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This short note proposes a general time-space metric by an extension of the 

power-function based fractal concept to the structural-function fabric. The structural 

function can be an arbitrary-function to describe complex metric underlying physical 

systems. We call such a metric Structal, and the fractal is its special case. This work is 

inspired by our recent work on the structural derivative, in which the structural function 

takes into account the significant influence of time-space fabric of a complex system on its 

physical behaviors, in particular, the ultra-slow diffusion. Based on the structal concept, this 

communication suggests the structural time-space transformation and introduces the general 

diffusion model. In addition, the statistics implication of the structal and the structural 

derivative model is also briefly discussed.  
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1. Introduction 

The Hausdorff dimension of metric spacetime is the most known definition of the fractal. 

It is a generalization of the classical integer-dimension concept. Namely, the metric of 

space is described by  

drM  ,           (1) 

where r represents the Euclidean distance between two points, and the dimensionality d is 
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not necessarily an integer number but can be an arbitrary real or even a complex number [1]. 

The power law function definition (1) of metric has since found applications in many 

diverse fields and has profound significance in sciences and engineering.  

 It, however, is observed that many real world problems cannot well be described by the 

classical fractal concept. And some variants, e.g., multifractal, have since been proposed, 

which allows the dimensionality varies with time and space. But nevertheless all such 

fractal variants keep the power function metric as shown in formula (1). 

This note extends the power-function fractal metric (1) to the structural fabric as 

)(rRM  ,           (2) 

where R denotes the structural function and is not necessary an power function and can be 

an arbitrary function. We call such the structural fabric “Structal”. For instance, 

321)( bbb rrrrR   is a combination of fractals but in essence is not a fractal but can be 

found in many real-world systems, where exponent b can be an arbitrary number.  

    

2. Derivative and differential operator on structal 

This section is concerned with time and space calculus on structal. First, consider the 

spatial operator and take the Laplacian operator as an illustrative example.  

By applying the implicit calculus equation modeling approach [2], we can define the 

Laplacian on fractal by using its fractal fundamental solution [3,4]  
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where Qn(1) = 2 
n/2

/(n/2), r represents the Euclidean distance, d is the fractal dimension. 

Concerning the Laplacian on structal, its fundamental solution can be stated as  

  )(* rHruS  ,                               (4) 

where H depends on the structal metric. By using this fundamental solution (4), we can 
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define the Laplacian on structal.  

The Hausdorff derivative on time fractal  is given by [5]  
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The Hausdorff derivative can well model the so-called anomalous diffusion, which is 

characterized by the time evolution of the mean square displacement of diffusing particle 

movements 

tx  2 ,        (6) 

where x  represents distance, t  denotes time interval, and the brackets means the 

mean value of random variables.  is a positive real number and fractal, and 1  

indicates anomalous diffusion.  

As a further development of the above fractal derivative (5), the structural derivative was 

recently introduced to model the ultra-slow diffusion behaviors [6]. On time structal, the 

structural derivative is defined as 
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where S(t) is the structural function of time structal metric. When S(t)=t, the definition (7) 

is reduced to the classical first order derivative, and when S(t)=t

, it is the fractal derivative 

definition (5).  

In the above ultra-slow diffusion case, the structural function in time structal is the 

inverse Mittag-Leffler (ML) function [4,6]. The corresponding displacement and time 

relationship is given by 

)1(12 tEx  

 ,        (8) 

where 
1

E  is the inverse function of the single-parameter ML function with 0<<1. The 

structural function and derivative in space structal for modeling ultra-slow diffusion can 
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also be developed in the same manner.  

 

3. Speculative results 

This section presents some speculative results on structal metric.  

To solve the diverging square moment in anomalous diffusion, the present author 

[5] uses the Hausdorff time-space metric to introduce the following scaling transforms  
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By analogy with the above fractal metric transform, the structal transform is proposed 

as  









）（

）（

tt

xx

Pˆ

Gˆ
 ,        (10) 

where the structural functions G and P characterize the space and time metrics. Under the 

structal transform (10), the diffusion of the mean square displacement over time is recast as  

tx ˆˆ2  .          (11) 

 

4. Statistics on structal 

The fractal has important applications in statistics and signal processing such as 1/f 

noise analysis. It is expected that the structal has rich implications on statistics and 

probability as well. For example, the time structal has successfully used to describe 

ultra-slow diffusion with the inverse ML function as the time structural function. The 

inverse ML function characterizes the ultra-slow power law decay (memory) and can find 

applications in time series analysis.  

The solution of diffusion equation on structal can also lead to new statistics.  
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5. Remarks 

Time and space are fundamental mathematical and physical quantities in nature. This 

study generalizes the fractal to non-power function metric “Structal” and consequently 

proposes the structal definition of derivative and differential operators as well as the structal 

time-space transform and the general diffusion model.   

It is worthy of noting that the structal is different from the so-called multifractal [7], 

which depicts the fractal metric varies with time and space variables but remains a 

power-function metric. Unlike the structural derivative, the varying-order fractional and 

fractal derivatives can be used to describe multifractal systems. 

   Nowadays many artificial materials are invented and manufactured such as 

metamaterials, which have the metric to process specific-purpose function. The structal 

concept and methodology could help to develop and analyze micro- and meso-structures of 

such materials. In addition, the complex network is another possible application field of the 

structal methodology, where the corresponding statistics methods may play an important 

role.  
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