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1. Introduction 

Florentin Smarandache [ 8, 9] combined the non- standard analysis with a tri component 
logic/set, probabi l i ty t heor y  with philosophy and proposed the term neutrosophy which 
means knowledge of neutral thoughts. This neutral represents the main distinction b e t w e e n  
fuzzy and intuitionistic fuzzy logic set. In 1998, Florent in Smarandache defined the 
neutrosophic set [8, 9]. Florentin Smarandache and his colleagues [5] presented an instance of 
neutrosophic set, called single valued neutrosophic set. Alexandrov [1] developed a method of 
centered systems for studying compact extensions of topological spaces. The method  o f  
centered sys t ems  in topological spaces was studied b y Iliadis [6] and in fuzzy topological 
spaces by Uma et al. [10]. We extend the  same in single valued neutrosophic topological 
spaces. 

2. Preliminaries 

Definition 2.1. [5] 

Let X be a space of points (objects), with a generic element in X denoted by x. A single valued 
neutrosophic set (SVNS) A in X is characterized by truth-membership function TA, indeterminacy-
membership function IA and falsity-membership function FA.  
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For each point x in X, TA(x), IA(x), FA(x) ∈ [0,1]. When X is continuous, a SVNS A can be written 
as A, XxxxFxIxTX AAA  ,/)(),(),( . 

When X is discrete, a SVNS A can be written as 

XxxxFxIxTA ii

n

i
iii 



,/)(),(),(
1

 

Definition 2.2: [10] 

Let R be a fuzzy Hausdorff space.  A system p = {λα} of fuzzy open sets of R is 
called fuzzy centered if any finite collection of the fuzzy sets of the system has a non-
empty intersection. The system p is called a maximal fuzzy centered system or a fuzzy end 
if it cannot be included in any larger fuzzy centered system of fuzzy open sets.   

Definition 2.3: [10] 

Let θ(R) denote the collection of all fuzzy ends belonging to a given fuzzy Hausdorff space 
R. A fuzzy topology introduces   into θ(R) in the following way. Let Pλ be the set of all 
fuzzy ends that   contain λ as an element, where λ is a fuzzy open set of R. Therefore, Pλ 
is a fuzzy neighbourhood of each fuzzy end contained in Pλ. 

3. Single valued neutrosophic S* Hausdorff extension spaces 

Definition 3.1 

Let X be a non- empty set and S be a collection of all single valued neutrosophic sets of 

X. A single valued neutrosophic S∗structure on S is a collection S∗ of subsets of S having 
the following properties: 

1. φ and S are in S∗. 

2. The union of the elements of any sub collection of S∗ is in S∗. 

3. The intersection of the elements of any finite sub collection of S∗ is in S∗. 

The collection S together with the structure S∗ is called single valued neutrosophic S∗ 

structure space. The members of S∗ are called single valued neutrosophic S∗ open sets.  The  

complement of single valued neutrosophic S∗ open set is said to be a single valued 

neutrosophic S∗ closed set.  

Example 3.2: 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 
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,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 













9.0,2.0,5.0

,
7.0,1.0,4.03

baS ,

.
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

Here ),( *SS  is a structure space. 

Definition 3.3: 

Let A be a member of S. A single valued neutrosophic S∗ open set U in ),( *SS  is said to 

be a single valued neutrosophic S∗ open neighbourhood of A if A ∈ G ⊂ U for some single 

valued neutrosophic S∗  open set G in ),( *SS . 

Example 3.4: 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 

,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 














9.0,2.0,5.0

,
7.0,1.0,4.03

baS , .
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

Let 













9.0,1.0,3.0

,
8.0,1.0,4.0

baA . 

Here 41 SSA  . 4S  is the single valued neutrosophic S* open neighbourhood of  A . 

Definition 3.5: 

Let ),( *SS  be a single valued neutrosophic S∗ structure space and AAA FITxA ,,,  be a 

single valued neutrosophic set in X. Then the single valued neutrosophic S∗ closure of A (briefly 

SV N S∗cl(A)) and single valued neutrosophic S∗ interior of A (briefly SVN S∗int(A)) are 
respectively defined by 

SVN S∗cl(A) = {K: K is a single valued neutrosophic S∗ closed sets in S and A ⊆ 
K}  

SVN S∗int(A) =  {G: G is a single valued neutrosophic S∗ open sets in S and G ⊆ 
A}.  
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Example 3.6: 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 

,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 














9.0,2.0,5.0

,
7.0,1.0,4.03

baS , .
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

,
5.0,8.0,8.0

,
6.0,9.0,7.01














baS c














5.0,7.0,9.0

,
4.0,8.0,6.02

baS c , 














5.0,8.0,9.0

,
4.0,9.0,7.03

baS c ,













5.0,7.0,8.0

,
6.0,8.0,6.04

baS c . 

Let 













9.0,4.0,7.0

,
6.0,3.0,5.0

baA .Then }{)int(* 3SASSVN  . 

}{)(* 4
cSAclSSVN  . 

Definition 3.7: 

The ordered pair (S, S∗) is called a single valued neutrosophic S∗ Hausdorff space if for 
each pair A1, A2 of disjoint  members  of S, there  exist  disjoint  single valued neutrosophic  

S∗ open sets U1 and U2 such that  A1  ⊆ U1 and A2  ⊆ U2 . 

Example 3.8:  

Let },{ baX   , 













0,1,1

,
0,1,1

baS ,  321
* ,,,, SSSSS   where, 

,
4.0,3.0,0

,
1,0,5.01














baS  ,

4.0,3.0,7.0
,

5.0,2.0,5.02













baS














1,0,7.0

,
5.0,2.0,03

baS . 
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Let 













1,1.0,0

,
1,0,3.01

baA , 













1,0,5.0

,
6.0,1.0,02

baA . 

Here 1A  and 2A  are disjoint members of  S  and 21 , SS  are disjoint single valued neutrosophic 
S* open sets such that 2211 SAandSA  . 

Hence the ordered pair ),( *SS  is a single valued neutrosophic S* Hausdorff space. 

Definition 3.9: 

Let ),( *
11 SS and ),( *

22 SS  be any two single valued neutrosophic S* structure spaces and let 
),(),(: *

22
*
11 SSSSf   be a function. Then f  is said to be single valued neutrosophic S* 

continuous iff the pre image of each single valued neutrosophic *
2S  open set in ),( *

22 SS  is a single 
valued neutrosophic *

1S  open set in ),( *
11 SS . 

Definition 3.10: 

Let ),( *
11 SS and ),( *

22 SS  be any two single valued neutrosophic S* structure spaces and let 
),(),(: *

22
*
11 SSSSf   be a bijective function. If both the functions f  and the inverse function 

),(),(: *
11

*
22

1 SSSSf   are single valued neutrosophic S* continuous then f  is called single 
valued neutrosophic S* homeomorphism. 

Definition 3.11: 

Let f  be a function from a single valued neutrosophic S* structure space ),( *
11 SS  into a 

single valued neutrosophic  S* structure space ),( *
22 SS with )()( 21 AfAf   where ),( *

111 SSA   
and ),( *

222 SSA  .Then f  is called a single valued neutrosophic  S*  continuous at 1A  if for 

every neighbourhood 
2AO  of 2A , there exists a neighbourhood 

1AO  of 1A  such that 

)(*))(*(
21 AA OclSVNSOclSVNSf  .The function is called single valued neutrosophic S*   

continuous if it is single valued neutrosophic  S*  continuous at every member of 1S . 

Definition 3.12: 

A function is called a single valued neutrosophic S∗θ− homeomorphism i f  it is single 

valued neutrosophic S∗ one to one and single valued neutrosophic S∗θ− continuous in both 
directions. 

Definition 3.13: 

Let (S, S∗) be a single valued neutrosophic S∗ Hausdorff space.  A  system p = {Uα: α =1, 

2, 3, ...n} of single valued neutrosophic S∗ open sets is called a single valued neutrosophic S∗ 

centered system if any finite collection of the sets of the system has a non-empty intersection.  
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Definition 3.14: 

The single valued neutrosophic S∗ centered system p is called a maximal single valued 

neutrosophic S∗ centered system or a single valued neutrosophic  S∗  end if it cannot  be 

included in any larger single valued neutrosophic  S∗  centered  system of single valued 

neutrosophic  S∗  open sets. 

Example 3.15:  

In Example 3.8 let us consider the system  3,2,1,1  Sp . 1p  is a fuzzy neutrosophic S* 
centered system since 21 , SS  has a non -empty intersection. 

Let }2,1:{2  Sp is also a fuzzy neutrosophic S* centered system. 

Here 1p  is a maximal fuzzy neutrosophic S* centered system. 

Note 3.16: 

Throughout this paper { Uα: α = 1, 2, 3, ...n} be a single valued neutrosophic S∗ open set 

in (S, S∗). 

Proposition 3.17: 

Let *),( SS be a single valued neutrosophic *S  Hausdorff space and }{ Up   is a 
single valued neutrosophic *S  centered system in *),( SS .Then the following properties 
hold. 

1.If )....,3,2,1( nipU i  then pU i

n

i


1
. 

2.If pUHU  , and H is single valued neutrosophic *S  open set, then pH  . 
3.If H is single valued neutrosophic *S  open set, then pH   iff there exists pU 

such that pU   such that  HU . 
4.If 1321 ,UpUUU   and 2U  are single valued neutrosophic *S  open sets and 

 21 UU , then either pU 1  or pU 2 . 

5.If SUclSVNS )(*  then pU   for any single valued neutrosophic *S  end p . 

Proof: 

1.If )....,3,2,1( nipU i  then 


i

n

i
U

1
.As a contrary, suppose that pU i

n

i


1
, then 













n

i
iUp

1
will be a larger single valued neutrosophic *S end than p .This contradicts 

the maximality of p .Therefore pU i

n

i


1
. 
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2. If pH  , then Hp  will be a larger single valued neutrosophic *S end than 
p .This contradicts the maximality of p .Therefore pH  . 

3.Suppose that pH  .If there exists no pU   such that UH  then by 
Definition 3.13 and Definition 3.14, pH  .This contradicts the maximality of p , since  

}{Hp   will be a larger single valued neutrosophic *S  end than .p Conversely, suppose 
that there exists pU   such that UH .If pH   then UH , which is a 
contradiction. Hence pH  . 

4.If pUpU  21 , , then pUUU  131  and pUUU  232 .It follows that pU 3 , 
which is a contradiction. Hence either pU 1  or pU 2 . 

5. UUclSVNSU  )(*  and pSUclSVNS )(*  for all single valued neutrosophic 
*S ends p .By (3)  UUclSVNSU )(* .Therefore pU   for all single valued 

neutrosophic *S  end p. 

Definition 3.18: 

Let )(S  denote the collection of all single valued neutrosophic *S ends belonging to 
S .A single valued neutrosophic *S  topology is introduced into )(S  in the following 
way. Let UO  be the set of all single valued neutrosophic *S ends that contains U  as an 
element, where U  is a single valued neutrosophic *S open set of S .Therefore UO  is a 
single valued neutrosophic *S  neighbourhood of each single valued neutrosophic *S end 
contained in UO . 

Definition 3.19: 

A subset A  of a single valued neutrosophic *S structure space *),( SS  is said to be an 
everywhere single valued neutrosophic *S dense subset in *),( SS  if SAclSVNS )(* . 

Definition 3.20: 

A subset of a single valued neutrosophic *S structure space *),( SS  is said to be a 
nowhere single valued neutrosophic *S  dense subset  in *),( SS  if cAX \  is everywhere 
single valued neutrosophic *S  dense subset. 

Definition 3.21: 

Let *),( SS  be a single valued neutrosophic *S structure space and Y be a single 
valued neutrosophic *S  open set in *),( SS .Then the single valued neutrosophic *S  
relative topology  *: SGYGTY   is called the single valued neutrosophic *S  relative 
(or induced or subspace ) topology on Y .The ordered pair  YTY ,  is called a single 
valued neutrosophic *S subpace of the single valued neutrosophic *S space *),( SS . 
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Definition 3.22: 

Let *),( SS be a single valued neutrosophic *S structure space. 

1.If a family  iU :
 of single valued neutrosophic *S  open sets in *),( SS  

satisfies the condition   iUS : , then it is called a single valued neutrosophic *S
open cover of .S A finite subfamily of the single valued neutrosophic *S  open cover 
 iU :

 of S , which is also a single valued neutrosophic *S  open cover of S , is 
called a single valued neutrosophic *S  finite subcover . 

2.A single valued neutrosophic *S structure space *),( SS  is called single valued 
neutrosophic *S  compact iff every single valued neutrosophic *S  open cover of S  has 
a single valued neutrosophic *S  finite subcover. 

Definition 3.23: 

A single valued neutrosophic *S  Hausdorff space )(S is called an extension of a 
single valued neutrosophic *S  Hausdorff space S is contained in )(S as an everywhere 
single valued neutrosophic *S  dense subset. 

Definition 3.24: 

A single valued neutrosophic *S  Hausdorff space S  is called single valued 
neutrosophic HS *  closed if every extension coincides with S  itself. 

Definition 3.25: 

An extension )(S is called a single valued neutrosophic HS * closed  if )(S  is 
single valued neutrosophic HS * closed  and single valued neutrosophic *S  compact 
if )(S is single valued neutrosophic *S  compact. 

Definition 3.26: 

Let *),( SS be a single valued neutrosophic *S  structure space. A system B of single 
valued neutrosophic *S  open sets of a single valued neutrosophic *S  structure space S
is called a single valued neutrosophic *S base (or basis) for *),( SS if each member of 

*),( SS  is a union of members of B.A member of B is called a single valued 
neutrosophic *S  basic open set. 

Definition 3.27: 

Let *),( SS  be a single valued neutrosophic *S  structure space .A system of single 
valued neutrosophic *S  open sets of a single valued neutrosophic *S structure space S
is called a single valued neutrosophic *S  sub base if it together with all possible finite 
intersections of members of the system form a base of S . 
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Lemma 3.28: 

A single valued neutrosophic *S  structure space S  is single valued neutrosophic 
HS * closed if and only if any single valued neutrosophic *S  centered system  U  

of single valued neutrosophic *S  open sets of S  satisfies the condition 



 )(* UclSVNS . 

Proof: 

Necessity: If  Up   is single valued neutrosophic *S  centered system with 



 )(* UclSVNS  then it can be constructed the following single valued neutrosophic 

*S  extensions )(S  which does not coincide with S  and a new member p .The single 
valued neutrosophic *S  neighbourhoods of each member SA  in )(S are the same as 
in S .Any set 

U  together with the member p is a single valued neutrosophic *S  

neighbourhood of p. Because of the condition 


 )(* UclSVNS , a single valued 

neutrosophic *S  structure space )(S  is single valued neutrosophic *S Hausdorff and 
since  U  is a single valued neutrosophic *S  centered system , it contains S  as an 
everywhere single valued neutrosophic *S dense subset. Therefore S  is not a single 
valued neutrosophic HS * closed, which is a contradiction. 

Sufficiency: Let S  be a proper everywhere single valued neutrosophic *S  dense 
subset of )(S .Assume that )(S  consists of all single valued neutrosophic *S  
neighbourhoods of some member SSp \)( .Let this be the system  U .This system 
is single valued neutrosophic *S  centered for otherwise p  would be an isolated member 
in )(S  and S would not be everywhere single valued neutrosophic *S  dense subset of 

)(S , since )(S  is single valued neutrosophic *S  Hausdorff space then 
pVclSVNS S  )(* )(




.But the system  SUV  
 is single valued neutrosophic *S  

centered and 


 )(* SVclSVNS , which contradicts the condition of the Lemma. 

Lemma 3.29: 

A single valued neutrosophic *S  structure space S  is single valued neutrosophic 
HS * closed if and only if any maximal single valued neutrosophic *S  centered 

system  U  of single valued neutrosophic *S  open sets of S  contains all the single 
valued neutrosophic *S  neighbourhoods of some member. 

The proof follows easily from Lemma 3.28. 
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Lemma 3.30: 

The single valued neutrosophic *S  structure space S  is single valued neutrosophic 
HS *  closed if and only if from any single valued neutrosophic *S  cover  U  of S  

a finite subsystem )...,3,2,1( niU i   may be chosen such that SUclSVNS
n

i
i 



)(*
1
 .The 

proof follows from Lemma 3.28. 

4. Single valued neutrosophic S* centered systems 

Definition 4.1: 

Let }{q  be a collection of single valued neutrosophic *S  centered (not necessarily 
maximal) systems of single valued neutrosophic *S  open sets of S .A single valued 
neutrosophic *S  topology may be defined on this collection. 

For if U  is a single valued neutrosophic *S   open set of S .Let UO  denote the 
collection of all single valued neutrosophic *S centered systems }{qq containing U  as 
an element. All sets of the form UO  form a sub base. 

Definition 4.2: 

Let )(S be an arbitrary single valued neutrosophic *S  extension of S . Every 
member )(SA   in particular. A may belong to S  defines a certain single valued 

neutrosophic *S  centered system in S , namely  AA USV    where AU  runs through 

all neighbouhoods of A  in )(S . 

Note 4.3: 

Every extension of an arbitrary single valued neutrosophic *S  Hausdorff space S  
can be realized as a single valued neutrosophic *S  structure space of centered systems 
of single valued neutrosophic *S  open sets of S  with an appropriately chosen single 
valued neutrosophic *S  topology. 

Lemma 4.4: 

For any single valued neutrosophic *S extension )(S , the single valued neutrosophic 
*S  structure space )(S  is a single valued neutrosophic *S  extension of S and single 

valued neutrosophic *S homeomorphic to  )(S , where )(S  denote the single 
valued neutrosophic *S  structure space that is obtained by introducing a single valued 
neutrosophic *S  topology into a set of single valued neutrosophic *S  centered systems 

 AV  by the mentioned above. 
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Proof: 

Since if  1AV  and  2AV  are two single valued neutrosophic *S  centered systems 
constructed relative to single valued neutrosophic sets 1A  and 2A , )(S  is single 
valued neutrosophic *S  Hausdorff space. Since S  is a single valued neutrosophic *S  
Hausdorff space, by the above procedure, they contain disjoint elements. The relation 

UA and UA Oq   are equivalent so that S  is single valued neutrosophic *S  
homeomorphic to a subset of )(S .Since VUVU OOO   and since UO contains all the 

Aq  for which UA , it follows that S  is everywhere single valued neutrosophic *S  
dense in )(S , that is )(S  is a single valued neutrosophic *S  extension of S . 

Next to prove that )(S  and )(S are single valued neutrosophic *S  -
homeomorphic. There is a single valued neutrosophic *S  one-to-one correspondence 
between the members of )(S  and )(S  which is denoted by i .Thus AAi )(  if 

SA .Let 'A )(S , ')(,' AAiOA V   and let U be a single valued neutrosophic *S  

neighbourhood of A in )(S  such that VSU  .We prove that VOUi )( .This shows 
that the function i  is single valued neutrosophic *S continuous and hence it is single 
valued neutrosophic *S  continuous. But this is obvious because if UA 1  then 

)( 1AiV  and hence VOAi )( 1 . 

To prove that the inverse function is single valued neutrosophic *S  -continuous. Let 
U be a single valued neutrosophic *S  neighbourhood of )( Ai , where USV  .To 

show that   )(*)(*1 UclSVNSOclSVNSi V  . Let )(*' VOclSVNSA . This means that an 

arbitrary single valued neutrosophic *S  neighbourhood GO  of 'A meets VO , that is 
VG and this in turns means that an arbitrary single valued neutrosophic *S  

neighbourhood of )'(1 Ai   meets V  that is )(*)(*)'(1 UclSVNSVclSVNSAi  .Thus 

  )(*)(*1 UclSVNSOclSVNSi V  and the Lemma is proved. 

Definition 4.5: 

A single valued neutrosophic *S  extension )(S is of type   if the function i (one – 
to-one correspondence between the members of )(S  and )(S ) is a single valued 
neutrosophic *S   homeomorphism. 

Definition 4.6: 

A single valued neutrosophic *S  extension )(S is of type   if the set SS \)(  is 
discrete in the single valued neutrosophic *S  relative topology. 
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Proposition 4.7: 

Every single valued neutrosophic *S  extension of S  is a single valued neutrosophic 
*S   homeomorphic to some extension of type   of the same space. 

Proof: 

The proof follows from the fact that the single valued neutrosophic *S  extension 
)(S  in Lemma 4.4 is of type  . 

Now, let )(S  be any single valued neutrosophic *S  extension. Let )(S  denote the 
single valued neutrosophic *S  structure space obtained as follows. The members of 

)(S  are those of )(S .The single valued neutrosophic *S  neighbourhoods of members 
of SA  are same as in S ,but for members SSA \)( the single valued neutrosophic *S  
neighbourhoods are obtained from those of  A  in )(S by rejecting the set  ASS \)( .Clearly 

)(S  is asingle valued neutrosophic *S  Hausdorff space. 

Definition 4.8: 

Let ),( *
11 SS  and ),( *

22 SS  be two single valued neutrosophic *S  structure spaces. A 
single valued neutrosophic *S  structure space ),( *

11 SS  is said to be topologically 
embedded in another single valued neutrosophic *S  structure space ),( *

22 SS  if ),( *
11 SS  

is a single valued neutrosophic *S  homeomorphic to a single valued neutrosophic *S  
subspace of ),( *

22 SS . 

Lemma 4.9: 

For any single valued neutrosophic *S  extension )(S , the single valued 
neutrosophic *S  structure space )(S  is a single valued neutrosophic *S  extension of 
S , single valued neutrosophic *S   homeomorphic to )(S and of type  . 

Proof: 

It is clear that S  is single valued neutrosophic *S  topologically embedded in )(S  
as an everywhere single valued neutrosophic *S  dense subset , that is , )(S  is a single 
valued neutrosophic *S  extension of S . 

From the construction of )(S , SS \)(  is discrete and hence )(S  is of type  .It 
remains to show that )(S  and )(S  are single valued neutrosophic *S   
homeomorphic. 

This follows from the fact that if U  is single valued neutrosophic *S  open set in S , 

then     )()( )(*)(* SS UclSVNSUclSVNS 
 .Then the single valued neutrosophic *S  

structure space )(S is mapped continuously onto )(S . 
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Note 4.10: 

From Lemma 4.9 each single valued neutrosophic *S  extension )(S  of S  is 
associated with single valued neutrosophic *S  extensions )(S  and )(S , of types   
and   respectively and single valued neutrosophic *S   homeomorphic to each other 
and also single valued neutrosophic *S   homeomorphic to the original single valued 
neutrosophic *S  extension )(S . 

Definition 4.11: 

Let G  be a single valued neutrosophic *S  base of single valued neutrosophic *S  open 
sets in a single valued neutrosophic *S  structure space S and )(G S , the single valued 
neutrosophic *S  structure space whose elements are the members of S  itself  and all 
the maximal single valued neutrosophic *S  centered systems  U  consisting of single 
valued neutrosophic *S  open sets belonging to G , none of which contains as a 
subsystem of the single valued neutrosophic *S  neighbourhoods of any single valued 
neutrosophic *S  open set of S  belonging to G (Clearly this condition is equivalent to 
the following : 


 )(* UclSVNS ). 

Definition 4.12: 

A single valued neutrosophic *S  topology is defined in )(SG as follows. If  U G, 

UO  denotes the set of all UA  and all maximal single valued neutrosophic *S  centered 
system in a )(SG  that contains U  as an element .Since in )(SG  each member SA  
can be replaced by the single valued neutrosophic *S  centered system of all its single 
valued neutrosophic *S  neighbourhoods belonging to G (with the single valued 
neutrosophic *S  topologization :   UOU 

 if   UU  ).It is clear that each )(SG  is a 
single valued neutrosophic *S  Hausdorff extension of type   of  the original single 
valued neutrosophic *S  structure space S . 

Definition 4.13: 

A single valued neutrosophic *S  centered system  U  of single valued neutrosophic 
*S  open sets of G is called a single valued neutrosophic *S  Hausdorff system if for every 

SB  not belonging to  UU   there exists a  UU '  such that )'(* UclSVNSB . 

Definition 4.14: 

A maximal single valued neutrosophic *S Hausdorff system (that is, one which cannot be 
extended while remaining single valued neutrosophic *S centered system and a single valued 
neutrosophic *S  Hausdorff space) is called a single valued neutrosophic *S  Hausdorff 
end. 
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Note 4.15: 

A single valued neutrosophic *S structure space )(SG  associated with the base containing 
all the single valued neutrosophic *S  open sets of S will simply be denoted by )(S . 

Proposition 4.16: 

A single valued neutrosophic *S  extension )(S  is a single valued neutrosophic *S
H closed extension of S . 

Proof: 

Let  U  be an arbitrary single valued neutrosophic *S  centered system of single 
valued neutrosophic *S  open sets of )(S .Let SUV  

. 

Since S  is everywhere single valued neutrosophic *S  dense in )(S , 

    )()( )(*)(* SS UclSVNSVclSVNS 





  .Hence it is enough to show that 

  






)()(* SVclSVNS .If   




SVclSVNS )(* , then by Lemma 3.28, there is nothing 

to prove. 

If   



SUclSVNS )(* , then there exists a single valued neutrosophic *S  Hausdorff 

end p  containing all the sets 
V , and hence   )()(* SVclSVNSp 

  for all  . 

Note 4.17: 

Let G be any single valued neutrosophic *S  base of S .If  U G then G is called single 
valued neutrosophic *S  algebraically closed. 

Remark 4.18: 

If G is called single valued neutrosophic *S  algebraically closed base of S , then 
)(SG  is a single valued neutrosophic *S H closed extension of S . 

The proof is same as that of Proposition 4.16. 

Note 4.19: 

Each single valued neutrosophic *S extension )(S is associated with single valued 
neutrosophic *S  homeomorphic extension )(S of type   ,the single valued neutrosophic 

*S structure space )(S which is associated with )(S is denoted by  )(S and is called a single 
valued neutrosophic *S Katetov extension of S . 

Lemma 4.20: 

A single valued neutrosophic *S continuous image of a single valued neutrosophic HS *  

closed space is a single valued neutrosophic HS *  closed. 
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Proof: 

Let f be a single valued neutrosophic *S  continuous function from a single valued 
neutrosophic HS *

1 closed space 1S onto single valued neutrosophic HS *
2 closed space 

2S .Suppose that 2S  is not a single valued neutrosophic  HS *
2 closed ,then by Lemma 3.30 there 

exists a single valued neutrosophic *
2S  covering  U  of 2S  from which a finite number of 

single valued neutrosophic *
2S   open sets cannot be extracted whose single valued neutrosophic 

*S closures cover 2S .Let 11 SA   and V  be a single valued neutrosophic *
1S open set of 1S such 

that VA 1 and  )())(( *
1

*
1  UclSVNSVclSVNSf  . 

Choosing such a set for each member of 1S ,the collection  V of this single valued 

neutrosophic *
1S  structure space is obtained. A finite number of sets nVVV ....,, 21  is picked such 

that 1
*
11

)( SVclSVNS i

n

i



.But then the union 2

*
11

*
21

)())(()( SSfVclSVNSfUclSVNS ii

n

i

n

i i



 . 

But in general 2
*
21

)( SUclSVNS
i

n

i



 implies that 2

*
11

))(( SVclSVNSf i

n

i



is the whole of 

2S ,which is impossible by hypothesis. 

Remark 4.21: 

The single valued neutrosophic *S structure space )(S is a single valued neutrosophic HS *

closed extension of S  . 

The proof follows from Proposition 4.16 and Lemma 4.20. 

Note 4.22: 

A single valued neutrosophic *S  structure space )(S  has the following maximal properties. 

Proposition 4.23: 

If )(S is any (not necessarily single valued neutrosophic HS *  closed) single valued 
neutrosophic *S  extension of S  then there exists a subset )()( SS     containing S  and a 
single valued neutrosophic *S continuous function 

f of this subset onto )(S such that 

AAf )(
, where SA . Here if )(S is a single valued neutrosophic HS *  closed extension, 

it may be assumed that )()( SS    . 

Proof: Let )(S be a single valued neutrosophic *S  extension of S .Each member 
SSq \)(  defines a single valued neutrosophic *S  centered system of single valued 

neutrosophic *
1S  open sets in S ,namely q  defines    SUV  

 where 
U  is the set of all 

single valued neutrosophic *
1S neighbourhoods of q in )(S .It can be further identified each 

member of )(S with the corresponding single valued neutrosophic *S  centered system 
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 V .Because )(S is a fuzzy neutrosophic *S  Hausdorff space the system  V has the property 

  



SVclSVNS )(* . 

Consider in )(S ,the subset )(S  consisting of all members of S  and all single valued 
neutrosophic *

2S  ends containing at least one system  V corresponding to some )(Sq  .The 
function 

f is constructed as follows: if SA ,put AAf )(
,while if SSp \)( ,then p  

contains some q  . As q  is unique put qpf )(
. 

Clearly, f  is a single valued neutrosophic *S  continuity at every SA .Because S  is a 
single valued neutrosophic *

2S  open in )(S  (by definition of the single valued neutrosophic *S  
topology of )(S ), and hence also in )(S .Let SSp \)(  and qpf )(

. 

Let 
U be a single valued neutrosophic *S neighbourhood of q  in )(S .Then the set pV 

 

is a single valued neutrosophic *S  neighbourhood of p  in )(S  ,where SUV  
 with  

 UpVf  )( , that is, 
f  is single valued neutrosophic *S  continuous at p . 

Suppose that )(S is a single valued neutrosophic HS * closed extension. Let 
SSp \)( ,and let  U be the system of all single valued neutrosophic *

2S  neighbourhoods 
of p  in )(S and let SUV  

.Let 
H  denote a single valued neutrosophic *

1S  open set in 
)(S such that SHV  

. 

The system  H is a single valued neutrosophic *
1S centered system and since )(S  is a single 

valued neutrosophic HS *
1  closed ,then by Lemma 3.28,   


 )(*

1 HclSVNS .Let 

 )(*
1 


HclSVNSq  .If G  is a single valued neutrosophic *

1S  neighbourhood of q  in )(S ,we 

have  VG for every   ,that is ,    VSG  .This means that p  contains the single 
valued neutrosophic *

1S  centered system q  and )()( SS   ,that is )()( SS    . 

Remark 4.24: 

)(S  denotes the single valued neutrosophic *S  structure space obtained from )(S  by 

the procedure described in section 4. It is easy to see that )(S is a single valued neutrosophic 
*S   homeomorphic to a subset of single valued neutrosophic *S  extension )(S .As )(S is 

a single valued neutrosophic *S homeomorphic to )(S , Proposition 4.23 holds if )(S is 
replaced by )(S and single valued neutrosophic *S  continuity by single valued neutrosophic

*S continuity. 
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Remark 4.25: 

A single valued neutrosophic *S  structure space )(S can be mapped  single valued 
neutrosophic *S continuity onto any single valued neutrosophic HS *  closed extension of S  
in such a way that the members of S  remain fixed. 

Now, the classes of single valued neutrosophic *S  Hausdorff extensions of S  are discussed. 

Lemma 4.26: 

A single valued neutrosophic *S  open set )(S  is the largest subset of )(S  that can be 
continuously mapped onto )(S  in such a way that the members of S  remain fixed. In other 

words, if a set )(' S  is continuously mapped onto )(S  in such a way that the members of S  

remain fixed, then )()(' SS    . 

Proof: 

Let SSp \)('
 and let qpf )('

 ,where '
f is a single valued neutrosophic *S  continuous 

function of )(' S onto )(S  .Let U be a single valued neutrosophic *S  neighbourhood of q  in 
)(S .There exists a single valued neutrosophic *S  neighbourhood H of p  in )(S such that 

UHf )('
 .Then , SUSH   that is , p contains SU  and since U is any single valued 

neutrosophic *S neighbourhood of q , p contains the system q ,that is, )(Sp  . 

Note 4.27: 

Thus, all single valued neutrosophic *S  extensions of S  fall into classes, where )(S and 

)(' S are in the same class if and only if )(S = )(' S . All single valued neutrosophic HS *

closed extensions belong to the same class, by Lemma 4.20 contains only single valued 
neutrosophic HS * closed extensions. 

Lemma 4.28: 

If single valued neutrosophic *S  extension )(S and )(S are single valued neutrosophic 

*S homeomorphic, then they belong to the same class, that is )()( SS    . 

Proof: 

Let i be a single valued neutrosophic *S  homeomorphism between )(S and )(S such  

that AAi )(  for SA .Let    SVU  
,where 

V  is a single valued neutrosophic *S

neighbourhood of SSp \)( .Let    SGH  
,where 

G is a  single valued neutrosophic *S

neighbourhood of  qpi )(  in )(S .If some single valued  neutrosophic *S  end d of S contains 
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all the single valued  neutrosophic sets 
U ,then it also contains all the 

H .Choose some 
H  and 

a 
G such that 

 HSG  ,and in )(S choose V such that 

)(*))(*(  GclSVNSVclSVNSi  .Then , SGclSVNSSVclSVNS  )(*)(*  .That is ,

))(*int(* SGclSVNSSVNSUSV   .Hence ,if dSGclSVNSSVNS  ))(*int(* 
, 

then 
 VSG   as the everywhere single valued  neutrosophic *S dense subset,

))(int( SGSVNclSVN 
 also belongs to d. 

Thus, )()( SS    .Similarly, )()( SS    .That is )()( SS    . 
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