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The ensemble interpretation attributes the wave appearances of particles to their statistical char-
acteristics. This has increasingly interested scientists. However, the ensemble interpretation is still
not a scientific theory based on mathematics. Here, based on the double-slit experiment, a math-
ematical framework for the ensemble interpretation is constructed. The Schrödinger equation and
the de-Broglie equation are also deduced. Analysis shows that the wave appearance of particles is
caused by the statistical properties of these particles; the nature of the wave function is the average
least action for the particles in a position.

PACS numbers: 03. 65. Ta, 05. 30. Ch, 03. 65. Db

INTRODUCTION.

Double-slit experiments indicate that particles exhibit
wave properties[1, 2, 3, 4]. Many interpretations have
been proposed to explain the wave features appearing in
double-slit experiments[5, 6]. However, scientists have
not completely accepted any of these interpretations.

The Copenhagen Interpretation attributed the par-
ticle’s wave appearances to a particle’s duality and
regarded the wave as a probabilistic wave[7, 8, 9]. The
remarkable feature of the Copenhagen Interpretation
was that it denied the particle’s classical trajecto-
ry. Most scientists have accepted the Copenhagen
Interpretation’s viewpoint of a “probabilistic wave”,
but its other viewpoints, a few scientists still doubt.
American physicist Alfred Landé believed a successful
interpretation should be classical[10]. Karl Popper
believed there was no need to do away with the concept
of a particle’s classical trajectory[11]. Einstein was
not satisfied with the Copenhagen Interpretation. He
proposed the ensemble viewpoint[12] and believed the
wave function described the properties of the ensemble.
Leslie E. Ballentine improved and further developed
the ensemble interpretation[13]. Max Jammer affirmed
that, in practical work, physicists actually use the logic
and terminology of the ensemble interpretation, whether
or not they accepted it[14]. Today, more and more
scientists have accepted the ensemble interpretation.
However, the ensemble interpretation is a philosophical
discussion not a theory based on principles of physics
and mathematics.

In the micro world, many physical quantities are
nonnegative, near-zero numbers, particularly in an
ensemble system formed by microscopic particles. Since
the physical behavior of particles depends on their basic
physical quantities such as momentum, displacement,
energy, and least action, the wave feature of these
particles should be closely linked to the near zero,

nonnegative physical quantities of these particles. Based
on this thought, the universal least action principle,
and the ensemble interpretation, this work provided a
mathematical analysis for the wave feature of particles:
explained the single-slit and double-slit experiments,
revealed the reason of why energy can be quantized,
analyzed why the modular square of the wave function
can represent the relative particle probability density,
and deduced the Schrödinger equation, etc..

DOUBLE-SLIT EXPERIMENT DESCRIPTION.

In FIG. 1(a), identical particles are sent out from
source S. They pass through slit A or B arriving at
screen x. O is the origin of screen x. S, O′ and O
are on one line with O′ the midpoint of slits A and B
on board m. Board m is parallel to x with m and x
perpendicular to SO. To simplify this problem, consider
that the movement direction of particles, the double-slit,
and screen x are on the same plane. Experiments have
shown that when only one slit is opened, a diffraction
phenomenon exists on screen x as shown by either the
solid curve or the dotted curve in (b) of FIG. 1. However,
when the two slits are both opened simultaneously, an
interference phenomenon occurs as in (c) of FIG. 1.
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FIG. 1. Double-slit experiment with particles. a)
Particles begin at S and pass through slit A or B
arriving at screen x. b) When only slit A is open,
the particles’ position (vertical orientation)-density
(horizontal orientation) curve is described by the solid
curve. When only slit B is open, the position-density
curve is described by the dotted curve (the curve
formed by slit A partially overlaps the dotted curve).
c) When the two slits are opened simultaneously, the
position-density curve appears as an interference pattern.

SOME LEMMAS.

Lemma 1. A nonnegative, near-zero number can be
represented by one term of its complex Fourier series
(symbols not included).

Proof :

For a number x > 0, its Fourier series on the interval
[−a, a] (a is a constant and a > 0) is:

x = 2(
sin(πx/a)

π/a
− sin(2πx/a)

2π/a
+

sin(3πx/a)

3π/a
− sin(4πx/a)

4π/a
+...)

(1)

Because lim
x→0

sin(nπx/a)
nπx/a = 1, for n ∈ Z+. Thus, when x is

a near-zero number, we have:

x ≈ sin(nπx/a)

nπ/a

Since f(x) = x is an element of L2([−a, a]), its Fourier
series in complex form can be written as:

x =

n=+∞∑
n=−∞

αne
inπx
a (2)

where αn = 1
2a

∫ a
−a xe

−inπx
a dx for n ∈ Z. When

n = 0, αn = 0; when n = 1, 3, 5, 7, 9, ..., αn = − ia
nπ ; and

when n = 2, 4, 6, 8, 10, ..., αn = ia
nπ .

Considering

Re(αne
inπx
a ) = ± sin(nπx/a)

nπ/a

and

Re(αne
inπx
a ) = Re(α−ne

−inπx
a ),

when x→ 0 and when not considering signs, we can get:

x ≈ Re(αne
inπx
a ) (3)

The purpose of converting x into its Fourier series is to
find out the changing law of x. When x→ 0, αn cos(nπxa )
can be viewed as a constant. If we add this constant
to iαn sin(nπxa ), the varying pattern of iαn sin(nπxa ) will
be the same as iαn sin(nπxa ) + αn cos(nπxa ). So, when
x → 0, if studying the changing law of x, we can use
αne

inπx
a to replace x.

To sum up, when no account is taken of symbols, a
nonnegative, near-zero number can be regarded as one
term of its complex Fourier series.

In a single slit experiment, the least action of a free
particle is often defined as:

L =

∫ t2

t1

1

2
mV 2dt =

1

2
PR = Et (4)

The component of L in the screen direction is ` = 1
2pr

or ` = εt,

where

P : represents the momentum of the particle in the
screen position,
p : represents the component of P in the screen direction,
V : represents the speed of the particle in the screen
position,
v : represents the component of V in the screen direction,
R : represents displacement of the particle from one slit
(after passing through) to the screen position,
r : represents the component of R in the screen direction,
E : represents the kinetic energy of the particle in the
screen position,
ε : represents the component of E in the screen direction,
and
t = t2 − t1 : represents the time the particle takes to
travel from one slit (after passing through) to the screen
position.

Lemma 2. In a single slit experiment, if the least
action component(in the screen direction) of every
particle in the screen can be replaced by one term of
its Fourier series, then the position of the particles is
discrete.

Proof :

For particle j, if its least action `j can be replaced by
one term of `j ’s Fourier series, i.e., by αnje

injπ`j/a, then,
the average least action of all particles (the number of
particles is N ), x, is:

x =

j=N∑
j=1

αnje
injπ`j/a

N
=

j=N∑
j=1

Cje
injπ`j/a
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By Eq. (2), x can also be written as:

x =

n=∞∑
n=−∞

αne
inπx
a

At the same screen position, the least action of particles
is equal. In the screen position of particle j, if the num-
ber of particles is M , then, the least action proportion
over x in this position can be viewed as MCje

injπ`j/a.
By the uniqueness of the Fourier series, MCje

injπ`j/a

must be one term of the Fourier series of x, meaning
the least action of every particle in the screen can be
replaced by one Fourier term of x. In this case, for the
same single slit experiment, the least action of particles
will depend only on integer n. Since n is discrete, the
least action of particles in the screen is discrete. By the
principle of least action, the position of a particle in
the screen is determined by its least action. Thus, the
position of the particles in the screen is discrete.

Lemma 3. In a single slit experiment, if the average
least action (in the screen direction) for particles in
one diffraction fringe position is x∗, then, the relative
probability density of particles in the position can be
described by |x∗|2.

Proof [15]:

By lemma 2, when particles show a diffraction appear-
ance, the least action of every particle in the screen can
be replaced by one Fourier term of x, where x is the av-
erage least action of all particles in the screen. So, at
one diffraction fringe position, the least action of par-
ticles can form a nonnegative, near-zero number group
X = [x1, x2, ..., xN ] with an average value x∗. These
numbers can be viewed as random variables with a math-
ematical expectation value E(X) = x∗. By the definition
of variance, the variance value D(X) of these numbers is:

D(X) =

i=N∑
i=1

x2i
N
− (x∗)2

In the above equation, if x∗ increases ∆x with
xi(i = 1, 2, ..., N) increasing ∆x/N , (x∗)2 will become
(x∗ + ∆x)2 with an increment of 2x∗∆x + (∆x)2, and

1/N
i=N∑
i=1

x2i will become 1/N
i=N∑
i=1

(xi + ∆x/N)2 with an

increment of 2x∗∆x/N + (∆x)2/N2. When N is very
big and x∗ as well as ∆x are very small, the increment

of (x∗)2 is far more than the increment of 1/N
i=N∑
i=1

x2i .

In a single slit experiment, usually N is very big
and x∗ is a near zero, nonnegative number. So, we
can conclude that, the greater (x∗)2 is, the smaller
D(X) will be. The value of D(X) reflects the degree

of concentration for random variables : the less D(X)
is, the larger the degree of the number concentration
will be. By the least action principle, the position of a
particle is determined by the least action of the particle.
Thus, we can say, in the diffraction fringe position,
the larger (x∗)2 is, the greater the particle density will
be, meaning (x∗)2 can describe the particle density in
the fringe position. If x∗ is represented as a complex
number, we should say, |x∗|2 describes the particle
density in one fringe position.

Let us considering another side of the question. Let

fN (x) =

k=N∑
k=−N

αke
ikπx
a

as well as

gN (x) =

k=N∑
k=−N

βke
ikπx
a

be the partial sum of the Fourier series of f and g,
respectively. When N → ∞, fN → f and gN → g in
L2[−a, a], we have:

< fN , gN >=

k=N∑
k=−N

n=N∑
n=−N

αkβn < eikπx/a, einπx/a >

Since { 1√
2a
eikπx/a, k = ...,−1, 0, 1, ...} is orthogonal,

therefore:

< fN , gN >= 2a

n=N∑
n=−N

αnβn

When N →∞, < fN , gN >→< f, g >, so we have:

< f, g >= 2a

n=∞∑
n=−∞

αnβn

In the set of L2[−a, a], we can define the inner product
as:

< f, g >=

∫ a

−a
fgdx

Letting f(x) = g(x) = x, we get:∫ a

−a
x2dx = 2a

n=∞∑
n=−∞

|αn|2

Thus,

n=∞∑
n=−∞

|
√

3

a
αn|2 = 1
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If we Let ψn =
√
3
a αne

inπx/a, then:

n=∞∑
n=−∞

|ψn|2 = 1 (5)

If x represents the average least action of all particles in
the screen, then, by lemma 2, in one diffraction position,
x∗i (i ∈ Z) can be viewed as one term of the Fourier series
of x. Therefore, we have:

n=∞∑
n=−∞

|αn|2 =

i=∞∑
i=−∞

|x∗i |2

and

n=∞∑
n=−∞

|
√

3

a
αn|2 =

i=∞∑
i=−∞

|
√

3

a
x∗i |2 = 1

Letting ψi =
√
3
a x
∗
i , we get:

i=∞∑
i=−∞

|ψi|2 = 1

The above equation tells us, |
√
3
a x
∗
i |2 describes the

probability of particles falling in the fringe position, and
|x∗i |2 describes the relative probability of particles falling
in the fringe position. Therefore, when considering
that |x∗i |2 describes particle density, we can say, |x∗i |2
describes the relative probability density of particles
falling in the fringe position.

DOUBLE-SLIT EXPERIMENT ANALYSIS.

A. Basic analysis for particles in a single-slit experi-
ment:

In a single slit experiment, after passing the slit, the
least action of a particle from one slit to the screen
position is L = PR/2. Usually, its component ` ( =
1/2pr or εt ) in the screen direction is a near-zero,
nonnegative number. By lemma 1, when `→ 0, ` can be
replaced by its fourier term αne

inπ`/a. In this situation,
if x represents the average least action of all particles
in the screen, then, by lemma 2, ` can be replaced
by one Fourier term of x and the position of particles
in the screen are discrete forming diffraction fringes.
Accordingly, in one diffraction fringe position, if the
average least action of particles in this position is x∗,
then, by lemma 3, the relative probability density of par-
ticles in the position can be described by |αneinπx

∗/a|2.
Generally, in the same diffraction position, x∗ is close to
`. So, |αneinπ`/a|2 can be used to describe the relative

probability density of particles in the diffraction fringe
position.

Discussion:

Generally, the average least action in the mid fringe
position is larger than in the side fringe position. The
reason is, when particles pass through a slit, the slit will
decrease the momentum of the particles. The loss of the
momentum for the side particles is much greater than
the mid particles.

B. Diffraction analysis:

In a single slit experiment, usually the mass of parti-
cles is very small. So the least action component in the
screen direction is often nonnegative, near-zero numbers.
If the average least action component in the screen
is x, then, by lemma 2, the least action component
in the screen of every particle can be replaced by one
Fourier term of x and its position in the screen is
discrete. This means that, in a single slit experiment,
particles tend to arrive at discrete positions in the screen.

For one diffraction fringe position, |ψn|2 = |αneinπ`/a|2
can be used to describe the relative probability density
of particles in the position. In this case, we can say
ψn = αne

inπ`/a describes the state of particles in the
position. Thus, ψn provides two messages: the position
of particles and the particle relative probability density
in that position. In this sense, ψn is equivalent to the
wave function of particles.

Therefore, ψn has the following properties:

(1) ψn is discrete,

(2) ψn is single valued, and

(3)
n=∞∑
n=−∞

|
√
3
a ψn|

2 = 1. This means |ψn|2 only de-

scribes the relative probability density of particles.

C. Interference analysis: see [16]

DERIVATION OF THE SCHRÖDINGER
EQUATION

In a single slit experiment, if the average particle least
action component in the screen direction for one fringe
position, `, is a nonnegative near-zero number and can
be replaced by one Fourier term, then by lemma 1, ` can
be written as αne

inπ`/a.
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For the average least action ` in one diffraction posi-
tion, its energy form is (αne

iπnεt/a) and its momentum

form is (αne
iπ 1

2npr/a).

To simplify equation forms, nε can be merged into ε,
with ε corresponding to 1ε, 2ε, 3ε, ....; and 1

2nr can be
merged into r, meaning that, when calculating, r should
be discrete and should be replaced by n

2 r. Obviously,
when we say the least action of the particles in one d-
iffraction fringe position, the average value of the energy
form and momentum form should be taken into account
simultaneously. Here, we use the geometric average value
of the two forms of least action:

√
αneiπpr/aαneiπεt/a = αne

iπ(pr−εt)/(2a)

or √
αneiπεt/aαneiπpr/a = αne

iπ(εt−pr)/(2a)

Supposing ψ(r, t) represents the average least action
of particles in the screen direction for diffraction fringe
position r, then, we have:

ψ(r, t) = Ceiπ(pr−εt)/(2a) (6)

or

ψ(r, t) = Ceiπ(εt−pr)/(2a) (6′)

where C = αn (n ∈ Z).

In (a) of FIG. 1, for a particle single slit experiment,
the particle’s displacement R, its projection in the screen

direction r, and O′O satisfy equation
−→
R + −→r =

−−→
O′O.

Thus, when the screen moves forward or backward a
small distance ∆ along line O′O, R and r will change,
and the time particles take to arrive in the neighborhood
of a diffraction fringe position will increase or decrease.

After particles pass through the slit, for one fringe po-
sition, using Eq. (6), the average least action component
in the screen direction ψ(r, t) is

ψ(r, t) = Cei(pr−εt)π/(2a).

In order to make the above equation continuous, we
can redefine ψ(r, t) as:

ψ(r, t) =

{
ψ(r, t) : r is in a diffraction position,

K : r is not in a diffraction position

where K is a constant. After redefining, ψ(r, t)
becomes a continuous function.

When the screen moves forward or backward a smal-
l distance, the change of the least action in the screen
direction will be:

δψ =
∂ψ

∂r
dr +

∂ψ

∂t
dt

By the principle of least action, we have:

δψ = 0.

Thus,

∂ψ

∂t
= −∂ψ

∂r

dr

dt
.

On the other hand, ψ(r, t) satisfies ∂ψ
∂t = επ

2aiψ and
∂
∂r (∂ψ∂r ) = −(pπ2a )2ψ. So, the relationship between ∂ψ

∂t

and ∂ψ
∂r is:

∂ψ

∂t
=

ia

πm

∂

∂r
(
∂ψ

∂r
).

Letting h̄ = 2a
π , the above equation can be written as:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂r2
. (7)

Comparing Eq. (7) with the Schrödinger equation
for free particles, the same form and properties are
found. Both of them describe the relationship among
the particle position, momentum, and kinetic energy.
So, Eq. (7) corresponds to the Schrödinger equation for
free particles.

Discussion:

(1) In a single slit experiment, taking the mid fringe
position as an example, if the angle between particle av-
erage momentum P and O′O is θ, then, P = p/ sin(θ)
and R = r/ sin(θ) hold. In addition, particle average ki-
netic energy E = ε/ sin2(θ) holds. So, particle average
least action Ψ(R, t) = ψ(r, t)/ sin2(θ) also holds. Thus,
we can get the same equation as Eq. (7):

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂R2
. (7′)

The above equation means that, when particles
exhibit a wave feature, both average least action and its
average component satisfy Eq. (7). Obviously, |Ψ|2 also
describes particle relative probability density.

(2) Thus, in our daily work, we can use

Ψ(R, t) = C ′ei(PR−Et)π/(2a)

and Eq. (7’) to replace Eq. (6) and Eq. (7).
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(3) In a single slit experiment showing diffraction
fringes, if particles are added to a potential field U(r),
the particles in the same fringe position will get an e-
qual additional displacement. In this case, if we view
Ψ(R, t) = C ′ei(PR−(E−U)t)π/(2a) as the particle aver-
age least action in the diffraction fringe position and let
h̄ = 2a

π , we can get the following equation:

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂R2
− UΨ

If we select a proper zero potential energy point for
U(r), the above equation can be written as:

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂R2
+ UΨ

NEW UNDERSTANDING ON THE
DE-BROGLIE EQUATION

In Eq. (6), |ψ(r, t)|2 describes the relative probability
density of particles in one diffraction fringe position.
That is, the greater |ψ|2 is, the greater the particle
relative probability density will be. Also, we can say:
the greater |ψ|2 is, the smaller the relative displacement
between a particle’s position and the particle’s mean
position will be. Noticing that, when |ψ|2 becomes
larger, −|ψ| will be smaller, and the relative proba-
bility density of particles will become larger. Thus,
the smaller −|ψ| is, the less the relative displacement
of particles will be. So, −|ψ| can describe relative
displacement of particles. Therefore, we can view ψ as
reflecting the relative displacement between a particle’s
actual screen position and the mean position of particles.

Let’s compare ψ with the classical harmonic wave
function.

Suppose a classical simple harmonic wave with wave-
length λ and frequency ν is propagating in the positive
direction of coordinate x. Then after time t, the relative
displacement of an infinitesimal quantity of the medium
to the balance position x is:

Y (x, t) = Aeiπ(
2
λx−2νt) (8)

When comparing Eq. (6) with the classical simple
harmonic wave function above, many similar character-
istics are found. These include: 1) reflecting the relative
displacement between a particle’s screen position and
the mean position versus describing the relative displace-
ment between an infinitesimal quantity of the medium
and the balance position, 2) having the same equation
form, and 3) causing the same physical phenomena
(diffraction and interference). Therefore, Eq. (6) has the

properties of Eq. (8), and can be considered a classical
simple harmonic wave function.

Comparing Eq. (6) and Eq. (8), by the dimension
corresponding principle, pπ

2a corresponds to 2π
λ and επ

2a
corresponds to 2πν. If the corresponding relationship is
regarded as an equal relation, we have:

pπ

2a
=

2π

λ
,
επ

2a
= 2πν,

or

λ =
4a

p
, ν =

ε

4a
. (9)

In Eq. (6), the dimension for the constant a is J ·s
which has the same dimension as Planck’s constant
h(J ·s). When comparing Eq. (9) and Eq. (6), the value
of ε in Eq. (9) should be: 0, 4aν, 8aν,... which agrees
with Planck’s hypothesis of “quanta”. Therefore, we can
view Eq. (9) as the de-Broglie equation.

Discussion:

(1) When particles have a wave appearance, the
average momentum of the particles can be viewed as
p = 4a

λ . For particles not involved in the wave exhibition,
their momentum is mv.

(2) Differing from a classical wave, when colliding
with materials, the frequency of the “probability wave”
formed by particles will change.

(3) If Eq. (6) holds, then, without changing the relative
particle probability density, we can use

ψ

sin2(θ)
=

c

sin2(θ)
ei(PR−Et)π/(2a)

to replace Eq. (6) and get

Ψ(R, t) = Cei(PR−Et)π/(2a)

where θ is the angle between the average velocity of
particles and line O′O. The above equation can be
viewed as a new classical wave with wave length λ = 4a

P

and wave frequency ν = E
4a . Such treatment for Eq. (6)

does not affect the particle relative probability density
in the diffraction fringe position.

(4) Eq. (7) and Eq. (9) are derived independently.
In Eq. (7), letting h = 4a and h̄ = h

2π , we can get the
Schrödinger equation. In Eq. (9), letting h = 4a, we can
get the de-Broglie equation. Thus, we can conclude that
Plank’s constant h = 4a holds.
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CONCLUSION

Based on the ensemble interpretation viewpoints (a
particle moving in a classical trajectory and the wave
phenomena are rooted in the statistical behavior of
particles), we have inferred Eqs. (7) and (9) uncovering
the relationships among particle position, momentum,
kinetic energy and least action. These equations have
the same form and physical meaning as the Schrödinger
equation and the de-Brogile equation. In the real world,
it is impossible for particles to obey two laws of motion
simultaneously. So, Eqs. (7) and (9) should be equiv-
alent to the Schrödinger equation and the de-Brogile
equation, respectively.

Analysis revealed that, the nature of a wave function
is the average least action of particles in one position,
and quantization is the feature of an ensemble system
formed by micro-particles.

Since “action” is considered a physical attribute of
every kinetic particle, the analysis in this paper is
applicable to all statistical ensemble systems formed by
micro-particles.
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[3] W. Schöllkopf and J. P. Toennies, Science 266, 1345

(1994).
[4] H. Halban and P. Preiswerk, C. R. Acad. Sci. 203, 73

(1936).
[5] B. S. Dewitt and R. N. Graham, Am. J. Phys. 39, 724

(1971).
[6] L. E. Ballentine, Am. J. Phys. 55, 785 (1987).
[7] N. Bohr, Atomatic Theory and the Description of Nature

(Cambridge University Press, Cambridge, 1934), p. 52.
[8] W. Heisenberg, The Physical Principles of the Quantum

Theory (Chicago University Press, Chicago, 1930), p. 13.
[9] M. Born, Nature 119, 354 (1927).
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