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Abstract

In this paper we outline methods for calculating the pressure field inside flow

conduits in the one-dimensional flow models where the pressure is dependent

on the axial coordinate only. The investigation is general with regard to

the tube mechanical properties (rigid or distensible), and with regard to

the cross sectional variation along the tube length (constant or variable).

The investigation is also general with respect to the fluid rheology as being

Newtonian or non-Newtonian.

Keywords: fluid mechanics; axial pressure field; tube flow; rigid tube; dis-

tensible tube; Newtonian fluid; non-Newtonian fluid; uniform conduit; non-

uniform conduit.

1 Introduction

In the flow of Newtonian and non-Newtonian fluids through conduits of different

geometries and various wall mechanical properties the relation that is usually in

demand is the volumetric flow rate as a function of the pressure at the two bound-

aries with no need for a detailed knowledge about the pressure field inside the

conduit, because in the case of rigid tubes the flow rate generally depends on the

difference between the pressure at the inlet and outlet boundaries, while for the

distensible tubes the flow rate is dependent on the actual values of the pressure

at the two boundaries [1]. Moreover, in the common cases of purely-viscous lami-

nar axi-symmetric flow in rigid conduits with a constant radius along their length

the pressure field can be obtained by simple linear interpolation and symmetric

arguments with no need for elaborate calculations. Therefore, in most cases the

pressure field inside the conduit is either not of primary interest to the investigator

or it can be obtained with a minimal effort.

However, in some other circumstances the pressure as a function of the luminal

space coordinates may be needed and it cannot be obtained from simple arguments
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due to the complexity of flow situation arising for instance from a history depen-

dent non-Newtonian fluid or tube wall distensibility or complicated tube geometry.

For example, in assessing the durability and resistance of a pipeline in the risk

assessment analysis or in the case of predicting the yield point of a yield-stress

fluid in a distensible tube [2] detailed knowledge of more complex pressure fields

is required. In such circumstances, elaborate analytical and numerical techniques

are needed to obtain the pressure field.

Various methods have been used in the past to calculate the pressure field in the

flow conduits. Many of these methods are based on the use of analytical techniques

and apply to special cases of flow, fluid and mechanical and geometrical charac-

teristics of conduit. Numerical discretization techniques such as finite element and

finite difference methods have also been used for finding the pressure fields although

in most circumstances the pressure field may be regarded as a byproduct of the

primary computational objectives.

The literature of fluid dynamics contains numerous studies dedicated to the

investigation and analysis of pressure fields inside flow conduits and storage ves-

sels. For example, Miekisz [3] investigated the temporal and spatial dependency

of the pressure inside an elastic tube in the context of hemodynamic viscous flow

using a linear telegraph equation with the employment of analytical mathematical

techniques. Oka [4] studied the pressure field in a tapered tube and developed a

formula for calculating the pressure gradient as a function of the axial coordinate

for the viscous flow of non-Newtonian fluids using power law, Bingham and Cas-

son models. In a series of studies, Degasperi and coworkers [5–8] investigated the

pressure field distribution in tubes with different geometries under transient and

steady state conditions in the context of injection and outgassing of vacuum devices

using analytical and numerical techniques. Naili and Thiriet [9] studied the pres-

sure field in straight rigid tubes with a uniform cross section in the axial direction

under Newtonian incompressible flow conditions using five different cross sectional

shapes. There are many other studies (e.g. [10–16]) which are not dedicated to

computing the pressure although the methods and results can be used to obtain

the pressure field. There are also numerous studies related to the pressure wave

propagation in distensible tubes and blood vessels (e.g. [17–24]); a subject which

is not included in the scope of the present paper.

In the one-dimensional flow models, where the flow is assumed to have axial

dependency only in the z direction of the cylindrical coordinate system, the pressure

is well defined at each axial point with no dependency on the azimuthal angle or
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the radial distance. For rigid tubes with constant radius along their axial length

the pressure is generally a linear function of the axial coordinate, i.e. constant

pressure gradient, and hence the axial pressure can be trivially evaluated from the

given boundary conditions through linear interpolation. However, for rigid tubes

with varying cross section along their axial direction and for distensible tubes in

general the pressure is not a linear function of the axial coordinate and hence the

axial pressure cannot be computed from the given boundary conditions using a

simple linear interpolation formula. A similar situation may also arise in the flow

of history dependent (i.e. viscoelastic and thixotropic/rheopectic) non-Newtonian

fluids in rigid tubes with a constant radius due to the possible change of rheology

and flow profile along the tube length and hence the axial pressure field may not

be a linear function of the axial coordinate.

In the present investigation we outline some methods that have been used or

can be used in the calculation of the axial pressure field in the one-dimensional

flow models. Although, the investigation is general with regard to the type of

fluid as Newtonian or non-Newtonian, and the type of conduit i.e. with constant

or variable cross section and rigid or distensible mechanical wall characteristics,

it does not extend to the case of history dependent fluids due to the complexity

of these problems and the lack of viable and sufficiently simple flow models that

can be used to analyze such flows. For the generality of discussion and results,

we assume throughout this investigation a laminar, steady state, incompressible,

slip-free, one-dimensional, fully developed flow with negligible body and inertial

forces and minor entrance and exit effects although some of these assumptions and

conditions can be relaxed in some circumstances.

2 Methods

In this section we outline some of the methods that can be used for finding the axial

pressure field inside a tube containing a fluid and subject to a pressure gradient. As

indicated already, the tube is more general than being circular cylindrical with rigid

walls and constant cross section along its length under Newtonian flow conditions.

However, there is no single method that is sufficiently general to apply to all these

variations of flow, fluid and conduit in all circumstances as will be clarified in the

forthcoming subsections.
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2.1 Solving Navier-Stokes Equations

Using Navier-Stokes flow equations, which are based on the mass and linear mo-

mentum conservation principles, is the most common way for describing the flow

of fluids and obtaining its parameters including the pressure field. One exam-

ple of using the Navier-Stokes equations to obtain the axial pressure is the case

of the one-dimensional form of the Navier-Stokes flow in distensible tubes where

an implicitly defined axial pressure field can be obtained analytically (see [2] and

Equations 7). However there are many limitations on the validity and direct use

of the Navier-Stokes equations. One reason is the limiting assumptions on which

the Navier-Stokes flow is based; for example the fluid is assumed Newtonian and

hence any extension beyond this requires an extension to the Navier-Stokes model.

There are also many practical difficulties in obtaining analytical solutions from

the Navier-Stokes equations due to their non-linear nature associated potentially

with other mathematical difficulties originating for example from a complex flow

geometry. So even if the Navier-Stokes flow is valid in principle for describing the

problem the subsequent mathematical difficulties may prevent obtaining a solu-

tion. However, numerical methods can in most cases bridge such gaps and hence

numerical solutions can be obtained. Another difficulty is that even if an analytical

solution can be obtained it may not be possible to obtain an explicit functional

form of the axial pressure in terms of the axial coordinate and hence a numerical

method is needed to obtain the pressure field numerically from its implicit def-

inition. However, obtaining a solution numerically from an implicit form of an

analytical expression is easy through the use of a simple numerical solver based for

instance on a bisection method.

2.2 Using Flow Relation

This method is based on the exploitation of an available relationship correlating

the volumetric flow rate to the two pressure boundary conditions at the inlet and

outlet. An equation can then be formed by using the boundary conditions and an

arbitrary axial point with the elimination of the flow rate by equating the flow rate

in one part of the tube to the flow rate in the other part. For example if we have

the following general relation

Q = f(pi, po, L) (1)
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where Q is the volumetric flow rate, f is a function with a known form, pi and po

are the inlet and outlet pressure respectively, and L is the tube length, then we can

form two equations each one with one boundary condition and an arbitrary axial

point, i.e.

Q = f(pi, px, x) and Q = f(px, po, L− x) (2)

where px is the axial pressure at an arbitrary axial coordinate 0 < x < L. Because

the flow rate is constant, due to the incompressible steady state assumptions, then

by eliminating Q between the above two equations a single equation can be formed

which links explicitly or implicitly px to pi and po and hence px can be obtained

either directly, if it is explicitly defined, or by the use of a simple numerical solver

based for instance on the bisection method if it is an implicit function.

Alternatively, the value of the volumetric flow rate Q is computed from the two

given boundary conditions and then substituted in the p-Q relation with one of the

given boundary conditions. The second boundary condition is then replaced with

the condition at an arbitrary axial point 0 < x < L and the resulting equation is

solved, usually numerically, to obtain the unknown “boundary condition” which is

the axial pressure at the internal point with x coordinate.

We clarify this with an example from the one-dimensional Navier-Stokes flow

in elastic tubes where a linear elastic relation between the axial pressure and the

corresponding cross sectional area of the following form is used to describe the

mechanical response

p = γ (A− Ao) (3)

where p is the axial pressure, γ is a stiffness coefficient, A is the tube cross sectional

area at the axial pressure p, and Ao is the reference area corresponding to the

reference pressure which, in this equation, is set to zero for convenience without

affecting the generality of the results.

For the distensibility mechanical relation of Equation 3, the following formula

that links the volumetric flow rate to the inlet and outlet boundary conditions is

derived and validated previously [1]

Q =
L−

√
L2 − 4α

κ
ln (Aou/Ain) γ

3κρ
(A3

in − A3
ou)

2α
κ

ln (Aou/Ain)
(4)

where α is a correction factor for the axial momentum flux, κ is a viscosity friction
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coefficient, ρ is the fluid mass density, and Ain and Aou are the tube cross sectional

area at the inlet and outlet respectively. If this equation is solved for two given

boundary conditions to obtain a value for the volumetric flow rate Qv, then the

following equation can be formed using the inlet boundary condition

x−
√
x2 − 4α

κ
ln (Ax/Ain) γ

3κρ
(A3

in − A3
x)

2α
κ

ln (Ax/Ain)
= Qv (5)

where Ax is the tube cross sectional area at an arbitrary axial point 0 < x < L.

The latter equation can then be solved numerically for Ax and the pressure at x

is then obtained from Ax by using Equation 3. Alternatively, the outlet boundary

condition can be used with an arbitrary axial point representing an inlet boundary,

that is

(L− x)−
√

(L− x)2 − 4α
κ

ln (Aou/Ax)
γ

3κρ
(A3

x − A3
ou)

2α
κ

ln (Aou/Ax)
= Qv (6)

The main requirement for the applicability of this method is that the charac-

teristic flow equation is indifferent to the axial coordinate due to the fact that the

tube has a uniform reference cross section, i.e. either rigid with a constant cross

section or distensible with a constant cross section under reference pressure.

One limitation of this method is the need for a pressure-flow rate relationship

which usually should be obtained analytically. Another limitation is the aforemen-

tioned requirement which restricts the method to certain geometries as required by

the p-Q expression, and hence it cannot be used for instance to find the pressure

field in converging-diverging geometries that have analytical p-Q relations [25, 26].

Also, the method normally requires the employment of a numerical solver because

the resulted expression is usually implicit in its definition of the axial pressure as

a function of the given conditions; although only a simple numerical solver, such

as a bisection solver, is needed.

2.3 Traditional Meshing Techniques

Another method is the use of the traditional meshing techniques such as finite ele-

ment and finite difference [27–31]. These methods are widely used for solving flow

problems although they may not be the best available option for finding the pres-

sure field due partly to the approximations and possible errors and bugs; moreover

most of these methods are not easy to implement.
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2.4 Residual-Based Lubrication

For any history independent characteristic flow, such as the flow of Newtonian fluids

in elastic tubes or the flow of non-Newtonian fluids of a Herschel-Bulkley type into

rigid tapered tubes, there is a characteristic flow relation that links the volumetric

flow rate through the tube to the two pressure boundary conditions at the inlet and

outlet. The residual-based lubrication method exploits such a characteristic flow

relation by discretizing the flow conduit into axially-divided thin slices where the

flow relation is assumed to equally apply to each one of these slices. These slices

either have the same width or have different widths but where the largest width is

below a predefined maximum limit.

For a conduit discretized into (N−1) slices there are N axial nodal points: two

boundaries and (N − 2) interiors. A system of N simultaneous equations based on

the two boundary conditions for the boundary nodes and the conservation of flow

rate, which is equivalent to the conservation of mass for an incompressible flow, for

the interior nodes is then formed and solved by a non-linear solution scheme such

as Newton-Raphson method subject to a predefined error tolerance. The result of

this solution is the axial pressure at the interior nodes, which defines the pressure

field, and the volumetric flow rate. More detailed description of this method can

be obtained from [32–34].

The residual-based lubrication method is the most general method for obtaining

the pressure field as compared to the other methods in terms of the fluid, i.e.

Newtonian or non-Newtonian, and the flow conduit, i.e. rigid or distensible, with

a constant or variable cross section along its axial direction. In fact the only

requirement for the applicability of the residual-based lubrication method is the

availability of a characteristic flow relation that describes the flow on each slice,

where this relation can be analytical, empirical or even numerical [35]. Therefore,

the flow conduit is not required to have a constant shape or size in the axial

direction. In fact the residual-based method can equally apply to conduits with

non-circular cross sections. Moreover, it can apply in principle to conduits with

more than one characteristic flow relation where these different relations apply

to different parts of the conduit, e.g. one apply to a first part with circularly-

shaped cross sections and another apply to a second part with squarely-shaped

cross sections. However, the residual-based lubrication method can not be applied

in some circumstances due to the lack of a characteristic flow relation; e.g. in most

cases of flow of non-Newtonian fluids through distensible conduits.

The residual-based lubrication method can provide very accurate solutions if a
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proper discretization with a low error tolerance were employed. To demonstrate

this fact, in Figure 1 we compare the analytical solution for the pressure field

in a distensible tube with a Navier-Stokes one-dimensional flow to the numerical

solution as obtained from the residual-based method. The analytical solution,

which is derived in [2], is given by

x =

2αQ ln

(
Ao
β
p+
√
Ao

Ao
β
pi+
√
Ao

)
κ

+

β

[(
Ao
β
pi +
√
Ao

)5
−
(
Ao
β
p+
√
Ao

)5]
5ρκQAo

(7)

where β is a stiffness coefficient in the presumed non-linear pressure-area elastic

relation, while the other symbols are as defined previously. The analytical relation

of Equation 7 is based on the following distensibility elastic relation, whose essence

is that the axial pressure is proportional to the corresponding radius change with

a proportionality stiffness factor scaled by the reference area, that is

p =
β

Ao

(√
A−

√
Ao

)
(8)

Other advantages of the residual-based lubrication method include relative ease

of implementation, reliable and fast convergence, and low computational costs in

terms of memory and CPU time as compared to equivalent methods like finite

element.

2.5 Special Methods

As indicated early, many of the previous attempts to find the pressure field are

based on special mathematical and computational methods which are tailored for

the given problem with the presumed geometry and flow characteristics. A sample

of these attempts and the employed methods have been highlighted in the Intro-

duction. It is out of the scope of the present paper to go through these special

methods.

3 Conclusions

In this study we outlined general methods that can be used to obtain the axial pres-

sure as a function of the axial coordinate for the Newtonian and non-Newtonian

one-dimensional flow in the rigid and distensible tubes with constant and variable

cross sections along their length. As seen, there is no single method that can be

used in all cases although the residual-based lubrication method is the most general
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Figure 1: Comparison between the analytical solution given by Equation 7 and the
numerical solution obtained from the residual-based lubrication method for the one-
dimensional Navier-Stokes flow in an elastic tube. The parameters for this example
are: Ao = 0.0201062 m2, L = 0.6 m, α = 1.25, β = 10635 Pa.m, ρ = 1100 kg.m−3,
µ = 0.035 Pa.s, pi = 1000 Pa, po = 0 Pa, and Q = 0.101768 m3.s−1.

one with respect to the type of fluid (Newtonian or non-Newtonian), and the type

of tube (rigid or distensible, having a uniform cross section or axially varying cross

section). The residual-based method has also other advantages such as comparative

ease of implementation, low computational cost in terms of CPU time and mem-

ory, fast and reliable convergence and highly-accurate solutions which compare in

their accuracy to any existing or potential analytical solutions if sufficiently fine

discretization and low error tolerance are used.
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Nomenclature

α correction factor for axial momentum flux

β stiffness coefficient in the non-linear pressure-area elastic relation

γ stiffness coefficient in the linear pressure-area elastic relation

κ viscosity friction coefficient

µ fluid dynamic viscosity

ρ fluid mass density

A cross sectional area of elastic tube at given axial pressure

Ain cross sectional area of elastic tube at inlet

Ao cross sectional area of elastic tube at reference pressure

Aou cross sectional area of elastic tube at outlet

Ax cross sectional area of elastic tube at x coordinate

L tube length

p pressure

pi inlet boundary pressure

po outlet boundary pressure

Q volumetric flow rate

Qv numeric value of volumetric flow rate

x tube axial coordinate
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