
 

1 

 

 

Correlation Coefficient of Simplified Neutrosophic Sets for 

Bearing Fault Diagnosis 

 

Lilian Shi 

 Department of Electrical and Information Engineering, Shaoxing University, 508 

Huancheng West Road, Shaoxing, Zhejiang Province 312000, PR China  

 

  

Abstract 

 

In order to process the vagueness in vibration fault diagnosis of rolling bearing, a new 

correlation coefficient of simplified neutrosophic sets (SNSs) is proposed. Vibration 

signals of rolling bearings are acquired by an acceleration sensor, and a morphological 

filter is used to reduce the noise effect. Wavelet packet is applied to decompose the 

vibration signals into eight sub-frequency bands, and the eigenvectors associated with 

energy eigenvalue of each frequency are extracted for fault features. The SNSs of each 

fault types are established according to energy eigenvectors. Finally, a correlation 

coefficient of two SNSs is proposed to diagnose the bearing fault types. The 

experimental results show that the proposed method can effectively diagnose the bearing 

faults.  
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1. Introduction 

 

A rolling bearing is an important rotating part in a mechanical equipment, and its quality 

decides the operation performance of the equipment. A faulty bearing may cause the 

whole equipment to operate abnormally. Bearing faults must be effectively diagnosed to 

avoid catastrophic mechanical failures and significant economic losses. 

The vibration signals of rolling bearings often indicate some fault information. When 

the fault occurs in rotating bearings, different characteristic frequencies of vibration 

signals can be generated periodically [1]. Actually, for the original vibration signals, 

many useful fault features are usually hidden in noise, and the relationship between fault 

symptoms and causations is very complex, so it is difficult to make accurate and 

quantitative analysis for fault types. In recent years, many studies have been devoted to 

the fault diagnosis of rolling bearing. There are two critical issues for diagnosing bearing 



 

2 

 

faults from vibration signals. One issue is how to extract fault features from vibration 

signals. Another one is how to analyze fault features and recognize fault types according 

to these features. 

In order to extract useful fault features from vibration signals, many techniques such 

as time-domain, frequency-domain and time-frequency domain methods are extensively 

investigated [2]. In the time-domain method, key parameters can be extracted directly 

from the original vibration signals, such as root mean square (RMS), crest factor, peak, 

and probability density function [3]. In addition, time-domain signals can be transformed 

into frequency-domain by Fourier transform. However, Fourier analysis may cause 

information loss during the transformation, particularly for non-stationary signals. The 

vibration of a rolling bearing is typically non-stationary, so it is difficult to extract 

accurate and complete fault features if adopting the traditional analysis only in the time 

or frequency domain. In time-frequency domain, the wavelet can reveal more complete 

information for non-stationary signals [4]. Many research results show that a wavelet 

packet is an effective tool to extract features from vibration signals for bearing fault 

diagnosis [5-8]. 

The next key issue is to recognize fault types of bearings according to the extracted 

fault features from vibration signals. To solve this problem, various approaches such as 

expert systems [10], neural networks [3, 9, 11], and fuzzy approaches [12-14], have been 

developed for fault diagnosis over the past few years. Fuzzy theory has attracted 

increasing attention in bearing fault diagnosis, and many researches show that fuzzy 

theory is an effective tool to diagnose bearing faults. 

Fuzzy sets (FSs) theory proposed by Zadeh (1965) for handling uncertain 

information using single membership degree function [15]. The fuzzy sets were 

extended to intuitionistic fuzzy sets (IFSs) [16] and interval valued intuitionistic fuzzy 

sets (IVIFSs) [17] by using membership degree function, non-membership degree 

function, and degree function of hesitation simultaneously. FSs, IFSs, and IVIFSs 

have been widely applied in various fields. However, FSs, IFSs, and IVIFSs cannot 

deal with some types of uncertainties such as the indeterminate information and 

inconsistent information in real physical problems. Furthermore, Smarandache [18] 

proposed neutrosophy theory from philosophical point of view. Neutrosophic sets 

(NSs) are characterized by a truth-membership function, an 

indeterminacy-membership function, and a falsity membership function. The 

functions of NSs takes the value from real standard or nonstandard subsets of ]-0, 

1+[[18], and it is difficult to apply in engineering areas. For the real engineering 

applications, neutrosophic sets (NSs) can be described as simplified neutrosophic sets 



 

3 

 

(SNSs) [19] with the normal standard real unit interval [0, 1]. One major advantage of 

SNSs is the ability to perform analysis problems involving imprecise, undetermined, 

and inconsistent data. Recently, SNSs has been applied in many different fuzzy 

problems, such as medical diagnosis problems [20-21], decision making problems [19, 

22], and image processing [23].  

For vibrational fault diagnosis of rolling bearing, there is no direct accurate and 

quantitative relationship between fault vibration characteristics and fault types. 

Therefore, the fault diagnosis process has certain vagueness. This paper mainly focuses 

on the fault diagnosis of rolling bearings based on vibration signals and SNSs. In this 

work, a morphological filter and wavelet packet decomposition are applied to preprocess 

the original vibration signals, and the SNSs of each fault types will be established 

according to energy eigenvectors. The fault types will be diagnosed using a new 

correlation coefficient of SNSs. 

The rest of the paper is organized as follows. Section 2 gives the experimental system. 

Section 3 gives the data preprocessing techniques including morphological 

opening-closing operation and wavelet packet decomposition. In Section 4, some basic 

concepts of SNSs and a new correlation coefficient are introduced firstly, and then the 

fault diagnosis method is presented based on SNSs. Conclusions of this work are 

summarized in Section 5. 

 

2. Experimental setup section  

 

This study was carried out with the experimental apparatus shown in Fig.1. The principal 

axis is driven by an AC motor, and the vibration signals of bearings are acquired by an 

acceleration sensor and a data acquiring card NI USB-6251. The vibration signals will be 

processed using a computer, and displayed by an oscilloscope. Some vibration signals 

are acquired by the experimental device of Jiliang University in China [24], shown as 

Fig.2. In this experiment, the type of bearings is NSK 6202 deep groove ball bearing 

whose specifications are in Table 1. 

Table 1. Bearing parameters 

Parameters Values(mm) 

Outer race diameter 35 

inner race diameter 15 

Ball diameter d 7.5 

Thickness 11 

number of balls 7 

Pitch diameter D 25 

contact angle  0 

http://www.sciencedirect.com.dbgw.lis.curtin.edu.au/science/article/pii/S1568494612000555#sec0100
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Fig. 1. Diagram of experimental system 

 1. Motor  2. Driver  3. Principal axis  4. Bearing  5. Core axes  6. 

Acceleration sensor  7. Acquision data card  8. Oscilloscope  9. Computer 

 

 

Fig. 2.  Experimental device 

 

In order to diagnose the fault of bearings, four types of bearings are used, including 

healthy, outer race fault, inner race fault and ball fault bearings. The core axis is 

driven at the rotational speed of 25Hz. NI Labview Signal Express will be applied for 

data acquisition with 10KHz sampling frequency and 0.2s sample time. 

When a fault exists in a bearing, vibration impulses will happen at a specific 

frequency. Theoretically, when a bearing rotates at a constant speed, the fault 

frequencies can be calculated by the following in Eq. (1) [25]: 
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where d is the diameter of the rolling elements, D is the pitch diameter, Fr is the 

rotational speed of the shaft, NB is the number of rolling elements, and FO , FI and FB 

represent the fault frequencies of outer race fault, inner race fault, and ball fault of a 

bearing respectively. 

According to Eq. (1), we can calculate the fault frequencies FO = 61.25Hz, FI = 

113.75Hz and FB = 75.83Hz in this experiment. 

 

3. Vibration signal data preprocessing 

 

The framework of diagnosing process is shown in Fig.3.  

Vibration signals acquisition 

Data  preprocessing by 

morphological filtering 

Decompose the vibration signals 

into energy spectrum 

Extract energy spectrum features 

of vibration signals 

Built the neutrosophic sets of 

four types of bearings according 

to energy spectrum features 

Calculate the correlation coefficient 

between testing bearing and four 

types of bearings

Diagnose fault types of bearings   

according to maximum   

correlation coefficient 
 

Fig.3. Block diagram of diagnosis for fault bearing  

using neutrosophic sets 
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The original vibration signals of bearings are usually ridden with noise. It is 

difficult to extract the fault features directly from an original vibration signals. In 

order to remove the strong noises and detect the effective signals for bearing faults 

diagnosis, data processing algorithms are necessary to be performed. In this 

experiment, a morphological filter is used to remove high frequencies noise from the 

original vibration signals firstly, and then wavelet packet is applied to decompose the 

signals into the individual frequencies.  

3.1 Morphological filter 

A morphological filter is a nonlinear signal processing and analysis tool in 

time-domain, and it can be composed of several morphological operations [26]. The 

basic morphological operators include dilation, erosion, opening, and closing. 

Assume that x(n) and a structural element y(n) are discrete signals defined in X = {0, 

1, ..., N-1} and B ={0, 1,... , M-1} respectively, and N ≥M, the four basic operators of 

x(n) on y(n) are defined as follows: 

Dilation: 

 

Erosion:  

 

Opening :  

Closing:        

Morphological opening-closing filter as follows:  

 

In this experiment, the morphological opening-closing filter Foc was used to 

remove the strong noises. 

Figs. 4-6 show the signals of rolling element bearings with outer race, inner race 

and ball fault respectively [24]. In these figures, the fault signals have distinguishing 

peak value features at the fault frequencies. The results in Figs.4-6 indicate that 

morphological filter is an effective denoising technique for vibration signals of boll 

bearings.  

3.2 Wavelet packet decomposition 

According to the structure of wavelet decomposition, the input vibration signal can be 

decomposed into low-frequency and high-frequency parts for each step. The selection 

of a suitable level for the hierarchy depends on the signal, experience and actual needs 

[4, 7]. The wavelet packet was applied to decompose the vibration signals into eight 

sub-frequency bands in the practical application [2, 6]. Based on review of earlier 

researcher, in this work 3-level wavelet packet decomposition is considered for 

0 1 1
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bearing fault diagnosis, and experimental results show that the bearing fault feature 

can be extracted effectively from the decomposed signals. 

    

 

  

 

  

 

In this experiment, the vibration signals of bearing are preprocessed firstly by a 

morphological filter, and then are decomposed using 3-level wavelet packet.  

Assume that x(t) is a vibration signal, L(·) and H(·) are quadrature mirror filters, 

representing low-pass and high-pass wavelet filters, respectively. These filters 

associate with the scaling function and wavelet function, and satisfy the condition 

H(n) = (-1) 
n
 L(1-n). Then the signal x(t) can be decomposed into a set of high and 

low frequency components by the following recursive relationships: 

 

                      (2) 
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Fig. 4. Signals of rolling bearing in outer race fault 

Fig. 5. Signals of rolling bearing in inner race fault 

Fig. 6. Signals of rolling bearing in ball fault 
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Where xj,k denotes the wavelet coefficients at the j-th level and k-th sub-band.  

 The diagram of 3-level wavelet packet decomposition is shown in Fig.7. In the 

Fig.7, the frequency intervals of each band in 3-level can be computed by ((k-1) fs /2
4
, 

kfs /2
4
], where fs is sampling frequency. In this work, fs =10kHz and fs /2

4 
= 625Hz. 

The frequency intervals are given in Table 2. 

vibration signal  x(t)

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7

x2,3x2,2x2,1x2,0

x1,0 x1,1

HL

H HL

H H H HL L L L

L

Figure 7. Diagram of 3-level wavelet packet 

decomposition (L: low-pass filter, H: high-pass fliter)

 

 

 

 

 

Signals Frequency (Hz) Signals Frequency (Hz) 

x3,0 (0, 625] x3,4 (2500, 3125] 

x3,1 (625, 1250] x3,5 (3125, 3750] 

x3,2 (1250, 1875] x3,6 (3750, 4375] 

x3,3 (1875,2500] x3,7 (4375, 5000] 

 

The vibration signal x(t) can be expressed as follows: 

                  (3) 

Where k represents eight sub-frequency bands, and x3,k (t) is the wavelet coefficient 

at the 3-level and k-th sub-frequency band. After the decomposition, the energy in 

each sub-frequency band can be defined as: 
2

2

3 3 3

0

( ) ( )  0 1 7  

N

k

,k ,k

i

E x t dt x i , k , , ...,



               (4) 

Where x3,k (i) is the i-th discrete point amplitude of wavelet coefficient (x3,k (t)), and 

N is its discrete point number in each sub-frequency. 

The faults of rolling bearings will influence greatly on the wavelet packet energy of 

vibration signals, so it is very useful to extract the energy eigenvalue for diagnosing 

3
2 1

3

0

( ) ( ) 0 1 7
,k

k

x t x t , k , , ...,





   

Fig.7. Diagram of 3-level wavelet packet decomposition 

(L: low-pass filter, H: high-pass filter) 

Table 2. Frequency intervals of eight sub-frequency bands 
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bearing faults. In this experiment, an eigenvector based on energy eigenvalue of each 

frequency can be constructed as follows:   

        T = {E3
0
, E3

1
, E3

2
, E3

3
, E3

4
, E3

5
, E3

6
, E3

7
}           (5) 

Furthermore, assume that E3max is the maximum value of the energy eigenvalue in 

the 3-level sub-frequency band, and then the eigenvalues can be normalized as 

follows:  

                                (6) 

  By above normalization, the energy eigenvalue of the wavelet packet energy of 

vibration signals were bounded to [0, 1], and then the normalized eigenvector can be 

described as follows: 

T
*
 = {E

*
3

0
, E

*
3

1
, E

*
3
2
, E

*
3

3
, E

*
3

4
, E

*
3
5
, E

*
3

6
, E

*
3

7
}        (7) 

The normalized energy eigenvalues of vibration signals are shown in Fig.8. 

    

     

     

      

 
For diffident type faults of bearing, the eigenvalue of the wavelet packet energy has 

the distinguishing distribution at the individual sub-frequency band. According to a 

lot of experimentation and data comparison, we extract the lower bound and upper 

Fig.8. Energy histogram of rolling 

bearing 

  

(d) Rolling bearing in ball fault   (c) Rolling bearing in inner race fault  

(b) Rolling bearing in outer race fault  

3

3

3

0 1 7

k

* k

m ax

E
E , k , , ...,

E
    

(a) Healthy rolling bearing 
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bound of the energy eigenvalues for typical faults of bearing, and establish the energy 

interval ranges as shown in Table 3, and the energy interval ranges can be used to 

diagnose fault types of rolling bearings in the next step. 

 

4. Fault diagnosis of rolling bearing based on SNSs 

In this section, we briefly introduce basic concepts of simplified neutrosophic sets 

(SNSs), and propose a new correlation coefficient of two SNSs, which will be needed 

in the following analysis. Then, we establish the fault SNSs of bearings according to 

energy features. Finally, we present the method for fault diagnosis of rolling bearing 

according to the correlation coefficient of SNSs. 

4.1 Simplified neutrosophic sets (SNSs) 

Definition 1 [18] Let U be an universe of discourse then the neutrosophic set (NS) 

A is defined by 

A = { x, TA(x), IA(x), FA(x), xU},  

where the functions TA(x), IA(x) and FA(x) represent a truth-membership function, an 

indeterminacy-membership function, and a falsity-membership function of the 

element xU to the set A, respectively, with the condition TA(x), IA(x), FA(x): U →]
-
0, 

1
+
[, and 

-
0 ≤ TA(x) + IA(x)+ FA(xi) ≤ 3

+
.  

The above concept of a neutrosophic set (NS) is presented from philosophical point 

of view, and it takes the value from real standard or nonstandard subsets of ] 
-
0, 1

+ 
[.  

It will be difficult to apply ] 
-
0, 1

+ 
[ in scientific and engineering areas. For the real 

applications, a simplified neutrosophic set (SNS) is introduced by Ye [19] as the 

following definition. 

Fault types 
Energy in each frequency band 

 E
*

3
0
 E

*
3

1
 E

*
3

2
 E

*
3

3
 E

*
3

4
 E

*
3

5
 E

*
3

6
 E

*
3
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A1(Healthy) 
[0.76, 

0.80] 

[0.95, 

1.00] 

[0.11, 

0.15] 

[0.64, 

0.71] 

[0.04, 

0.06] 

[0.00, 

0.02] 

[0.01, 

0.05] 

[0.00, 

0.03] 

A2 (outer race 

fault) 

[1.00, 

1.00] 

[0.24, 

0.39] 

[0.02, 

0.03] 

[0.13, 

0.22] 

[0.00, 

0.01] 

[0.00, 

0.01] 

[0.01, 

0.01] 

[0.01, 

0.01] 

A3 (ball fault) 
[0.82, 

0.93] 

[1.00, 

1.00] 

[0.11, 

0.16] 

[0.65, 

0.74] 

[0.06, 

0.08] 

[0.00, 

0.04] 

[0.02, 

0.06] 

[0.00, 

0.01] 

A4 (Inner race 

fault) 

[1.00, 

1.00] 

[0.49, 

0.55] 

[0.06, 

0.10] 

[0.20, 

0.24] 

[0.00, 

0.00] 

[0.02, 

0.03] 

[0.03, 

0.05] 

[0.03, 

0.06] 

Table 3.  Energy interval ranges at the eight sub-frequency bands 
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Definition 2 [19] Let U be a space of points (objects) with generic elements in U 

denoted by x. A simplified neutrosophic set (SNS) A in U is characterized by a 

truth-membership function TA(x), an indeterminacy-membership function IA(x), and a 

falsity-membership function FA(x). For each point x in U, TA(x), IA(x), and FA(x) are 

singleton subintervals/subsets in the real standard [0, 1], such that TA(x), IA(x), FA(x)  

[0, 1]. Then, a simplified neutrosophic set (SNS) is denoted by  

A = { x, TA(x), IA(x), FA(x)∣x U}. 

Obviously, a simplified neutrosophic set (SNS) is a subclass of the neutrosophic set 

(NS), and satisfies the condition TA(x), IA(x), FA(x): U →[0, 1], and 0 ≤ TA(x) + IA(x)+ 

FA(x) ≤ 3.

4.2 Correlation coefficient for SNSs 

 Correlation coefficient is an important tool for determining the correlation degree 

between fuzzy sets. Therefore, a new correlation coefficient of two SNSs is proposed 

by the following definition.  

Definition 3  Assume that there are two SNSs A = {xi, TA (xi), IA (xi), FA (xi) ∣

xiU } and B = {xi, TB (xi), IB(xi), FB(xi)∣xi U } in the universe of discourse U = 

{x1, x2, …, xn}, xiU. A correlation coefficient between SNSs is defined as follows: 

(8) 

where the symbol “min” is the minimum operation. 

 According to the above definition, the correlation coefficient of SNSs A and B 

satisfies the following properties: 

(P1) 0 ≤ MSNS (A, B) ≤ 1; 

(P2) MSNS (A, B) = MSNS (B, A); 

 (P3) MSNS (A, B) = 1 if and only if A = B. 

If we consider the weights of xi, a weighted correlation coefficient between SNSs A 

and B is proposed as follows: 

 (9) 

where wi  [0, 1],  and         for i = 1, 2, . . ., n. 

4.3 Bearings neutrosophic sets models based on energy eigenvectors 

The SNSs models of rolling bearings can be built according to the energy intervals 

of the eight sub-frequency bands as shown in Table 3.  

1

[ ( ) ( )] [ ( ), ( )] [ ( ), ( )]1

( ) ( ) ( ) ( ) ( ) ( )

n

A i B i A i B i A i B i

SN S

i A i B i A i B i A i B i

m in T x ,T x m in I x I x m in F x F x
M ( A , B )

n T x T x I x I x F x F x

 


 
  

1

[ ( ) ( )] [ ( ), ( )] [ ( ), ( )]

( ) ( ) ( ) ( ) ( ) ( )

n

A i B i A i B i A i B i

SN S i

i A i B i A i B i A i B i

m in T x ,T x m in I x I x m in F x F x
M ( A , B ) w

T x T x I x I x F x F x

 


 
  

1

1
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
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Assume that a set of bearing faults is A = {A1 (healthy), A2 (outer race fault), A3 

(ball fault), A4(inner race fault)}, and a set of energy eigenvector is E = {e1 (E
*
3
0
), e2 

(E
*

3
1
), e3 (E

*
3

2
), e4 (E

*
3
3
), e5 (E

*
3
4
), e6 (E

*
3
5
), e7 (E

*
3
6
), e8 (E

*
3
7
)}. In Table 3, let TAk(ei) 

and UAk(ei) (k = 1, 2, 3, 4; i = 1, 2, …,8) be the lower bound and upper bound of the 

characteristic value ei for Ak, respectively, then the characteristic intervals of rolling 

bearing can be represented by 

Ak = {(e1, [TAk(x1), UAk(e1)]), (e2, [TAk(e2), UAk(e2)]), (e3, [TAk(e3), UAk(e3)]),  

(e4, [TAk(e4), UAk(e4)]), (e5, [TAk(e5), UAk(e5)]) (e6, [TAk(e6), UAk(e6)]), 

  (e7, [TAk(e7), UAk(e7)]), (e8, [TAk(e8), UAk(e8)])},  (k = 1, 2, 3, 4)     (10)                                

Let UAk(ei) = 1 - FAk(ei) and IAk(ei) = UAk(ei) - TAk(ei), for k = 1, …, 4, and i = 1, …, 

8. If UAk(ei) - TAk(ei) ≤ 0.01, then let IAk(ei) =0.01. In this case, the sets Ak can be 

extended to simplified neutrosophic sets (SNSs), and can be rewritten as:  

Ak = {e1, TAk(e1), IAk(e1), FAk(e1), e2, TAk(e2), IAk(e2), FAk(e2) , e3, TAk(e3), IAk(e3), 

FAk(e3), e4, TAk(e4), IAk(e4), FAk(e4), e5, TAk(e5), IAk(e5), FAk(e5), e6, TAk(e6), IAk(e6), 

FAk(e6), e7, TAk(e7), IAk(e7), FAk(e7) , e8, TAk(e8), IAk(e8), FAk(e8)}            (11) 

Where TAk(ei): U → [0, 1], IAk(ei): U → [0, 1], FAk(ei): U → [0, 1], and 0 ≥TAk(ei) + 

IAk(ei) + FAk(ei) ≤ 3, for k =1, …, 4, and i = 1, …, 8.  

According to the definition of neutrosophic sets, the numbers TAk(ei), IAk(ei), and 

FAk(ei) represent a truth-membership, an indeterminacy-membership, and a 

falsity-membership, respectively. The neutrosophic sets of bearing fault types are 

shown in Table 4. Here, A1, A2, A3, and A4 are healthy, outer race fault, ball fault, and 

inner race fault bearings, respectively. 

 

Fault 

types 

Energy in each frequency band 

E
*

3
0
 E

*
3

1
 E

*
3

2
 E

*
3

3
 E

*
3

4
 E

*
3

5
 E

*
3

6
 E

*
3
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A1 
e1, 0.76, 

0.14, 0.20 

 e2, 0.95, 

0.05, 0.00 

e3, 0.11, 

0.04, 0.85 

e4, 0.64, 

0.07, 0.29 

e5, 0.04, 

0.02, 0.94 

e6, 0.00, 

0.02, 0.98 

e7, 0.01, 

0.05, 0.95 

e8, 0.00, 

0.03, 0.97 

A2  
e1, 1.00, 

0.01, 0.00 

e2, 0.24, 

0.15, 0.61 

e3, 0.02, 

0.01, 0.97 

e4, 0.13, 

0.09, 0.78 

e5, 0.00, 

0.01, 1.00 

e6, 0.00,     

0.01, 0.99 

e7, 0.01, 

0.01, 0.99 

e8, 0.01, 

0.01, 0.99 

A3  
e1, 0.82, 

0.11, 0.07 

e2, 1.00, 

0.01, 0.00 

e3, 0.11, 

0.05, 0.84 

e4, 0.65, 

0.10, 0.25 

e5, 0.06, 

0.03, 0.92 

 e6, 0.00, 

0.04, 0.96 

e7, 0.02, 

0.04, 0.94 

e8, 0.00, 

0.01, 1.00 

A4  
e1, 1.00, 

0.01, 0.00 

e2, 0.49, 

0.07, 0.45 

e3, 0.06, 

0.04, 0.90 

e4, 0.20, 

0.04, 0.76 

e5, 0.00, 

0.01, 1.00 

e6, 0.02, 

0.01, 0.97 

e7, 0.03, 

0.03, 0.95 

e8, 0.03, 

0.03, 0.94 

4.4 Rolling bearing fault diagnosis using correlation coefficient 

In this section, we apply the correlation coefficient of SNSs to diagnose rolling 

bearing faults. Assume that Ak (k =1, 2, 3, 4) are SNSs models of rolling bearing faults 

Table 4.  Energy values of bearing fault types represented by the form of SNS 
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and At is a testing rolling bearing signal expressed by a SNS. Then we can calculate 

the correlation coefficient value MSNS (Ak, At) (k =1, 2, 3, 4) using equation (9). Finally, 

the fault-diagnosis order of the fault-testing sample can be ranked according to the 

correlation coefficient value, and the proper diagnosis Ak* for the bearing fault At is 

derived by  

                  (12) 

This paper considers the same importance of the energy values in each frequency 

band, therefore, the weights of wi (i = 1, 2,…, 8) are wi =1/8. 

4.5 Results and Discussions 

To demonstrate the effectiveness of the new diagnosis method, we now provide 

two examples for fault diagnosis of bearings. Let us consider two testing bearing 

samples B1 and B2 described as neutrosophic sets:  

B1 = {e1, 1.00, 0.01, 0.00, e2, 0.51, 0.01, 0.49, e3, 0.08, 0.01, 0.92, e4, 0.24, 

0.01, 0.76, e5, 0.00, 0.01, 1.00, e6, 0.03, 0.01, 0.97, e7, 0.05, 0.01, 0.95, e8, 0.06, 

0.01, 0.94}. 

B2 = {e1, 1.00, 0.01, 0.00, e2, 0.39, 0.01, 0.61, e3, 0.03, 0.01, 0.97, e4, 0.22, 

0.01, 0.78, e5, 0.00, 0.01, 1.00, e6, 0.01, 0.01, 1.00, e7, 0.01, 0.01, 1.00, e8, 0.01, 

0.01, 1.00}. 

The correlation coefficient values between SNSs Bj (j = 1, 2) and Ak (k =1, 2, 3, 4) 

can calculated by equation (10) as follows: 

MSNS (A1, B1) = 0.8787,    MSNS (A2, B1) = 0.9483, 

MSNS (A3, B1) = 0.8746,    MSNS (A4, B1) = 0.9819. 

MSNS (A1, B2) = 0.8587,    MSNS (A2, B2) = 0.9714, 

MSNS (A3, B2) = 0.8566,    MSNS (A4, B2) = 0.9590. 

For the fault-testing sample B1, MSNS (A4, B1) is the maximum correlation 

coefficient, and MSNS (A2, B1) is the second correlation coefficient. According to the 

principle of correlation coefficient, the fault-diagnosis order is as follows:  

A4→A2 →A1→A3. 

Therefore, we can determine that the testing bearing is an inner race fault bearing. 

By actual observing, the testing bearing inner race was covered with scratches, and 

therefore the diagnosis result is correct. 

Similarly, for the fault-testing sample B2, the fault-diagnosis order is as follows: 

A2→A4 →A1→A3. 

By actual checking, the fault of the bearing is firstly resulted from damage of outer 

race, and then inner race. So the diagnosis results consistent with the actual situation. 

1 4

{ ( )}
*

SNS k t
k

k arg M A , Amax
 

        
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In the experiment, 120 rolling bearings were used for testing samples. In order to 

verify the effectiveness of the fault diagnosis method proposed in this paper, we 

extracted the energy eigenvalues of bearing vibration signals firstly, and then 

diagnosed the bearing faults using the correlation coefficient of SNSs and the support 

vector machine (SVM), respectively. The fault diagnosis results of rolling bearings 

are shown in Table 5. By comparing the diagnosis results shown in Table 5, it is clear 

that the diagnosis accuracy rate based on the correlation coefficient of SNSs is much 

higher than the accuracy rate based on SVM. 

For further comparison, Table 6 lists the diagnosis results based on the 

correlation coefficient of SNSs, SVM, BP and GA-BP [27] methods, respectively. 

Obviously, the method based on the correlation coefficient of SNSs can achieve the 

average accuracy rate of 92.5%, and it is higher than the ones based on the other 

methods.  

The above comparisons demonstrate that the proposed method in this paper is 

effective in the bearing fault diagnosis. 

Table 5.  Fault diagnosis results based on the correlation coefficient of SNSs and SVM 

 

Table 6.  Fault diagnosis results based on the correlation coefficient of SNSs, SVM, BP and GA-BP 

Fault type Method 
Test 

sample 

Diagnosis result Diagnosis 

accuracy 

rate (%) 
healthy 

outer race 

fault 

ball 

fault 

inner race 

fault 

Healthy 
SNSs 

SVM 

30 

 

28  

27 
 

2 

3 

 

 

93.3 

90 

Outer race 

fault 

SNSs 

SVM 
30   

28 

28 
  

2 

2 

93.3 

93.3 

Ball fault 
SNSs 

SVM 
30 

5 

7 
 

25 

23 
 

83.3 

76.7 

Inner race 

fault 

SNSs 

SVM 
30  

 

5 
 

30  

25 

100 

83.3 

Diagnosis 

method 

Diagnosis accuracy rate (%) Average   

accuracy (%) healthy outer race fault ball fault inner race fault 

SNS 93.3 93.3 83.3 100 92.5 

SVM  90  93.3 76.7 83.3 85.8 

GA-BP  100 80 70 90 85 

BP  90 70 50 90 75 
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5. Conclusion 

To diagnose rolling bearing faults, a new fault diagnosis method was developed by 

combining correlation coefficient of SNSs with wavelet packet decomposition. A 

series of experiments were conducted to diagnose rolling bearing faults, and the 

experimental results demonstrated that the proposed method can effectively identify 

the bearing faults. For the novel fault diagnosis method, there exist two key issues: (1) 

extracting useful fault features by wavelet packet decomposition; (2) building the 

accurate SNSs models of bearing faults. In the future work, the two issues will be 

further improved based on the analysis of a large number of experimental data since 

they will influence the accuracy of fault diagnosis results. 
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