations, i.e., food webs such that
−→
G

L̂
=

s⊕
i=1

−→
H

L

i with

L̂ : v →
l∑

i=1

ẋvi , ∀v ∈ V (
−→
G )

if v ∈
l⋂

i0=1

V (
−→
H i0) with L(v) = ẋvi in

−→
H

L

i0
and

L̂ : (u, v)→

(
s∑

l=1

F ′
il
(u→ v), (x, y),

s∑

l=1

Fil(v → u)

)
, ∀(u, v) ∈ E(

−→
G

L
)

if (u, v) ∈
s⋂

j0=1

E(
−→
H j0), then

−→
G

L̂
is also a food web, i.e., an action flow.

Proof Clearly,
−→
G

L̂
is a labeling graph holding with conservative law on each

vertex v ∈ V (
−→
G

L
), i.e., an action flow. �

§4. Global Stability and Extinction

In biology, the generation is the necessary condition for the continuation of species

in a food web constraint on the interaction, i.e., the stability in dynamics with small

perturbations on initial values. Usually, the dynamical behavior is characterized by

differential equations, which maybe solvable or not and can not immediately apply

to the stability of food web
−→
G

L
for n ≥ 3 by Theorems 3.2 and 3.3. Generalizing

the classical stability enables one to define the stability of food web following.

Definition 4.1 A food web
−→
G

L
with initial value

−→
G

L0
, where L(v) = ẋv, L0(v) = ẋ0

v

for v ∈ V (
−→
G

L
) is globally stable or asymptotically stable for any initial value

−→
G

L′

0,

where L′
0(v) = ẏ0

v for v ∈ V (
−→
G

L
) and a number εv > 0, there is always a number

δv > 0 such that if |y0
v − x0

v| < δv exists for all t ≥ 0, then

|yv(t)− xv(t)| < εv, ∀v ∈ V (
−→
G

L
),
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or furthermore,

lim
t→0
|yv(t)− xv(t)| = 0, ∀v ∈ V (

−→
G

L
).

Certainly, we need new criterions on the classic for discussing the stability of

species in biology.

Theorem 4.2 A food web
−→
G

L
with initial value

−→
G

L0
is globally stable or asymptot-

ically stable if and only if there is an Eulerian multi-decomposition

(
−→
G
⋃←−

G
)L̂

=
s⊕

i=1

−→
H

L

i

with solvable stable or asymptotically stable conservative equations on labeling Eule-

rian subgraphs
−→
H

L

i for integers 1 ≤ i ≤ s.

Proof The necessary is obvious because if
−→
G

L
with initial value

−→
G

L0
is globally

stable or asymptotically stable, then
(
−→
G
⋃←−

G
)L̂

is Eulerian itself by Fact 3.1.

Now if there is an Eulerian multi-decomposition

(
−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
H

L

i

on labeling bi-digraph
(
−→
G
⋃←−

G
)L̂

with stable or asymptotically stable conservative

equations on labeling Eulerian subgraphs
−→
H

L

i , i.e., for any number εv > 0, there is

a number δv > 0 such that if |y0
v − x0

v| < δv exists for all t ≥ 0, then

|yv(t)− xv(t)| < εv, ∀v ∈ V (
−→
H

L

i ),

or furthermore,

lim
t→0
|yv(t)− xv(t)| = 0, ∀v ∈ V (

−→
H

L

i )

for integers 1 ≤ i ≤ s, let λv be the multiple of vertex v ∈ V (
−→
G

L
) appeared in

subgraphs
−→
H

L

i , 1 ≤ i ≤ s, we then know that

|yv(t)− xv(t)| < εi
v

for v ∈ V (
−→
H

L

i ) if |y0
v − x0

v| < δi
v for integers 1 ≤ i ≤ λv.

Define

δv = min{δi
v, 1 ≤ i ≤ λv} and εv = max{εi

v, 1 ≤ i ≤ λv}.
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We therefore know that

|yv(t)− xv(t)| < εv,

i.e., the species on vertex v is stable if the conservative equations of
−→
H

L

i are stable

for integers 1 ≤ i ≤ λv and
−→
G

L
is globally stable.

Now if furthermore, xv is asymptotically stable, i.e.,

lim
t→0
|yv(t)− xv(t)| = 0

in food web
−→
H

L

i , 1 ≤ i ≤ λv, it is clear that

lim
t→0
|yv(t)− xv(t)| = 0

in
−→
G

L
also, i.e.,

−→
G

L
is globally asymptotically stable. This completes the proof. �

Corollary 4.3 A food web
−→
G

L
with initial value

−→
G

L0
is globally stable or asymp-

totically stable if there is an Eulerian decomposition

(−→
G
⋃←−

G
)L̂

=
s⊕

i=1

−→
H

L

i

with solvable stable or asymptotically stable conservative equations on labeling Eule-

rian subgraphs
−→
H

L

i for integers 1 ≤ i ≤ s.

Clearly, the bi-digraph
−→
G
⋃←−

G has an Eulerian decomposition, called parallel

decomposition
−→
G
⋃←−

G =
⊕

(u,v)∈E(
−→
G )

(
(u, v)

⋃
(v, u)

)
.

We get the next conclusion.

Corollary 4.4 A food web
−→
G

L
with initial value

−→
G

L0
is globally stable or asymp-

totically stable if it is parallel stable or asymptotically stable, i.e., ((u, v)
⋃

(v, u))L̂

is an action flow for ∀(u, v) ∈ E(
−→
G

L
).

For an equilibrium point
−→
G

L0
of (2.1), we can also linearize F (v, u), F ′(v, u) at

(x0, y0) for ∀(v, u) ∈ E(
−→
G

L
) and know the stable behavior of

−→
G

L
in neighborhood

of
−→
G

L0
by applying the following well-known result.

Theorem 4.5([3]) If an n-dimensional system Ẋ = F (X) has an equilibrium point

X0 that is hyperbolic, i.e., all of the eigenvalues of DFX0 have nonzero real parts,
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then the nonlinear flow is conjugate to the flow of the linearized system in a neigh-

borhood of X0.

The next result on the stability of food webs is an immediate application of

Theorem 4.5.

Theorem 4.6 A food web
−→
G

L
with initial value

−→
G

L0
is globally asymptotically stable

if there is an Eulerian multi-decomposition

(
−→
G
⋃←−

G
)L̂

=

s⊕

k=1

−→
H

L

k

with solvable conservative equations such that Reλi < 0 for characteristic roots λi

of Av in the linearization AvXv = 0hv×hv
of conservative equations at an equilib-

rium point
−→
H

L0

k in
−→
H

L

k for integers 1 ≤ i ≤ hv and v ∈ V (
−→
H

L

k ), where V (
−→
H

L

k ) =

{v1, v2, · · · , vhv
},

Av =





av
11 av

12 · · · av
1hv

av
21 av

22 · · · av
2hv

av
h1 av

h2 · · · av
hhv





a constant matrix and Xk = (xv1 , xv2 , · · · , xvhv
)T for integers 1 ≤ k ≤ l.

Proof Applying the theory of linear ordinary differential equations, we are

easily know the species

xv(t) =
hv∑

i=1

ciβi(t)e
λit,

where, ci is a constant, βi(t) is an hv-dimensional vector consisting of polynomials

in t determined as follows

β1(t) =





t11

t21

· · ·

thv1




, β2(t) =





t11t + t12

t21t + t22

· · · · · · · · ·

tn1t + thv2




,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

βk1
(t) =





t11
(k1−1)!

tk1−1 + t12
(k1−2)!

tk1−2 + · · ·+ t1k1

t21
(k1−1)!

tk1−1 + t22
(k1−2)!

tk1−2 + · · ·+ t2k1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
thv1

(k1−1)!
tk1−1 +

thv2

(k1−2)!
tk1−2 + · · ·+ thvk1




,
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βk1+1(t) =





t1(k1+1)

t2(k1+1)

· · · · · ·

thv(k1+1)




, βk1+2(t) =





t11t + t12

t21t + t22

· · · · · · · · ·

tn1t + thv2




,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

βhv
(t) =





t1(hv−ks+1)

(ks−1)!
tks−1 +

t1(hv−ks+2)

(ks−2)!
tks−2 + · · ·+ t1hv

t2(hv−ks+1)

(ks−1)!
tks−1 +

t2(hv−ks+2)

(ks−2)!
tks−2 + · · ·+ t2hv

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
thv(hv−ks+1)

(ks−1)!
tks−1 +

thv(hv−ks+2)

(ks−2)!
tks−2 + · · ·+ thvhv





with each tij a real number for 1 ≤ i, j ≤ hv such that det([tij ]hv×hv
) 6= 0,

αi =






λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;

λs, if k1 + k2 + · · ·+ ks−1 + 1 ≤ i ≤ hv.

If Reλi < 0 for integers 1 ≤ i ≤ hv, it is clear that

lim
t→∞

xv(t) = 0

for vertex v ∈ E(
−→
H

L

k ), i.e., each linearized conservative equation AvXv = 0hv×hv
is

stable for 1 ≤ k ≤ s. Applying Theorems 4.2 and 4.5, we therefore know that
−→
G

L

is globally asymptotically stable. �

Comparatively, we also get the next conclusion on the unstable of a species by

Theorem 4.2 following.

Corollary 4.7 A species T is unstable in a food web
−→
G

L
with initial value

−→
G

L0
if

and only if the subgraph containing T in all Eulerian multi-decompositions

(
−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
H

L

i

of
−→
G

L
is unstable.

A unstable behavior of species T will causes the redistribution of flows and

makes for a stable situation on the food web
−→
G

L
. If it established, the food web
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works in order again. Otherwise, a few species will evolve finally to extinction, i.e.,

ceases to exist in that area. If all species in a food web
−→
G

L
vanished on that area,

there must be a series of species x1, x2, · · · , xs successively died out on the time, the

stability of the web is repeatedly broken, established and broken, and finally, all

species become extinct. In this case there must be vertices v1, v2, · · · , vs ∈ V (
−→
G

L
)

and a series of action flows

−→
G

L
→
−→
G

L
− v1 →

(
−→
G

L
− v1

)
− v2 → · · · →

−→
G

L
− {v1, v2, · · · , vs}

such that there are no flows in
−→
G

L
−{v1, v2, · · · , vs}, i.e.,

−→
G

L
−{v1, v2, · · · , vs} ≃ K l,

where l = |
−→
G | − s.

Notice that if species x is extinct, there must be lim
t→+∞

x(t) = 0. Let f(t) be

a differentiable function on populations of a species x. If f(t) = O(t−α), α > 1,

i.e., there are constants A > 0 such that |f(t)| ≤ At−α holds with t ∈ (0, +∞),

then f is said to be α-declined and x a species extinct in rate α. Furthermore, if

f(t) = O(e−βt) for β > 0, because

eβt = 1 + βt +
β2

2!
t2 + · · ·+

βn

n!
tn + · · · ,

we are easily know that there is a constant A > 0 such that |f(t)| ≤ Atn for any

integer n ≥ 1. In this case, f is said to be ∞-declined and x a species extinct in

rate ∞.

The results following characterize the extinct behavior of species in a food web.

Theorem 4.8 Let
−→
G

L
be a food web hold with labeling L : vi → ẋi on vertices vi,

L : (vi, vj)→ {Fij, (xi, xj), F
′
ij} on edges for integers 1 ≤ i, j ≤ n, V ⊂ V (

−→
G

L
). If

V (t) =
∑

v∈V




∑

v′∈N−(v)

F ′
v′v(v

′ → v)−
∑

v′∈N+(v)

Fvv′(v → v′)





is α-declined, then all species X =
∑
v∈V

xv in V is extinct in at least rates α− 1 and

particularly, if V = {v}, the species xv is extinct in at least rates α− 1 on t.

Proof Notice that the conservative equation at vertex v ∈ V is

ẋv =
∑

v′∈N−(v)

F ′
v′v(xv′ → xv)−

∑

v′∈N+(v)

Fvv′(xv → xv′)
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and

Ẋ =

d

(∑
v∈V

xv

)

dt
=

∑

v∈V

ẋv

=
∑

v∈V




∑

v′∈N−(v)

F ′
v′v(v

′ → v)−
∑

v′∈N+(v)

Fvv′(v → v′)



 .

Now, if V (t) is α-declined, there must be constant A > 0 such that

−
A

tα
≤ Ẋ =

∑

v∈V




∑

v′∈N−(v)

F ′
v′v(v

′ → v)−
∑

v′∈N+(v)

Fvv′(v → v′)



 = V (t) ≤
A

tα
.

Consequently,

|X| ≤

+∞∫

0

A

tα
dt = A

+∞∫

0

1

tα
dt =

A

(α− 1)tα−1
= O(t−α+1).

Therefore, all species X in V is extinct in at least rates α− 1 on t, and partic-

ularly, it holds with the case of V = {v}. �

Theorem 4.9 Let
−→
G

L
be a food web hold with labeling L : vi → ẋi on vertices vi,

L : (vi, vj)→ {Fij, (xi, xj), F
′
ij} on edges for integers 1 ≤ i, j ≤ n, and V ⊂ V (

−→
G

L
)

a cut set with components C1, C2, · · · , Cl in
−→
G

L
\ V , where l ≥ 2. If

fv(t) =
∑

v′∈N−(v)

F ′
v′v(v

′ → v)−
∑

v′∈N+(v)

Fvv′(v → v′)

is αv-declined for ∀v ∈ V with α = min
v∈V

αv, then

(1)
−→
G

L
turns to l food webs

−→
C

L

1 ,
−→
C

L

2 , · · · ,
−→
C

L

l finally;

(2) the species XV =
∑
v∈V

xv, particularly, xv is extinct in at least rates α − 1

on t for ∀v ∈ V .

Proof Applying Theorem 4.8, all species X in V is extinct in at least rates α−1

on t, and finally, extinction if t → ∞. In this case, there are only left components

C1, C2, · · · , Cl, and each of them is a food web because if xv = 0, there must be

F (v → u) = 0 and F ′(u → v) = 0 for ∀v ∈ V and u ∈ V (
−→
G

L
) \ V . Therefore, the

conservative laws

ẋu =
∑

v∈N−(u)

F ′
vu(xu → xv)−

∑

v∈N+(u)

Fuv(xu → xv)
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in
−→
G

L
turns to

ẋu =
∑

v∈N−(u)
⋂

V (Ci)

F ′
vu(xv → xu)−

∑

v∈N+(u)
⋂

V (Ci)

Fuv(xu → xv),

i.e., it holds also with vertex u in
−→
C

L

i for integers 1 ≤ i ≤ l, the assertion (1).

For (2), by the proof of Theorem 4.8 there is a number A > 0 such that

−

+∞∫

0

κ(
−→
G

L
)
A

tα
dt ≤ XV (t) =

∑

v∈V

xv(t) ≤

+∞∫

0

κ(
−→
G

L
)
A

tα
dt

by definition, where κ(
−→
G

L
) is the connectivity of

−→
G

L
. Whence, XV (t) = O(t−α+1),

and particularly, xv(t) = O(t−α+1) for v ∈ V . �

Finally, there are indeed the case of extinction of species in rate∞. For example,

the proof of Theorem 4.6 implies the case of extinction in rate ∞ on t following.

Theorem 4.10 Let
−→
G

L
be food web with an Eulerian multi-decomposition

(
−→
G
⋃←−

G
)L̂

=
s⊕

k=1

−→
H

L

k

and all conservative equations on
−→
H

L

k are solvable for integers 1 ≤ k ≤ l. For

a vertex v ∈ V (
−→
G

L
) including repeatedly in

−→
H

L

i1
,
−→
H

L

i2
, · · · ,

−→
H

L

il
, if Reλi < 0 for

characteristic roots λi of Ak in the linearization

AkXk = 0hk×hk

of conservative equation at an equilibrium point
−→
H

L0

k , v ∈ V (
−→
H

L

k ) for integers

1 ≤ i ≤ hk, then the species xv is simultaneously extinct in rate ∞ on time t

and asymptotically stable, where V (
−→
H

L

k ) = {v1, v2, · · · , vhk
}, Ak and Xk are as the

same in Theorem 4.6 for integers 1 ≤ k ≤ l.

Proof By the proof of Theorem 4.6, we know that xv(t) is asymptotically stable

with

xv(t) =

hk∑

i=1

ciβi(t)e
λit.

Define β = min
1≤i≤hk

λi. If λi < 0 for integers 1 ≤ i ≤ hk, then xv(t) is clearly an

∞-declined function and species xv is extinct in rate ∞ on time t. �
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§5. Algorithm

Let G = {C1, C2, · · · , Cm} be solvable Eulerian multi-decompositions of bi-digraph

(
−→
G
⋃←−

G)L̂ of a food web
−→
G

L
with conservation equations (1.1) solvable or not, where

C1 and Cm are respectively a parallel decomposition,
−→
G

L
itself of

−→
G

L
. Theorems

4.2 and 4.6 conclude the following algorithm on the global stability of
−→
G

L
.

Algorithm 5.1 The stability of a food web
−→
G

L
can be determined by programming

following:

STEP 1. Input Xi = Ci and i = 1, 2, · · · , m;

STEP 2. Determine Eulerian circuits in Xi is globally stable or not;

STEP 3. If Xi is globally stable, go to STEP 6; Otherwise, go to STEP 4;

STEP 4. Replace Xi by Xi+1, return to STEP 2;

STEP 5. If Xi+1 is globally stable, go to STEP 6; Otherwise, go to STEP 4 if

i < m, or go to STEP 7 if i = m;

STEP 6.
−→
G

L
is globally stable, the algorithm is terminated;

STEP 7.
−→
G

L
is globally non-stable, the algorithm is terminated.

This algorithm certainly enables one to determine the stability of a food web
−→
G

L
regardless of whether its conservation equations solvable or not, and get stability

of food webs with more species than 3 by conclusions on 2 or 3 species.

Example 5.2 Determine the stability of a biological 5-system
−→
G

L
shown in Fig.10,

9q: iẋ1

ẋ2

ẋ3ẋ4

ẋ5

x1f
′
21

(x2, x1)
x2f21

x1f
′
31

(x3, x1)
x3f31

x1f
′
41

(x4, x1)
x4f41

x1f
′
51

(x5, x1)
x5f51

Fig.10
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where, fij and f ′
ij , 1 ≤ i, j ≤ 5 are defined by

f21(x2, x1) = 1− x2 − λ1x1, f ′
21(x2, x1) = 1− x1 − λ2x2,

f31(x3, x1) = 1− x3 − λ1x1, f ′
31(x3, x1) = 1− x1 − λ3x3,

f41(x4, x1) = 1− x4 − λ1x1, f ′
41(x4, x1) = 1− x1 − λ4x4,

f51(x5, x1) = 1− x5 − λ1x1, f ′
51(x5, x1) = 1− x1 − λ5x5

with conservative equations






ẋ1 = x1 (4− 4x1 − λ2x2 − λ3x3 − λ4x4 − λ5x5)

ẋ2 = −x2 (1− x2 − λ1x1)

ẋ3 = −x3 (1− x3 − λ1x1)

ẋ4 = −x4 (1− x4 − λ1x1)

ẋ5 = −x5 (1− x5 − λ1x1)

(5.1)

Let (x0
1, x

0
2, x

0
3, x

0
4, x

0
5) be an equilibrium point of (5.1). Calculation shows the

linearization of (5.1) is






ẋ1 = Ax1 − λ2x
0
1x2 − λ3x

0
1x3 − λ4x

0
1x4 − λ5x

0
1x5

ẋ2 = λ1x
0
2x1 + (−1 + 2x0

2 + λ1x
0
1) x2

ẋ3 = λ1x
0
3x1 + (−1 + 2x0

3 + λ1x
0
1) x3

ẋ4 = λ1x
0
4x1 + (−1 + 2x0

4 + λ1x
0
1) x4

ẋ5 = λ1x
0
5x1 + (−1 + 2x0

5 + λ1x
0
1) x5

, (5.2)

where A = 4− 8x0
1 − λ2x

0
2 − λ3x

0
3 − λ4x

0
4 − λ5x

0
5.

:)yz ): q yẋ5

ẋ1

ẋ2

ẋ3ẋ4

(x2, x1)

(x2, x1)

(x3, x1)

(x3.x1)(x4, x1)

(x5, x1)

(x5, x1)

0

x1f
′
21

0

x2f21

0
0
x1f

′
31

x3f31

0
0

0

0

(x4, x1)

x4f41

x1f
′
41

x5f51 x1f
′
51

Fig.11
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As usual, we can hold on the stability of system (5.2) of linear equations and

then, the stability of (5.1) by Theorem 4.6 on equilibrium points with tedious cal-

culation. However, we apply Algorithm 5.1 for the objective.

Notice that bi-digraph (
−→
G
⋃←−

G)L̂ of
−→
G

L
in Fig.11 has a parallel decomposition

such as those shown in Fig.12,

? 6 ? 6 ? 6 ? 6ẋ1 ẋ1 ẋ1 ẋ1

ẋ2 ẋ3 ẋ4 ẋ5

(x2, x1)

(x2, x1)

(x3, x1)

(x3, x1)

(x4, x1)

(x4, x1)

(x5, x1)

(x5, x1)

0

0

0

0

0

0

0

0x2f21

x1f
′

21

x3f31

x1f
′

31

x4f41

x1f
′

41

x5f51

x1f
′

51

⊕ ⊕ ⊕

Fig.12

and the conservation equations on these parallel edges are respectively

{
ẋ1 = x1(1− x1 − λ2x2)

ẋ2 = x2(1− x2 − λ1x1)
(5.3)

{
ẋ1 = x1(1− x1 − λ3x3)

ẋ3 = x3(1− x3 − λ1x1)
(5.4)

{
ẋ1 = x1(1− x1 − λ4x4)

ẋ4 = x4(1− x4 − λ1x1)
(5.5)

{
ẋ1 = x1(1− x1 − λ5x5)

ẋ5 = x5(1− x5 − λ1x1)
(5.6)

We have known the stability of equations (5.3)-(5.6) by their linearizations

following ([20]):

(1) the equilibrium point (x1, xi) = (0, 0) is unstable for equations (5.3)-(5.6),

where i = 2, 3, 4, 5;

(2) the equilibrium point (x1, xi) = (1, 0) is stable if λ1 > 1 for i = 2, 3, 4, 5;

(3) the equilibrium point (x1, xi) = (0, 1) is stable if λi > 1 for equations (5.3)-

(5.6), where i = 2, 3, 4, 5;
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(4) the equilibrium point

(
λi − 1

λ1λi − 1
,

λ1 − 1

λ1λi − 1

)
is asymptotically stable if λ1 > 1

and λi > 1 for equations (5.3)-(5.6), where i = 2, 3, 4, 5.

Therefore, we know this biological 5-system is unstable on the equilibrium point

(0, 0, 0, 0, 0) but stable on the equilibrium points (0, 1, 1, 1, 1) and (1, 0, 0, 0, 0), and

asymptotically stable on the equilibrium point

(
λ− 1

λ1λ− 1
,

λ1 − 1

λ1λ− 1
,

λ1 − 1

λ1λ− 1
,

λ1 − 1

λ1λ− 1
,

λ1 − 1

λ1λ− 1

)

of system (5.1) if λ > 1 and λ1 > 1 by Theorem 4.2, where λ = λ2 = λ3 = λ4 = λ5.

§6. Conclusion

Today, we have many mathematical theories but we are still helpless on opening the

mystery of the nature as Einstein’s complaint, i.e., as far as the laws of mathematics

refer to reality, they are not certain; and as far as they are certain, they do not refer

to reality because the multiple nature, or contradiction is universal on things, par-

ticularly, living things different from rigid bodies. Usually, we establish differential

equations for characterizing things T and holds on their behavior by solutions, which

is only hold on those of coherent behaviors of things, not the individual. Thus, we

encounter non-solvable cases in biology, and even if it is solvable, finding the exact

solution is nearly impossible in most cases. In fact, the solvable equation is indi-

vidual but the non-solvable is universal for knowing the nature. This fact implies

that we should also research those of non-solvable equations for revealing reality of

things in mathematics, which finally brings about the mathematics over topologi-

cal graphs, i.e., action flows, or mathematical combinatorics, and only which is the

practicable way for understanding things, particularly, living things in the world.
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