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Perceptive or P-Calculus: Ordinale & Residuale Noesis 

By Arthur Shevenyonov 

 

Abstract1 

An ordual offspring bridging a variety of otherwise remote areas. 

 

A Succinct Exposition 

Consider a structural expansion of the form: 

∀𝐴, 𝐵 ∃ (𝑃, 𝑃2, 𝑃3):  𝑃(𝐴 + 𝐵) ≡ 𝑃2(𝐴) + 𝑃3(𝐵) 

This may for one be seen as an alternative to Taylor linearization, or indeed a generalized 

representation of the Cauchy functional equation as part of Hilbert’s Fifth Problem to be 

addressed in subsequent research. For now, suffice it to point out that this may capture an 

inherently entwined nature of arbitrary objects or values (be it the arguments or the operators 

to be seen as dual bases or unity decompositions). Inter alia, this could be a straightforward 

illustration of what I have long referred to as the “rho-ellipse” pertaining to how the invariant 

sum of partial radii could be hinting at a global characteristic of a relationship (as defined on 

the ᴪ basis) irrespective of the interim or partial relations. In a sense, this might also be akin 

to path-invariant action in line with the variations or functional-analytic principle. However, 

the present analysis is aimed at keeping things as simple and endogenous as the setup 

warrants while discerning some findings that might potentially prove to be of interest.  

In particular, the ‘ellipsoid’ metaphor (somewhat along the ‘amorphous polytope’ 

lines as proposed before) could best be appreciated in terms of an alpha-distribution: 

1.1 𝑃(𝐴) = 𝑃(𝛼𝐴 + [1 − 𝛼]𝐴) = 𝑃2(𝛼𝐴) + 𝑃3([1 − 𝛼]𝐴) 

1.2 𝑃(𝐴) = 𝑃([1 − 𝛼]𝐴 + 𝛼𝐴) = 𝑃2([1 − 𝛼]𝐴 + 𝑃3(𝛼𝐴)) 

1.3 𝑃(𝐴) ≡ 𝛼𝑃(𝐴) + [1 − 𝛼]𝑃(𝐴) 

Technically, this is not to suggest that any of the righthand-side terms can be held as 

equivalent pairwise. However, the line of reasoning can ironically be extended even further 

than that, suggesting that the irrelevance of any particular alpha values lends some extra 

relevance to its complete and unrestricted domain or very presence—indeed much akin to the 

case with rho in the past expositions.  

                                                           
1 To Elizaveta “Dr. Liza” Glinka and her Musical and Heraldic Guards, whose names shall never be 

smashed into oblivion. 
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On the other hand, insofar as homogeneity may apply to structures that pose no well-

behaved patterns of the functional type, alpha-invariance could tentatively be viewed in terms 

of homogeneity of degree zero (H0). Unity homogenization (H1) might also lend itself to sign 

transitivity of the sort, 

2.1  𝑃(𝐴 − 𝐵) = 𝑃(𝐴 + (−𝐵)) = 𝑃2(𝐴) + 𝑃3(−𝐵) = 𝑃2(−𝐵) + 𝑃3(𝐴) 

2.2  𝑃(𝐴 + 𝐵) = 𝑃(𝐴 − (−𝐵)) = 𝑃(𝐵 − (−𝐴)) ≡ 𝑃(𝐴 − 𝐵′) = 𝑃(𝐵 − 𝐴′) 

2.3  𝑃(0) = 𝑃(𝐴 − 𝐴) = 𝑃2(𝐴) + 𝑃3(−𝐴) = 𝑃2(−𝐴) + 𝑃3(𝐴) 

2.4  𝑃(0) = 𝑃(𝛼𝐴 + [1 − 𝛼]𝐴) = 𝑃2(𝛼𝐴) + 𝑃3([1 − 𝛼]𝐴) = 𝑃2([1 − 𝛼]𝐴) + 𝑃3(𝛼𝐴) 

Although pairwise or one-to-one comparison is not an option, complete equivalents 

can still be discerned. For instance, (2.1) may suggest that: 

2.5  𝑃2(𝐴) − 𝑃3(𝐴) = 𝑃2(−𝐵) − 𝑃3(−𝐵) = 𝑃2(𝑋) − 𝑃3(𝑋) = 𝑐𝑜𝑛𝑠𝑡 ∀𝑋 

For that matter, (2.4) implies that, 

2.6  𝑃(0) − 𝑃3(𝛼𝐴) − 𝑃3([1 − 𝛼]𝐴) = 𝑐𝑜𝑛𝑠𝑡 ∀𝛼 

One could be led to presume that the implied invariants in (2.5) and (2.6) alike hint at the 

exact same value, possibly P(0), in which case sign transitivity literally suggests H1, or 

homogeneity of degree one: 

2.7  𝑃(0) = 𝑃2(𝐴) − 𝑃3(𝐴) = 𝑃2(𝐴) + 𝑃3(−𝐴) 

This may, however, be qualified by A acting as a kind of period or complete rotation, with 

(2.6) positing: 

2.8  𝑃3(𝛼𝐴) + 𝑃3([1 − 𝛼]𝐴) = 0 

This could more rigorously be solved as a functional equation: 

𝑃3(𝑥 + ∆) = (−1) ∗ 𝑃3(𝑥), 𝑥 ≡ [1 − 𝛼]𝐴, ∆≡ [2𝛼 − 1]𝐴 

2.9 𝑃3(𝐴) = 𝑃3(0) ∗ (−1)
1

2𝛼−1 

The solution might hint at A invariance (irrespective of the arcane extension of complex 

numbers as implied by the generally-irrational power or decomposition of unity). A more 

neutral possibility could be as follows: 

2.10 𝑃3([1 − 𝛼]𝐴) = 𝑃3(𝐴) ∗ (−1)
𝛼

1−2𝛼 

2.11 𝑃3(𝛼𝐴) = 𝑃3(𝐴) ∗ (−1)
1−𝛼

1−2𝛼 

From comparison of the two conjugates, it becomes evident that (2.8) is met. 
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Again, though, the above stems from but one possibility, with quasi-homogeneity 

otherwise taking on far more straightforward forms without loss of non-trivial explanatory 

power. To begin with, from comparing (1.1) and (1.3) it readily follows that: 

3.1  𝑃2(𝛼𝐴) = 𝛼𝑃(𝐴) 

3.2  𝑃3([1 − 𝛼]𝐴) = (1 − 𝛼)𝑃(𝐴) 

3.3  
𝑃3([1 − 𝛼]𝐴)

𝑃2(𝛼𝐴)
=

1 − 𝛼

𝛼
~(𝜌 − 1) ∀𝐴 

Now, if one were to assume away the arguments or objects or treat the very operators or 

relationships as such, it can be induced that: 

𝑃[2] ≡ 𝑃(𝑃) = 𝑃(𝑃2 + 𝑃3) = 𝑃2(𝑃2) + 𝑃3(𝑃3) ≡ 𝑃2
[2]

+ 𝑃3
[2]

 

Or, more generally still, 

4.1  𝑃[𝑛] = 𝑃2
[𝑛]

+ 𝑃3
[𝑛]

 

By drawing an analogy with (3.1)-(3.2), it may follow that: 

4.2  𝑃2(𝑃) = 𝛼𝑃(
𝑃

𝛼
) 

4.3  𝑃3(𝑃) = [1 − 𝛼]𝑃(
𝑃

1 − 𝛼
) 

Insofar as it holds that, 𝑃(0) ≡ 𝑃(𝑃 − 𝑃) = 𝑃2(𝑃) − 𝑃3(𝑃), it appears that 

4.4  𝛼𝑃 (
𝑃

𝛼
) − [1 − 𝛼]𝑃 (

𝑃

1 − 𝛼
) = 𝑃(0) 

If we are to continue drawing on the homogeneity metaphor, suppose: 

∀𝛼∃𝛾: 𝑃(𝛼𝐴) ≡ 𝛼𝛾𝑃(𝐴) 

This convention can be extended so far as to reconsider (4.4) as, 

5.1  [𝛼1−𝛾 − (1 − 𝛼)1−𝛾]𝑃(𝑃) = 𝑃(0) 

Moreover, simultaneously it can be proffered that, 

5.2  [𝛼1−𝛾 + (1 − 𝛼)1−𝛾]𝑃(𝑃) = 𝑃(2𝑃) = 𝑃(𝑃 + 𝑃) 

Following straightforward algebraic manipulations, it obtains that 

5.3  
𝑃(0)

𝑃(𝑃)
+

𝑃(2𝑃)

𝑃(𝑃)
= 2𝛼1−𝛾 



P-Calculus: A Survey of Implications & Applications by Arthur Shevenyonov                  4 
 

5.4  
𝑃(2𝑃)

𝑃(𝑃)
−

𝑃(0)

𝑃(𝑃)
= 2[1 − 𝛼]1−𝛾 

5.5  
𝑃(2𝑃)

𝑃(𝑃)
= 𝛼1−𝛾 + [1 − 𝛼]1−𝛾 = 2𝛾 

The first two accounts can be juxtaposed to arrive at, 

6.1  
𝑃(2𝑃) − 𝑃(0)

𝑃(2𝑃) + 𝑃(0)
= (

1 − 𝛼

𝛼
)1−𝛾~(𝜌 − 1)1−𝛾 

In fact, this alone shows that P(0) need not trivially amount to zero—except either in 

the cardinalcy case of rho equal 2 or 0 or H1. Even in the latter case, though, the role of P(0) 

has (and will have been) shown to be anything but superfluous.  

Now, if one were to embark on (5.5), it may again refer to a kind of ellipse 

generalizing the aforementioned functional equation, with gamma homogeneity hinging on 

alpha distribution. That said, the instances of particular interest obtain under some corner 

cases. For instance, H1 (i.e. gamma anywhere near unity) suggests that (5.5) holds identically 

for any alpha—indeed genuine alpha invariance as posited at the outset. Ironically, though, 

largely the same holds for H0 (or gamma at zero). This does hint at either one standing out as 

legitimate special cases. 

However, the generalized meta-relationship could be of importance in its own right. A 

set of equivalent interim results can be arrived at: 

6.2  2𝛾 =
𝑃2(𝛼𝐴)

𝑃(𝛼𝐴)
+

𝑃3([1 − 𝛼]𝐴)

𝑃([1 − 𝛼]𝐴)
 

6.3  2𝛾 = (1 −
𝑃3(0)

𝑃(𝛼𝐴)
) + (1 −

𝑃2(0)

𝑃([1 − 𝛼]𝐴)
) 

6.4  2𝛾 = (
𝛼

𝑃(𝛼𝐴)
+

1 − 𝛼

𝑃([1 − 𝛼]𝐴)
) 𝑃(𝐴) 

In passing, note that one way to recover (6.3) could be by invoking, 

6.5  𝑃(𝑃2) = 𝑃2
[2]

+ 𝑃3(0) ≠ 𝑃2(𝑃) 

6.6  𝑃(𝑃3) = 𝑃3
[2]

+ 𝑃2(0) ≠ 𝑃3(𝑃) 

Based on (6.2) through (6.4), the H1 case could border on, 

𝑃2(0)

𝑃([1 − 𝛼]𝐴)
= −

𝑃3(0)

𝑃(𝛼𝐴)
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In fact, this appears to be an extension of (2.8), without necessarily positing 𝑃2(0) = 𝑃3(0) or 

restricting either one to a zero value. By contrast, H0 would point to 𝑃(𝛼𝐴) = 𝑃([1 − 𝛼]𝐴) 

while reducing both to P(A).  

Now, combine the two trivial results as discerned previously, toward a slightly 

reworked notation: 

𝑃(𝐴) ≡ 𝛼𝑃(𝐴) + [1 − 𝛼]𝑃(𝐴) 

𝑃(𝐴) = 𝛼−𝛾𝑃(𝛼𝐴) = [1 − 𝛼]−𝛾𝑃([1 − 𝛼]𝐴) 

The implied re-weighting suggests a functional equation alternate to the one maintained from 

the outset and the Cauchy as its special case: 

7.1  𝑃(𝑋 + 𝑌) = 𝛼1−𝛾𝑃(𝑋) + [1 − 𝛼]1−𝛾𝑃(𝑌), 𝛼 ≡
𝑋

𝐴
= 1 −

𝑌

𝐴
 

Rather than trying to solve it by standard methods (which may either not exist or 

otherwise yield pathological scenarios) or reducing to recurrent representations as before, this 

will be revisited and reduced to some of the ordinalcy cognates. For starters, 

7.2  𝐹(𝑋 + 𝑌) = 𝑘1𝐹(𝑋) + 𝑘2𝐹(𝑌) 

Among other things, one may want to seek solutions along the lines of, 

7.3 𝜌 +
𝜌

𝜌 − 1
= 𝜌 ∗

𝜌

𝜌 − 1
 

For instance, 𝐹(𝑋)~𝑘2𝑎𝑋 , 𝐹(𝑌)~𝑘1𝑎𝑌, in which case 𝐹(𝑋 + 𝑌)~𝑘1𝑘2𝑎𝑋+𝑌. [Please be sure 

to distinguish between the lowercase a versus alpha] In effect, this amounts to 

7.4  𝑃(𝛼𝐴) = 𝛼1−𝛾𝑎𝛼𝐴 

7.5  𝑃([1 − 𝛼]𝐴) = [1 − 𝛼]1−𝛾𝑎[1−𝛼]𝐴 

7.6  𝑃(𝐴) = [𝛼(1 − 𝛼)]1−𝛾𝑎𝐴 

In addition, one has to keep in mind, in line with (7.3), that 

7.7𝐴  (𝑘1𝑎𝑋)−1 + (𝑘2𝑎𝑌)−1 ≡ 1 

In terms of the proposed notations, the above elliptic-curve family (or a space of characteristic 

functionals) could be rendered as, 

7.7𝐵  𝑃−1(𝛼𝐴) + ([1 − 𝛼]𝐴)−1 ≡ 1 

7.7𝐶  𝛼𝛾−1𝑎−𝛼𝐴 + [1 − 𝛼]𝛾−1𝑎[𝛼−1]𝐴 ≡ 1 

Among other things, it could be of importance comparing and contrasting (7.7B) against 

(2.8), with equivalence only obtaining in case of 𝑃(𝐴) = 𝑃(0) = 0. In a sense, this amounts 

to a double or multi-level fixed point, bearing in mind the structural relationships obtained. 
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Other than that, miscellaneous peripheral results are listed below. 

8.1  𝑃2𝑃 = 𝑃2
2 + 𝑃2𝑃3 = 𝑃𝑃2 

8.2  𝑃3𝑃 = 𝑃3
2 + 𝑃2𝑃3 = 𝑃𝑃3 

8.3  𝑃2𝑃 + 𝑃3𝑃 = (𝑃2 + 𝑃3)𝑃 = 𝑃2 

Whereas (8.3) appears to be justifying the way operators are treated on par with argument 

objects (again in line with the ordual premises of there being but minimal hierarchy between 

functions versus arguments), (8.1) and (8.2) as opposed to (6.5) and (6.6) showcase how 

products are different from levels of compositions, not least with an eye toward 

[non]commutativity. 

Another glimpse at sign transitivity or homogeneity can be provided from the trivial 

difference between addition versus subtraction: 

8.4  (𝑃2 + 𝑃3)2 − (𝑃2 − 𝑃3)2 = 4𝑃2𝑃3 ≡ 𝑃2 − (𝑃 − 2𝑃3)2 = 4𝑃3(𝑃 − 𝑃3)~4𝛼[1 − 𝛼]𝑃2 

This appears to have remote resemblance to Euler’s Beta density, with the variations of 𝑃3(0) 

making a difference even under P(0) held fixed as long as the two are not tantamount. 

Otherwise, not only would the residuale 𝑃2(0) term (or element of basis) be trivially zero, the 

entire setup collapses to cardinal singularity.  

While at it, note that, as long as the squared difference in (8.4) resembles the 

discriminant of a quadratic equation (or a determinant of a quadratic form), the latter could be 

implied as either, 

8.5𝐴  𝑃2𝑋2 + 𝑃𝑋 + 𝑃3 = 0 

8.5𝐵  𝑃3𝑋2 + 𝑃𝑋 + 𝑃2 = 0 

The implied X could be inferred at either one, 

8.6𝐴  𝑋 =
−𝑃 ± (𝑃2 − 𝑃3)

2𝑃2
= −1 𝑂𝑅 

𝑃3

𝑃2
 

8.6𝐵  𝑋 =
−𝑃 ± (𝑃2 − 𝑃3)

2𝑃3
= −

𝑃2

𝑃3
 𝑂𝑅 1 

Now, consider an alternative to (8.3), or a generalization of the distributed form: 

𝑃2𝑃~𝛽𝑃2, 𝑃3𝑃~[1 − 𝛽]𝑃2 

It is straightforward to see that the betas amount to alphas for all practical purposes, if the 

above were to be reduced to: 

𝑃2~𝛽𝑃~𝛼𝑃, 𝑃3~[1 − 𝛽]𝑃~[1 − 𝛼]𝑃 

To detrivialize this somewhat, the above could be induced to an n>2 setting: 
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𝑃2𝑃𝑛−1 = 𝛼𝑃𝑛,  𝑃3𝑃𝑛−1 = [1 − 𝛼]𝑃𝑛 

This could in turn be viewed as a recursive functional equation, reduced to parity: 

𝑃𝑛 = 𝑃 ∗ (
𝑃2

𝛼
)𝑛−1 = 𝑃 ∗ (

𝑃3

1 − 𝛼
)𝑛−1 

In other words, it follows that 

8.7𝐴  𝑃2
𝑛 = 𝛼𝑛𝑃𝑛 = 𝛼𝑛(𝑃2 + 𝑃3)𝑛, 𝑃3

𝑛 = [1 − 𝛼]𝑛𝑃𝑛 = [1 − 𝛼]𝑛(𝑃2 + 𝑃3)𝑛 

In a well-defined sense, then, a re-weighting redefines the power structure as, 

8.7𝐵  𝑃𝑛 = 𝛼1−𝑛𝑃2
𝑛 + [1 − 𝛼]1−𝑛𝑃3

𝑛 = (𝑃2 + 𝑃3)𝑛 

This might resemble (5.5), (7.1), and (7.7), while clearly allowing for a power 

generalization of the underlying definition or identity as posited from the outset. However, 

apart from Cauchy extension, the above may hint at that for complex numbers while 

straddling linearity and non-linearity a la CES or Lame functions (for which H1 readily 

obtains).  

One alternate extension would pertain to composition levels as opposed to powers. An 

induction could naturally proceed as follows: 

𝑃(𝑃(𝐴)) = 𝑃(𝑃2(𝛼𝐴) + 𝑃3([1 − 𝛼]𝐴)) = 𝑃2(𝑃2(𝐴)) + 𝑃3(𝑃3([1 − 𝛼]𝐴)) 

8.8𝐴  𝑃[𝑛](𝐴) = 𝑃2
[𝑛](𝛼𝐴) + 𝑃3

[𝑛]
([1 − 𝛼]𝐴) 

Now, bearing in mind the weighted-average accounting identity we have made a heavy use of 

thus far, it is straightforward to see H1 (homogeneity of degree one) in composition levels: 

8.8𝐵  𝑃2
[𝑛](𝛼𝐴) = 𝛼𝑃[𝑛](𝐴), 𝑃3

[𝑛]([1 − 𝛼]𝐴) = [1 − 𝛼]𝑃[𝑛](𝐴) 

In the meantime, from (8.8B) it follows that (3.3) holds intact at any level.  

If one were to afford a trick by embarking on the corner cases of (8.8A) and re-

applying these to (8.8B), it could follow that: 

8.8𝐶  𝑃2
[𝑛](𝛼𝐴) = 𝛼 [𝑃2

[𝑛](𝐴) + 𝑃3
[𝑛](0)] ,  𝑃3

[𝑛]([1 − 𝛼]𝐴) = [1 − 𝛼] [𝑃3
[𝑛](𝐴) + 𝑃2

[𝑛](0)] 

In a sense, the implied affinity partially denies homogeneity—even though the proposed is 

just one possibility, and hardly the more reliable one out there. Again, for practical purposes, 

these very structures could posit 𝑃2
[𝑛]

(0) and 𝑃3
[𝑛]

(0) as zeros, by holding the alpha values 

near its respective corners. More rigorously, as before, these could be solved for as functional 

equations of a recurrent type. Not least, (8.8A) could mechanically be rewritten as, 

8.8𝐷  𝑃[𝑛](𝐴) ≡ 𝛼𝛾2(𝑛)𝑃2
[𝑛](𝐴) + [1 − 𝛼]𝛾3(𝑛)𝑃3

[𝑛]
(𝐴) 

Keeping in mind the trivial identity accounting, it follows that: 
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8.8𝐸 𝛼𝑃[𝑛](𝐴) ≡ 𝛼𝛾2(𝑛)𝑃2
[𝑛](𝐴), [1 − 𝛼]𝑃[𝑛](𝐴) ≡ [1 − 𝛼]𝛾3(𝑛)𝑃3

[𝑛]
(𝐴) 

In other words, a dual Diophantine is captured in, 

𝑃[𝑛](𝐴) = 𝛼𝛾2(𝑛)−1𝑃2
[𝑛](𝐴) = [1 − 𝛼]𝛾3(𝑛)−1𝑃3

[𝑛]
(𝐴) 

Somewhat as before with corner traces deployed, it trivially holds that 

𝛼1−𝛾2(𝑛)𝑃[𝑛](𝐴) + 𝑃3
[𝑛](0) = [1 − 𝛼]1−𝛾3(𝑛)𝑃[𝑛](𝐴) + 𝑃2

[𝑛](0) = 𝑃[𝑛](𝐴) 

In effect, it is straightforward to retrieve the implied homogeneity terms: 

8.8𝐹  𝛼𝛾2(𝑛) = 𝛼(1 −
𝑃3

[𝑛](0)

𝑃[𝑛](𝐴)
)−1 

8.8𝐺  [1 − 𝛼]𝛾3(𝑛) = [1 − 𝛼](1 −
𝑃2

[𝑛](0)

𝑃[𝑛](𝐴)
)−1 

Incidentally, the above may do a fair job reconciling linearity and nonlinearity, or H1 

versus gamma-homogeneity (𝐻𝛾). Moreover, should these be substituted for (8.8E), it would 

turn out that, 

8.8𝐻 𝑃[𝑛](𝐴) ≡ (1 −
𝑃3

[𝑛](0)

𝑃[𝑛](𝐴)
)−1𝑃2

[𝑛](𝐴), 𝑃[𝑛](𝐴) ≡ (1 −
𝑃2

[𝑛](0)

𝑃[𝑛](𝐴)
)−1𝑃3

[𝑛]
(𝐴) 

In other words, the above relationships do hold identically. The proposed (A, H) path might 

prove more of an azimuthality trajectory than gradiency, and yet it does yield some controls 

taking on the simplicity-in-completeness (or plaena) form.  

It is noteworthy that H1, or homogeneity of degree one, should not be downplayed, as 

its parsimony offers some meaningful insights early on. Consider again a corner distribution 

which turns out to be a mixed or generalized one with respect to the core operator P. 

𝑃(𝐴) = 𝑃2(0) + 𝑃3(𝐴) = 𝑃2(𝛼𝐴) + 𝑃3([1 − 𝛼]𝐴) = 𝛼[𝑃2(𝐴) − 𝑃3(𝐴)] + 𝑃3(𝐴) 

9.1  𝑃(𝐴) = 𝛼𝑃(0) + 𝑃3(𝐴) = 𝑃2(0) + 𝑃3(𝐴) 

9.2  𝑃(𝐴) = [1 − 𝛼]𝑃(0) + 𝑃2(𝐴) = 𝑃2(𝐴) + 𝑃3(0) 

9.3  𝑃2(0) = 𝛼𝑃(0), 𝑃3(0) = ±[1 − 𝛼]𝑃(0) 

9.4  ± 𝛼𝑃3(0) = [1 − 𝛼]𝑃2(0) 

Not only do these add up to P(0) in formal compliance with the original premises, they 

also posit a relationship among the three sub-operators (or within the basis) akin to that 

between natural versus real numbers, with the indexed sub-operators acting as a kind of 

conjugate infinitesimals or complementary differentials over and above unity orthants. Not 

least, it is partially on this premise that a calculus of the quasi-differential and integrative type 
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will be introduced, with the latter deploying an operator straddling the likes of summation and 

set power. Moreover, as per (9.4),  

𝑃3~
1 − 𝛼

𝛼
𝑃2~(𝜌 − 1)𝑃2 

The above may hint at the two sub-operators being dually inter-related akin to the ordual 

basis: 

(𝐴, 𝑎)𝜌−1~(𝑎, 𝐴) 

The sign reversal in (9.4) may pertain to either an infinitesimal-like status or, more generally, 

the left versus right foci (actions, partial relationships, or m>2 power of focal distribution). 

Along similar lines, it can moreover be shown that, 

9.5  𝛼~
1

1 ± 𝑃3(0)/𝑃2(0)
~

𝑃2(0)

𝑃(0)
 

9.6  𝑃[𝑛](𝐴) = 𝛼𝑃[𝑛](0) + 𝑃3
[𝑛]

(𝐴) 

When it comes to the counterparts of differentiation and integration, it is straightforward to 

see that: 

9.7  �̇�(𝑡) ≡
∆𝑃

∆
=

𝑃(𝑡 + ∆) − 𝑃(𝑡)

∆
=

𝑃3(∆) ∓ 𝑃3(0)

∆
 

9.8𝐴  𝑃(∆) − ∆𝑃 = 𝑃(0) 

What (9.8) showcases is how the null-operator can act as an effective commutator. By 

maintaining a convention for integration, it becomes apparent that: 

9.8𝐵  ∆−1∆𝑃 ≡ ∆𝑃 ≡ 𝑃 = [𝑃(∆) − 𝑃2(∆) + 𝑃3(∆)]
┘

┌

┘

┌
 

As an extension of (9.7) and (9.8), it can be proposed that: 

9.9𝐴  𝑃[𝑙](∆𝑘) = ∆𝑘+𝑙 

9.9𝐵  
∆𝑛𝑃

∆𝑛
=

𝑃[𝑛+1](∆)

𝑃[𝑛](∆)
 

9.9𝐶  ∆±𝑖𝑃[𝑛] = 𝑃[𝑛±𝑖] 

The above makes use of the convention: 9.9𝐷  𝑃[0](𝑎) = {𝑎}, so that in particular 

9.9𝐸  𝑃[0]~{1}, and 9.9𝐹  𝑃[0](∆) = {∆}. Furthermore,  

9.9𝐺  
∆𝛾𝑃[0]

∆𝛿𝑃[0]
~

𝜕𝛾

𝜕𝛿
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9.9𝐻  
∆𝛾𝑃[0](𝑎)

∆𝛿𝑃[0](𝑏)
~

𝜕𝛾𝑎

𝜕𝛿𝑏
 

9.9𝐼  
∆𝛾𝑃[0](𝑎)

∆𝛿𝑃[0](𝑎)
= {∆𝛾−𝛿} 

 

Parallelisms & Extensions 

The proposed preliminary survey amounts to but a partial and very minor excerpt of 

the remote yet closely intertwined results that have been obtained along ordual lines, in 

particular by building on the family of perceptive calculi. In more detailed and specialized 

papers, it will be shown how this P-calculus distinguishes between the [residuale] likes of 

zero, infinitesimals, differentials, constants, and variables. This may for one be seen in line 

with the ‘levels of variableness’ approach as naturally spawned by an ordinalcy agenda.  

On the other hand, not only does the integration cognate act as a dual of the 

differential, it moreover amounts to the extension of set power, in which light the latter can be 

rethought as follows: 𝜌┘

┌

~(2┘

┌

)𝜌−1. Under cardinalcy, or rho tending to 2, this reduces to 

2ℵ0.  

After having provided an exposition of another algebra, the RP calculus (for ‘rational 

perception’ as an alternate to rational expectations) to accommodate the notion of strategic 

rationality I introduced back in 1999, a remarkable posterior similarity will be demonstrated 

between the two apparatuses, albeit centered around rather disjoint prior premises.  

Apart from generalizing the Cauchy functional equation and the Taylor expansion 

alike, it will be proposed that a straightforward recurrent approach similar to the P-calculus 

can formalize the common foundations for numbers (generalized values) and their routine 

operators, notably integration. One other parsimonious yet ubiquitous application of the rho-

approach to ordinalcy will be deployed as a natural bridging device over a variety of 

operations, likely to revisit the ABC conjecture. Not least, in a series of alternate calculi, aside 

from CES or Lame operators yet to be illustrated, the entire setup suggests how Fermat’s LP 

can be approached alongside its extensions. 

 

 

 

  

 


