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The problem on the existence and smoothness of the Navier–Stokes equations is resolved.

1. Problem description

The Navier–Stokes equations are thought to govern the motion of a fluid in R3, see [1].
Let u = u(x, t) ∈ R3, p = p(x, t) ∈ R, and f = f(x, t) ∈ R3 be the velocity, pressure, and
given externally applied force respectively, each dependent on position x ∈ R3 and time
t > 0. The fluid is here assumed to be incompressible with constant viscosity ν > 0 and
to fill all of R3. The Navier–Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p + f, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u0 (3)

where u0 = u0(x) ∈ R3. In these equations ∇ = ( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

) is the gradient operator and

∇2 =
∑3

i=1
∂2

∂xi2
is the Laplacian operator. When ν = 0, equations (1), (2), (3) are called

the Euler equations. Solutions of (1), (2), (3) are to be found with

u0(x + e j) = u0(x), f(x + e j, t) = f(x, t) for 1 6 j 6 3 (4)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). The initial condition u0 is a given C∞

divergence-free vector field on R3 and

|∂αx∂
β
t f| 6 Cαβγ(1 + |t|)−γ on R3 × [0,∞) for any α, β, γ. (5)

A solution of (1), (2), (3) would then be accepted to be physically reasonable if

u(x + e j, t) = u(x, t), p(x + e j, t) = p(x, t) on R3 × [0,∞) for 1 6 j 6 3 (6)

and
u, p ∈ C∞(R3 × [0,∞)). (7)

I provide a proof of the following statement (D), see [2].

(D) Breakdown of Navier–Stokes Solutions on R3/Z3.

Take ν > 0. Then there exist a smooth, divergence-free vector field u0 on R3 and a smooth
f on R3 × [0,∞), satisfying (4), (5), for which there exist no solutions (u, p) of (1), (2),
(3), (6), (7) on R3 × [0,∞).
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2. Proof of statement (D)

Herein I take f = 0. I seek an approximation of the form

u =

1∑
L=−1

n∑
l=0

∂luL

∂tl |t=0
tl

l!
eı̇kL·x, (8)

p =

1∑
L=−1

n−1∑
l=0

∂l pL

∂tl |t=0
tl

l!
eı̇kL·x (9)

to the solution of (1), (2), (3), (4), (5), (6) in light of Theorem 1 and Theorem 2 in the
Appendix. Here uL = uL(t), pL = pL(t), ı̇ =

√
−1, k = 2π, and

∑H
L=−H denotes the sum

over all L ∈ Z3 with −H 6 L j 6 H. Herein the smooth1 divergence-free initial condition
u0 on R3 is chosen to be

u0 =

1∑
L=−1

L × (L × aL)δ
|L|,
√

3eı̇kL·x (10)

where δi, j is the Kronecker delta defined by

δi, j =

{
1, i = j
0, i , j

(11)

and aL are constant vectors that are chosen such that u0 ∈ R
3.

Method 1

Let

u =

n∑
l=0

∂lu
∂tl |t=0

tl

l!
, (12)

p =

n−1∑
l=0

∂l p
∂tl |t=0

tl

l!
. (13)

Substituting (12), (13) into (1) and equating like powers of t in accordance with Theorem
1 yields

∂l+1u
∂tl+1 |t=0 +

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
= ν∇2 ∂

lu
∂tl |t=0 − ∇

∂l p
∂tl |t=0 (14)

where
(

l
m

)
= l!

m!(l−m)! . Substituting (12) into (2) and equating like powers of t in accordance
with Theorem 1 yields

∇ ·
∂lu
∂tl |t=0 = 0. (15)

1In this paper, smooth functions and C∞ functions will both mean continuous functions whose
derivatives and integrals are all continuous.
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Applying ∇ × ∇× to (14) and using the identities

∇ × ∇ × a = ∇(∇ · a) − ∇2a, (16)

∇ × ∇a = 0 (17)

along with (15) gives

∇2 ∂
l+1u
∂tl+1 |t=0 = ∇ × ∇ ×

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
+ ν∇4 ∂

lu
∂tl |t=0. (18)

Applying the inverse Laplacian ∇−2 to (18) gives

∂l+1u
∂tl+1 |t=0 = ∇−2∇ × ∇ ×

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
+ ν∇2 ∂

lu
∂tl |t=0 +Φl (19)

where Φl must satisfy the Laplace equation

∇2Φl = 0. (20)

The required solution to (20) is Φl = 0 in light of (4), (6). Equation (19) is then solved
for ∂l+1u

∂tl+1 |t=0 where l = 0, 1, . . . , n − 1. Applying ∇· to (14) and noting (15) yields

∇2 ∂
l p
∂tl |t=0 = −∇ ·

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
. (21)

Applying ∇−2 to (21) gives

∂l p
∂tl |t=0 = −∇−2∇ ·

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
+ ψl (22)

where
∇2ψl = 0. (23)

Arbitrary constant ψl ∈ R is the solution to (23) in light of (4), (6). Equation (22) is then
solved for ∂l p

∂tl |t=0 where l = 0, 1, . . . , n − 1. After truncating (12), (13) in their modes,
expressions for (8), (9) from Method 1 are then known in terms of given functions.
Note that for the Fourier series

g =
∑
L,0

gLeı̇kL·x (24)

where
∑

L,0 denotes the sum over all L ∈ Z3 with L , 0, the ∇−2 operator is defined
herein as

∇−2
∑
L,0

gLeı̇kL·x =
∑
L,0

gLeı̇kL·x

−k2|L|2
. (25)
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Method 2

Let

u =

1∑
L=−1

uLeı̇kL·x, (26)

p =

1∑
L=−1

pLeı̇kL·x. (27)

Substituting (26), (27) into (1) and equating like powers of e in accordance with Theorem
2 yields

∂uL

∂t
+

∑
M

(uL−M · ı̇kM)uM = −νk2|L|2uL − ı̇kLpL. (28)

Substituting (26) into (2) and equating like powers of e in accordance with Theorem 2
yields

L · uL = 0. (29)

Applying L × L× to (28) and noting the vector identity

a × (b × c) = (c · a)b − (b · a)c (30)

along with (29) yields

|L|2
∂uL

∂t
=

∑
M

L × (L × (uL−M · ı̇kM)uM) − νk2|L|4uL. (31)

Equation (31) implies

∂uL

∂t
=

∑
M

L̂ × (L̂ × (uL−M · ı̇kM)uM) − νk2|L|2uL (32)

where the right hand side of (32) is 0 when L = 0 and L̂ = L/|L| is the unit vector in the
direction of L. Applying L· to (28) and noting (29) gives

ı̇k|L|2 pL = −
∑
M

(uL−M · ı̇kM)(uM · L) (33)

implying that
pL = −

∑
M

(uL−M · L̂)(uM · L̂) (34)

where p0 ∈ R is an arbitrary function of t. Let

uL =

n∑
l=0

∂luL

∂tl |t=0
tl

l!
, (35)

pL =

n−1∑
l=0

∂l pL

∂tl |t=0
tl

l!
. (36)
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Substituting (35) into (32) and equating like powers of t in accordance with Theorem 1
yields

∂l+1uL

∂tl+1 |t=0 =

l∑
m=0

∑
M

L̂×(L̂×(
∂l−muL−M

∂tl−m |t=0 · ı̇kM)
∂muM

∂tm |t=0)
(

l
m

)
−νk2|L|2

∂luL

∂tl |t=0. (37)

Equation (37) is then solved for ∂l+1uL
∂tl+1 |t=0 where l = 0, 1, . . . , n − 1 and −1 6 L j 6 1.

Substituting (35), (36) into (34) and equating like powers of t in accordance with Theorem
1 yields

∂l pL

∂tl |t=0 = −

l∑
m=0

∑
M

(
∂l−muL−M

∂tl−m |t=0 · L̂)(
∂muM

∂tm |t=0 · L̂)
(

l
m

)
. (38)

Equation (38) is then solved for ∂l pL
∂tl |t=0 where l = 0, 1, . . . , n − 1 and −1 6 L j 6 1.

Expressions for (8), (9) from Method 2 are then known in terms of given functions.
At l = 0 in (37) it is found that

∂uL

∂t
|t=0 =

∑
M

L̂ × (L̂ × (uL−M|t=0 · ı̇kM)uM|t=0) − νk2|L|2uL|t=0. (39)

In (39) with 1 6 |L|2 6 3, uM|t=0 = 0 unless |M|2 = 3 and uL−M|t=0 = 0 unless |L −M|2 =

3. With |L|2 = 3 and |M|2 = 3 the equation |L − M|2 = 3 then implies 2L · M = 3
which is not possible as an even number can not be equal to an odd number. Likewise,
with |L|2 = 1 and |M|2 = 3 the equation |L −M|2 = 3 then implies 2L ·M = 1 which
is not possible as an even number can not be equal to an odd number. With |L|2 = 2 and
|M|2 = 3 the equation |L−M|2 = 3 then implies L ·M = 1 which is not possible as in this
instance |L ·M| ∈ {0, 2} when −1 6 L j 6 1,−1 6M j 6 1. Therefore

∂uL

∂t
|t=0 = −3k2νuL|t=0. (40)

At O(t), I find that Method 2 gives the same result for (8) as given by Method 1.
At l = 1 in (37) it is found that

∂2uL

∂t2 |t=0 =
∑
M

L̂ × (L̂ × ((
∂uL−M

∂t
|t=0 · ı̇kM)uM|t=0 + (uL−M|t=0 · ı̇kM)

∂uM

∂t
|t=0))

−νk2|L|2
∂uL

∂t
|t=0. (41)

By a similar argument as that applied to (39) it is found in Method 2 that

∂2uL

∂t2 |t=0 = −3k2ν
∂uL

∂t
|t=0 = 9k4ν2uL|t=0. (42)

In fact for l > 0 it is found in Method 2 that

∂l+1uL

∂tl+1 |t=0 = (−3k2ν)l+1uL|t=0. (43)
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With Method 1 for ν = 0, I find that utt|t=0 , 0 when truncated onto the modes with
−1 6 L j 6 1. Therefore at O(t2), the approximation (8) found from Method 1 is different
to the approximation (8) found from Method 2. Because of this nonuniqueness at least
one of the assumptions used was invalid.

An exact solution

Herein I denote u = (u, v,w) and x = (x, y, z). Let the initial condition be

u0 = (cos(k(x + y − z)), cos(k(x − y − z)), cos(k(x + y − z)) − cos(k(x − y − z))) (44)

which is consistent with (10). I used Maple to find the Maclaurin series of the solution
(u, p) to (1), (2), (3), (4), (5), (6) using (44). The nonuniqueness of results found with
Method 1 and Method 2 does occur when using (44). It appeared from the Maclaurin
series of the solution (u, p) that

v = cos(k(x − y − z))eνλt, (45)

w = u − cos(k(x − y − z))eνλt, (46)

p = 0 (47)

where λ = −3k2. On substitution of (45), (46), (47) into (1), (2), (6), I found that u must
satisfy

∂u
∂t

+ (
∂u
∂y
−
∂u
∂z

)eνλt cos(k(x − y − z)) − ν∇2u = 0, (48)

∂u
∂x

+
∂u
∂z

= 0, (49)

u(x + e j, t) = u(x, t), for 1 6 j 6 3. (50)

For ν = 0, I used Maple to find that the exact general solution of (48) is

u = F(x, y + z,
t cos(k(x − y − z)) − y

cos(k(x − y − z))
) (51)

where F is an arbitrary function. On matching (51) with (44) at t = 0, I then deduced that

u = cos(2tk cos(k(x − y − z)) − k(x + y − z)). (52)

The solution (52) also satisfies (49), (50). The resulting (u, p) was then verified to be an
exact solution to (1), (2), (3), (4), (5), (6) for ν = 0. Integrating (52) with respect to t
yields ∫ t

u dt =
sin(2tk cos(k(x − y − z)) − k(x + y − z))

2k cos(k(x − y − z))
(53)

which is undefined for some values of x ∈ R3 and t > 0.
For ν > 0, it is found that for the small time O(t) solution the equation (48) for u is

∂u
∂t

+ (
∂u
∂y
−
∂u
∂z

)eνλt cos(k(x − y − z)) − νλu = 0. (54)
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Equation (54) implies

∂

∂t
(ue−νλt) + (

∂u
∂y
−
∂u
∂z

) cos(k(x − y − z)) = 0. (55)

Then a change of variables

τ =
eνλt − 1
νλ

, (56)

u(x, t) = a(x, τ)
∂τ

∂t
(57)

yields
∂a
∂τ

+ (
∂a
∂y
−
∂a
∂z

) cos(k(x − y − z)) = 0. (58)

Equation (49) becomes
∂a
∂x

+
∂a
∂z

= 0, (59)

the initial condition (44) implies

a(x, 0) = cos(k(x + y − z)), (60)

and the spatially periodic boundary conditions (50) imply

a(x + e j, τ) = a(x, τ) for 1 6 j 6 3. (61)

Equations (58), (59), (60), (61) define an Euler problem. In light of this and (52), it is
then clear that

u = eνλt cos(
2k
νλ

(eνλt − 1) cos(k(x − y − z)) − k(x + y − z)) (62)

is valid for small time when ν > 0. Integrating (62) with respect to t yields∫ t
u dt =

sin( 2k
νλ (eνλt − 1) cos(k(x − y − z)) − k(x + y − z))

2k cos(k(x − y − z))
(63)

which is undefined for some values of x ∈ R3 and t > 0.
Therefore statement (D) is true. �

Appendix

Theorem 1

Providing that the Maclaurin series

Ă =

n∑
l=0

∂lA
∂tl |t=0

tl

l!
=

n∑
l=0

∂lĂ
∂tl |t=0

tl

l!
(64)
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of the exact general solution to a Qth order partial differential equation

∂QA
∂tQ = Ψ (65)

exists, it will solve the coefficients of tl for all l = 0, 1, . . . , n − Q in (65) with A = Ă
provided Ψ|A=Ă is expandable in Maclaurin series as

Ψ|A=Ă =

m∑
l=0

∂lΨ|A=Ă
∂tl |t=0

tl

l!
(66)

where m > n. Here all of the partial derivatives of A with respect to t are defined at t = 0.

Proof of Theorem 1

Since the Maclaurin series of A exists and all of the partial derivatives of A with respect to
t are defined at t = 0, one can integrate (65) Q times with respect to t and then substitute
the result into (64) to find

Ă =

n∑
l=0

∂l−QΨ

∂tl−Q |t=0
tl

l!
=

n∑
l=0

∂l
∫

QΨ dt|A=Ă

∂tl |t=0
tl

l!
(67)

where
∫

QΨ dt denotes the Qth integral of Ψ with respect to t. Substituting A = Ă into the
residual r of (65) then gives

r =

n∑
l=0

∂l−QΨ|A=Ă
∂tl−Q |t=0

tl−Q

(l − Q)!
−

m∑
l=0

∂lΨ|A=Ă
∂tl |t=0

tl

l!
(68)

providing Ψ|A=Ă is expanded in Maclaurin series as in (66). Collecting like powers of t in
(68) yields

r =

n−Q∑
l=0

∂lΨ|A=Ă
∂tl |t=0

tl

l!
−

m∑
l=0

∂lΨ|A=Ă
∂tl |t=0

tl

l!
(69)

which shows that Theorem 1 is true. �

Theorem 2

Providing that the Fourier series

Ã =

N∑
L=−N

P(A, eı̇kL·x)eı̇kL·x =

N∑
L=−N

P(Ã, eı̇kL·x)eı̇kL·x (70)

of the exact general solution to a Qth order partial differential equation

∂QA
∂tQ = Ψ (71)
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exists, it will solve the coefficients of eı̇kL·x for all −N 6 L j 6 N in (71) with A = Ã
provided Ψ|A=Ã is expandable in Fourier series as

Ψ|A=Ã =

M∑
L=−M

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x (72)

where M > N. Here A is spatially periodic and smooth for all x ∈ R3, k > 0 is a constant,
and P(h, eı̇kL·x) denotes the projection of h onto eı̇kL·x.

Proof of Theorem 2

Since the Fourier series of A exists where A is spatially periodic and smooth for all x ∈ R3,
one can integrate (71) Q times with respect to t and then substitute the result into (70) to
find

Ã =

N∑
L=−N

P(
∫

Q
Ψ dt, eı̇kL·x)eı̇kL·x =

N∑
L=−N

P(
∫

Q
Ψ dt|A=Ã, e

ı̇kL·x)eı̇kL·x. (73)

Substituting A = Ã into the residual r of (71) then gives

r =
∂Q

∂tQ

N∑
L=−N

P(
∫

Q
Ψ dt|A=Ã, e

ı̇kL·x)eı̇kL·x −

M∑
L=−M

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x (74)

providing Ψ|A=Ã is expanded in Fourier series as in (72). Equation (74) can be written as

r =

N∑
L=−N

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x −

M∑
L=−M

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x (75)

which shows that Theorem 2 is true. �
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