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The problem on the existence and smoothness of the Navier–Stokes equations is considered.

1. Problem description

The Navier–Stokes equations are thought to govern the motion of a viscous incompressible fluid in R3, see

Batchelor 1967. Let u = u(x, t) ∈ R3, p = p(x, t) ∈ R, and f = f(x, t) ∈ R3 be the velocity, pressure, and

given externally applied force respectively, each dependent on position x ∈ R3 and time t > 0. The fluid

is assumed to be incompressible with constant viscosity ν > 0 and to fill all of R3. The Navier–Stokes

equations can then be written as
∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p + f, (1)

∇ · u = 0 (2)

with initial condition

u(x, 0) = u0 (3)

where u0 = u0(x) ∈ R3. In these equations ∇ is the gradient operator and ∇2 is the Laplacian operator.

When ν = 0, equations (1), (2), (3) are called the Euler equations. Solutions of (1), (2), (3) are to be found

with

u0(x + e j) = u0(x), f(x + e j, t) = f(x, t) for 1 6 j 6 3 (4)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). The initial condition u0 is a given C∞ divergence-free

vector field on R3 and

|∂αx∂
β
t f| ≤ Cαβγ(1 + |t|)−γ on R3 × [0,∞) for any α, β, γ. (5)

A solution of (1), (2), (3) would then be accepted to be physically reasonable if

u(x + e j, t) = u(x, t), p(x + e j, t) = p(x, t) on R3 × [0,∞) for 1 6 j 6 3 (6)

and

u, p ∈ C∞(R3 × [0,∞)). (7)

I consider a proof of the following statement (D), see Fefferman 2000.
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(D) Breakdown of Navier–Stokes Solutions on R3/Z3.

Take ν > 0. Then there exist a smooth, divergence-free vector field u0 on R3 and a smooth f on R3 × [0,∞),

satisfying (4), (5), for which there exist no solutions (u, p) of (1), (2), (3), (6), (7) on R3 × [0,∞).

2. Proof of statement (D)

Herein I take f = 0. I seek the approximation of the form

u =

1∑
L=−1

n∑
l=0

∂luL

∂tl |t=0
tl

l!
eı̇kL·x, (8)

p =

1∑
L=−1

n∑
l=0

∂l pL

∂tl |t=0
tl

l!
eı̇kL·x (9)

to the solution of (1), (2), (3), (4), (5), (6) in light of Theorem 1 and Theorem 2 in the Appendix. Here

uL = uL(t), pL = pL(t), k = 2π, and
∑H

L=−H denotes the sum over all L ∈ Z3 with −H 6 L j 6 H, 1 6 j 6 3.

Herein the smooth divergence-free initial condition u0 on R3 is chosen to be

u0 =

1∑
L=−1

L × (L × 1)aLδ|L|,
√

3eı̇kL·x (10)

where 1 = (1, 1, 1), δi, j is the Kronecker delta defined by

δi, j =


1, i = j

0, i , j
, (11)

and aL are constants that are chosen such that u0 ∈ R
3.

Method 1

Let

u =

n∑
l=0

∂lu
∂tl |t=0

tl

l!
, (12)

p =

n∑
l=0

∂l p
∂tl |t=0

tl

l!
. (13)

Substituting (12), (13) into (1) and equating like powers of t in accordance with Theorem 1 yields

∂l+1u
∂tl+1 |t=0 +

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
= ν∇2∂

lu
∂tl |t=0 − ∇

∂l p
∂tl |t=0. (14)

Substituting (12) into (2) and equating like powers of t in accordance with Theorem 1 yields

∇ ·
∂lu
∂tl |t=0 = 0. (15)
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Applying ∇ × ∇× to (14) and using the identities

∇ × ∇ × a = ∇(∇ · a) − ∇2a, (16)

∇ × ∇a = 0 (17)

along with (15) gives

∇2∂
l+1u
∂tl+1 |t=0 = ∇ × ∇ ×

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
+ ν∇4∂

lu
∂tl |t=0. (18)

Applying the inverse Laplacian ∇−2 to (18) gives

∂l+1u
∂tl+1 |t=0 = ∇−2∇ × ∇ ×

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
+ ν∇2∂

lu
∂tl |t=0 +Φl (19)

where Φl must satisfy the Laplace equation

∇2Φl = 0. (20)

The required solution to (20) is Φl = 0 in light of (4), (6). Equation (19) is then solved for ∂l+1u
∂tl+1 |t=0 where

l = 0, 1, . . . , n − 1. Applying ∇· to (14) and noting (15) yields

∇2∂
l p
∂tl |t=0 = −∇ ·

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
. (21)

Applying ∇−2 to (21) gives

∂l p
∂tl |t=0 = −∇−2∇ ·

l∑
m=0

(
∂l−mu
∂tl−m |t=0 · ∇)

∂mu
∂tm |t=0

(
l
m

)
+ ψl (22)

where

∇2ψl = 0. (23)

Arbitrary constant ψl ∈ R is the solution to (23) in light of (4), (6). Equation (22) is then solved for ∂l p
∂tl |t=0

where l = 0, 1, . . . , n. After truncating (12), (13) in their modes, expressions for (8), (9) from Method 1 are

then known in terms of given functions. Note that for the Fourier series

g =
∑
L,0

gLeı̇kL·x (24)

where
∑

L,0 denotes the sum over all L ∈ Z3 with L , 0, the ∇−2 operator is defined herein as

∇−2
∑
L,0

gLeı̇kL·x =
∑
L,0

gLeı̇kL·x

−k2|L|2
. (25)

In Method 1 the assumption of smoothness is only on u0.
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Method 2

Let

u =

1∑
L=−1

uLeı̇kL·x, (26)

p =

1∑
L=−1

pLeı̇kL·x. (27)

Substituting (26), (27) into (1) and equating like powers of e in accordance with Theorem 2 yields

∂uL

∂t
+

∑
M

(uL−M · ı̇kM)uM = −νk2|L|2uL − ı̇kLpL. (28)

Substituting (26) into (2) and equating like powers of e in accordance with Theorem 2 yields

L · uL = 0. (29)

Applying L × L× to (28) and noting the vector identity

a × (b × c) = (c · a)b − (b · a)c (30)

along with (29) yields

|L|2
∂uL

∂t
=

∑
M

L × (L × (uL−M · ı̇kM)uM) − νk2|L|4uL. (31)

Equation (31) implies
∂uL

∂t
=

∑
M

L̂ × (L̂ × (uL−M · ı̇kM)uM) − νk2|L|2uL (32)

where the right hand side of (32) is 0 when L = 0 and L̂ = L/|L| is the unit vector in the direction of L.

Applying L· to (28) and noting (29) gives

ı̇k|L|2 pL = −
∑

M

(uL−M · ı̇kM)(uM · L) (33)

implying that

pL = −
∑

M

(uL−M · L̂)(uM · L̂) (34)

where p0 ∈ R is an arbitrary function of t. Let

uL =

n∑
l=0

∂luL

∂tl |t=0
tl

l!
, (35)

pL =

n∑
l=0

∂l pL

∂tl |t=0
tl

l!
. (36)

Substituting (35) into (32) and equating like powers of t in accordance with Theorem 1 yields

∂l+1uL

∂tl+1 |t=0 =

l∑
m=0

∑
M

L̂ × (L̂ × (
∂l−muL−M

∂tl−m |t=0 · ı̇kM)
∂muM

∂tm |t=0)
(

l
m

)
− νk2|L|2

∂luL

∂tl |t=0. (37)
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Equation (37) is then solved for ∂l+1uL
∂tl+1 |t=0 where l = 0, 1, . . . , n− 1 and −1 6 L j 6 1, 1 6 j 6 3. Substituting

(35), (36) into (34) and equating like powers of t in accordance with Theorem 1 yields

∂l pL

∂tl |t=0 = −

l∑
m=0

∑
M

(
∂l−muL−M

∂tl−m |t=0 · L̂)(
∂muM

∂tm |t=0 · L̂)
(

l
m

)
. (38)

Equation (38) is then solved for ∂l pL
∂tl |t=0 where l = 0, 1, . . . , n and −1 6 L j 6 1, 1 6 j 6 3. Expressions for

(8), (9) from Method 2 are then known in terms of given functions.

With n = 2, I found that the approximation (8) found from Method 1 is different to the approximation (8)

found from Method 2. The difference occurs at O(t2). Because of this nonuniqueness at least one of the

assumptions used was invalid. The only assumptions used are those required for use of Theorem 1 and

Theorem 2. Therefore the only way statement (D) could not be true is if the smoothness of u can break

down at an x ∈ R3 where t ∈ C\{0} but with t ≯ 0.

It is found that (u(x −Ωt, t) +Ω, p(x −Ωt, t)) is a solution to (1), (2), (3), (4), (5), (6) if (u(x, t), p(x, t)) is

a solution to (1), (2), (3), (4), (5), (6) where Ω ∈ R3 is a constant. If there exists an x = Ξ(t) ∈ R3 at which

the smoothness of u(x, t) breaks down where t ∈ C\{0} then the smoothness of u(x−Ωt, t)+Ω breaks down

at an x = Θ(t) ∈ R3 with t ∈ C\{0}. It is possible to write Θ(t) −Ωt = Ξ(t) and therefore the smoothness of

u can then break down at an x ∈ R3 where t ∈ R\{0}.

For ν = 0, it is found that (ζu(x, ζt), ζ2 p(x, ζt)) is a solution to (1), (2), (3), (4), (5), (6) if (u(x, t), p(x, t)) is

a solution to (1), (2), (3), (4), (5), (6) where ζ ∈ R is a constant, so if the smoothness of u breaks down at

t < 0 where u0 = U0 ∈ R
3 then the smoothness of u breaks down at t > 0 where u0 = −U0 ∈ R

3. Therefore

statement (D) is true when ν > 0 is replaced with ν = 0.

For ν > 0, when applying Method 1 for n = 2 and Method 2 for all n ∈ N, it is found that the governing

equation for u is effectively
∂u
∂t

= ∇−2∇ × ∇ × ((u · ∇)u) + νλu (39)

where λ = −3k2. Equation (39) implies

∂

∂t
(ue−νλt) = ∇−2∇ × ∇ × ((u · ∇)u)e−νλt. (40)

Then a change of variables

τ = eνλt − 1, (41)

u(x, t) = v(x, τ)
∂τ

∂t
(42)

yields
∂v
∂τ

= ∇−2∇ × ∇ × ((v · ∇)v). (43)
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Equation (2) becomes

∇ · v = 0 (44)

and the initial condition (3) becomes

v(x, 0) =
u0

νλ
. (45)

Equations (43), (44), (45) define an Euler problem. If the smoothness of v breaks down at an x ∈ R3 with

τ ∈ R\{0}, then the smoothness of u can break down at an x ∈ R3 with t > 0. Therefore statement (D) is

true. �

Appendix

Theorem 1

Providing that the Maclaurin series

A =

n∑
l=0

∂lA
∂tl |t=0

tl

l!
=

n∑
l=0

∂lA
∂tl |t=0

tl

l!
(46)

of the exact general solution to a Qth order partial differential equation

∂QA
∂tQ = Ψ (47)

exists, it will solve the coefficients of tl for all l = 0, 1, . . . , n − Q in (47) with A = A provided Ψ|A=A is

expandable in Maclaurin series as

Ψ|A=A =

m∑
l=0

∂lΨ|A=A

∂tl |t=0
tl

l!
(48)

where m > n. Here all of the partial derivatives of A with respect to t are defined at t = 0.

Proof of Theorem 1

Since the Maclaurin series of A exists and all of the partial derivatives of A with respect to t are defined at

t = 0, one can integrate (47) Q times and then substitute the result into (46) to find

A =

n∑
l=0

∂l−QΨ

∂tl−Q |t=0
tl

l!
=

n∑
l=0

∂l
∫

Q
Ψ dt|A=A

∂tl |t=0
tl

l!
(49)

where
∫

Q
Ψ dt denotes the Qth integral of Ψ with respect to t. Substituting A = A into the residual r of (47)

then gives

r =

n∑
l=0

∂l−QΨ|A=A

∂tl−Q |t=0
tl−Q

(l − Q)!
−

m∑
l=0

∂lΨ|A=A

∂tl |t=0
tl

l!
(50)

providing Ψ|A=A is expanded in Maclaurin series as in (48). Collecting like powers of t in (50) yields

r =

n−Q∑
l=0

∂lΨ|A=A

∂tl |t=0
tl

l!
−

m∑
l=0

∂lΨ|A=A

∂tl |t=0
tl

l!
(51)

which shows that Theorem 1 is true. �
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Theorem 2

Providing that the Fourier series

Ã =

N∑
L=−N

P(A, eı̇kL·x)eı̇kL·x =

N∑
L=−N

P(Ã, eı̇kL·x)eı̇kL·x (52)

of the exact general solution to a Qth order partial differential equation

∂QA
∂tQ = Ψ (53)

exists, it will solve the coefficients of eı̇kL·x for all −N 6 L j 6 N, 1 6 j 6 3 in (53) with A = Ã provided

Ψ|A=Ã is expandable in Fourier series as

Ψ|A=Ã =

M∑
L=−M

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x (54)

where M > N. Here A is spatially periodic and smooth for all x ∈ R3, k > 0 is a constant, and P(h, eı̇kL·x)

denotes the projection of h onto eı̇kL·x.

Proof of Theorem 2

Since the Fourier series of A exists where A is spatially periodic and smooth for all x ∈ R3, one can

integrate (53) Q times and then substitute the result into (52) to find

Ã =

N∑
L=−N

P(
∫

Q
Ψ dt, eı̇kL·x)eı̇kL·x =

N∑
L=−N

P(
∫

Q
Ψ dt|A=Ã, e

ı̇kL·x)eı̇kL·x. (55)

Substituting A = Ã into the residual r of (53) then gives

r =
∂Q

∂tQ

N∑
L=−N

P(
∫

Q
Ψ dt|A=Ã, e

ı̇kL·x)eı̇kL·x −

M∑
L=−M

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x (56)

providing Ψ|A=Ã is expanded in Fourier series as in (54). Equation (56) can be written as

r =

N∑
L=−N

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x −

M∑
L=−M

P(Ψ|A=Ã, e
ı̇kL·x)eı̇kL·x (57)

which shows that Theorem 2 is true. �
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