
PROOF OF BUNYAKOVSKY’S CONJECTURE
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Abstract. Bunyakovsky’s conjecture states that under special conditions,
polynomial integer functions of degree greater than one generate infinitely
many primes.

The main contribution of this paper is to introduce a new approach
that enables to prove Bunyakovsky’s conjecture. The key idea of this new
approach is that there exists a general method to solve this problem by
using only arithmetic progressions and congruences.

As consequences of Bunyakovsky’s proven conjecture, three Landau’s
problems are resolved: the nˆ2+1 problem, the twin primes conjecture and
the binary Goldbach conjecture.

The method is also used to prove that there are infinitely many primorial
and factorial primes.
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1. Introduction

In 1837, the German mathematician P. G. L. Dirichlet (1805-1859) proved
that an arithmetic progression ax + b (an integer function of degree m = 1
where x, a and b are integers with gcd(a, b) = 1), generates infinitely many
primes.

In 1854, seventeen years after Dirichlet’s theorem, the conjecture of the
Ukrainian mathematician Victor Y. Bunyakovsky (1804-1889) mentioned in [1]
is already a try to generalize this theorem to functions of degree m > 1. This
conjecture states that, under two conditions mentioned hereafter, a polynomial
function of degree m > 1 generates infinitely many primes.

A recurrent question is then: are primes of a certain form infinitely many?
And a recurrent answer is: it is conjectured that they are infinitely many, or
even: it is not known if they are infinitely many. This question necessitates a
classification of the different possible forms of primes.

As the most generally encountered form is the polynomial form, this one is
studied here, with the result that Bunyakovsky’s conjecture is proven as well
as, consequently, three of the four problems of Landau: n2 + 1, twin primes
and Goldbach conjectures.

As the question is still unresolved for primorial and factorial primes, these
conjectures are also proven here.

2. Preliminary notes

2.1. Definition of polynomial integer functions. General functions are
said to be polynomial if their expression is a polynomial of degree m:

f(x) = cmx
m + cm−1x

m−1 + cm−2x
m−2+. . . +c2x

2 + c1x + c0

with m ∈ N and x and ci ∈ R, where N is the set of all positive integers and
R the set of all real numbers.

If we choose x = n and ci in N, all values of f(x) are in N so that f(x)
becomes a polynomial integer function f(n).

Finally, setting c0 = b, any polynomial integer function f(n) can be written:

f(n) = g(n).n + b

where g(n) is a polynomial of degree m− 1 and gn its values.

2.2. Definition of polynomial primes. Polynomial primes q(f, n) (here-
after abbreviated as qn) are the primes generated by polynomial integer func-
tions f(n) by a special set of values of n:

qn = cmn
m + cm−1n

m−1 + cm−2n
m−2+. . . +c2n

2 + c1n + c0
or, more simply, with c0 = b:
qn = g(n).n + b = gnn + b
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3. Proof of Bunyakovsky’s conjecture

3.1. Bunyakovsky’s conjecture. This conjecture states that, under two
conditions mentioned hereafter, a polynomial function of degree m > 1 gener-
ates infinitely many primes.

The two conditions come from the fact that the considered polynomial has to
be indivisible, this word being taken with the sense given to it by Bunyakovsky
in its article [1]:

(A) the coefficients of the polynomial have to verify: gcd(coefficients) = 1;
(B) the polynomial has to be irreducible, that is to say, not divisible by any
other polynomial of degree d with 0 6 d < m. It excludes, by instance:

with m = 2 and d = 1: n2 − b2 = (n− b)(n + b)
and:

with m = 2 and d = 0: n2 + n + 2 = 2

(
n(n + 1)

2
+ 1

)
as n(n + 1)/2 is always an integer and 2 is the polynomial of degree d = 0.

3.2. A useful congruence for polynomial primes. In the present proof,
we will consider only odd prime values p > 3 of n and so, only the values:

qp = p.g(p) + b = p.gp + b

We thus get:

3qp = 3p.gp+b

3qp = 3b(3p)gp

and as according to Fermat’s little theorem we have for p > 3:
3p ≡ 3 mod p

we also get for p > 3:

(1) 3qp = 3gp+b mod p

3.3. Proof of Bunyakovsky’s conjecture.

Proof. According to Fermat’s little theorem, for an existing prime number qp,
we have:

(2) 3qp ≡ 3 mod qp

With congruences (1) and (2), and still for an existing prime number qp, we
get the system of two verified congruences:

3qp ≡ 3gp+b mod p
3qp ≡ 3 mod qp

Now, in order to generalize the problem by including the possibility of non
existing primes qn, let’s replace 3qn by x. This gives the system:

x ≡ 3gp+b mod p
x ≡ 3 mod qp

and we know from the chinese theorem that this system has always a solution:
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x ≡ x0 mod m
with:

m = m1m2 = pqp
x0 = 3gp+bb1qp + 3b2p

bj being determined by:
m

mj

bj ≡ 1 mod mj

As with:

qp = cmp
m + cm−1p

m−1 + cm−2p
m−2+. . . +c2p

2 + c1p + c0

x = 3qp verifies the system, it proves that these numbers qp always exist as a
solution of this system and, as the primes p are infinitely many, they are also
infinitely many.

Moreover, as x = 3qp verifies the second congruence which is Fermat’s test
of primality for qp, it proves that these numbers qp are generally prime, except
those qp’s that are pseudoprimes in base 3.

These two last points prove that polynomial primes are infinitely many,
which is exactly Bunyakovsky’s conjecture. �

4. Extension to fourth Landau’s problem

The fourth Landau’s problem is the question: are there infinitely many
primes qn such that qn = n2 + 1 ? This problem was mentioned as unsolved
in 1912 at the fifth International Congress of Mathematicians (ICM) in Cam-
bridge by Landau.

Proof. As Bunyakovsky’s conjecture is now proven, stating that polynomial
primes qn = g(n).n + b are infinitely many, considering g(n) = n and b = 1
which make that qn = n2 + 1 and gcd(g(n), b) = gcd(n, 1) = 1 for any n, this
conjecture is also proven. �

5. Extension to other conjectures

With g(n) = a, a being any non-null integer constant, we get:

qn = a.n + b

and Bunyakovsky’s conjecture, proven for polynomials of degree m > 1, re-
duces to Dirichlet’s theorem and so, to infinitely many arithmetic progressions
that are polynomials of degree m = 1. These ones, according to the same
theorem, generate infinitely many primes qn for infinitely many n’s which in
turn, belong to infinitely many arithmetic progressions:

n = rb + c with 0 < c < b and r ∈ Z\0
This is particularly true for odd primes qn obtained with odd a’s, infinitely
many odd n = rb+ c which according to Dirichlet’s theorem include infinitely
many primes, and even b’s such that gcd(a, b) = 1. So, with a = 1 and even
b’s (b = 2k) it is true for the infinitely many polynomials qn = p+ 2k of degree
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m = 1 based on odd primes p’s instead of simply odd n’s. This proves that
the following conjectures generate infinitely many primes:

qp = p + 2 (twin primes conjecture, Landau’s second problem),
qp = p + 4 (cousin primes conjecture),
qp = p + 6 (sexy primes conjecture),

and generally for:
qp = p + 2k for all k > 0, (de Polignac’s conjecture)

and with even a’s, odd or even n’s and odd b’s such that gcd(a, b) = 1, it is also
particularly true for n = p, a = 2 and b = 1, that is to say for the conjecture:

qp = 2p + 1 (Sophie Germain primes conjecture)

6. Extension to the binary Golbach conjecture

Landau’s first problem is the binary Goldbach conjecture. It states that any
even number 2n > 4 can be written as the sum of two primes, or symbolically:

2n = p1 + p2 for any n such that 2n > 4

We have seen with de Polignac’s conjecture qp = p+ 2k proven in last section,
that the proven conjecture of Bunyakovsky implies that the odd primes qp =
p+2n are infinitely many for all odd primes p and all n > 0. But this does not
prove that qp can be any prime. And this has to be proven first, as follows.

Proof. Considering n = 0 and all odd primes p, we get: qp = p + 2n = p. This
means that the subset of numbers:

{qp,2n=0} = {p}

is the set P\2 of all odd primes, which are infinitely many as proven by Euclid.
Now, also considering n > 1, we then have, for 2n > 0 and p > 3 (but

limited here to 2n 6 20 and to p 6 41 for a problem of line width):

Table 1: Subsets of primes {qp,2n=0,20 = p + 2n}
{qp = p + 0} = 3 5 7 11 13 17 19 23 29 31 37 41
{qp = p + 2} = 5 7 13 19 31
{qp = p + 4} = 7 11 17 23 41
{qp = p + 6} = 11 13 17 19 23 29 37
{qp = p + 8} = 11 13 19 31 37
{qp = p + 10} = 13 17 23 29 41
{qp = p + 12} = 17 19 23 29 31 41
{qp = p + 14} = 17 19 31 37
{qp = p + 16} = 19 23 29
{qp = p + 18} = 23 29 31 37 41
{qp = p + 20} = 23 31 37

. . .

As the first odd prime p to be considered in each of the subsets {qp,2n>2 =
p + 2n} is always p = 3 and as any odd prime qp can be written qp = 3 + 2n
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because 3+2n is an arithmetic progression that covers all odd numbers greater
than 1 and consequently all odd primes (boldface in the table), it proves that
the set of all the subsets {qp,2n>0 = p + 2n} constitutes a covering system of
all odd primes greater than three or that the symbolic equation qp = p+ 2n is
valid for any odd prime p > 3, any n > 1 but also for all odd primes qp > 5. �

We can now proceed with the binary Goldbach conjecture.

Proof. As the symbolic equation q = p + 2n is now valid for any odd prime
p > 3, any n > 1 and all odd primes q > 5, it is particularly true for all prime
values np of n and the symbolic equation q = p+2n is still valid when written:

q = p + 2np

or, renaming np by p2 and p by p1:

q = p1 + 2p2

This is still valid when written:

(3) q − p2 = p1 + p2

But, as from Table 1 the symbolic equation q = p+ 2n is now valid for all odd
primes q > 5, any n > 1 and any primes p1 > 3 and p2 > 3, it implies that we
can symbolically write:

q = p2 + 2n
or:

q − p2 = 2n

for any n > 1 and we symbolically get from (3):

2n = p1 + p2

which proves the binary Goldbach conjecture for any p1 > 3, p2 > 3 and only
n > 3. Finally, as:

for n = 2: 2n = 4 = 2 + 2

the binary Goldbach conjecture is proven for n > 2 or 2n > 4 as required. �

7. Landau’s four problems

As three of the four Landau’s problems: n2 + 1, twin primes and Gold-
bach’s conjecture have been proven here and that the fourth one, Legendre’s
conjecture, has been proven in [3], the four Landau’s problems are resolved.
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8. Extension to primorial primes conjecture

8.1. The primorial primes conjecture. Primorial primes [4] [5] are primes
of the form: qn = pn# + 1 where pn# is the primorial of pn defined by pn# =
2× 3× 5× 7× . . .× pn. As we have:

qn = pn# + 1 = pn−1#.pn + 1

we see that qn is also of the form g(n).n + b where n = pn and g(n) = pn−1#
is the fully factorized polynomial function of n:

g(n) = pn−1# = pn#/pn
The primorial primes conjecture is the question: are there infinitely many

primes qn = pn# + 1 or infinitely many primes pn such that qn = pn# + 1 is
also prime?

8.2. A useful congruence for primorial primes. As qn = pn−1#× pn + 1,
we also have:

3qn = 3pn−1#×pn+1 = 3× 3pn−1#(3pn−1#)pn−1

and, as from Fermat’s little theorem, with pn > 3 being prime:
(3pn−1#)pn−1 ≡ 1 mod pn

we get: 3qn ≡ 3× 3pn−1# ≡ 3pn−1#+1 mod pn
3qn ≡ 3qn−1 mod pn

As this congruence defines a recurrence on 3qn that begins with 3qn−1 = 3q1 =
3p1#+1 = 32#+1 = 33, we finally have for any odd prime pn > 3:

(4) 3qn ≡ 27 mod pn

8.3. Proof of primorial primes conjecture.

Proof. According to Fermat’s little theorem, for an existing prime number qn,
we have:

(5) 3qn ≡ 3 mod qn

With congruence (4), and still for an existing prime number qn, we get the
system of two verified congruences:

3qn ≡ 27 mod pn
3qn ≡ 3 mod qn

Now, in order to generalize the problem by including the possibility of non
existing primes qn, let’s replace 3qn by x. This gives the system:

x ≡ 27 mod pn
x ≡ 3 mod qn

and we know from the chinese theorem that this system has always a solution:

x ≡ x0 mod m
with:

m = m1m2 = pnqn
x0 = 27b1qn + 3b2pn
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bj being determined by:
m

mj

bj ≡ 1 mod mj

As with:

qp = pn# + 1

x = 3qp verifies the system, it proves that these numbers qp always exist as a
solution of this system and, as the primes p are infinitely many, they are also
infinitely many.

Moreover, as x = 3qp verifies the second congruence which is Fermat’s test
of primality for qp, it proves that these numbers qp are generally prime, except
those qp’s that are pseudoprimes in base 3.

These two last points prove that primorial primes qn = pn#+1 are infinitely
many, which is exactly the primorial primes conjecture. �

8.4. List of primes p generating primorial primes q. In less than 2
minutes on a laptop computer, the following GP/PARI program [2] gives the
list of primes p 6 2, 657 that generate primorial primes qp = p# + 1:

3, 5, 7, 11, 31, 379, 1019, 1021, 2657, ...

Bigger lists can be found in [4] and [5]. The GP/PARI program for primorial
primes follows:

# /* to start the timer */
pmax=2659;b=1;oldprim=2;
forprime(p=3,pmax,oldprim=oldprim*p;q=oldprim+b;\

if(isprime(q)==1,print1(n,”, ”));)
# /* to stop the timer */

9. Extension to factorial primes conjecture

We now mimic the proof of last section to apply it to factorial primes with
appropriate adjustments for constants and expressions.

9.1. The factorial primes conjecture. Factorial primes are primes of the
form: qn = n! + 1 where n! is the factorial of n defined by n! = 1× 2× 3× 4×
5× . . .× n. As we have:

qn = n! + 1 = n.(n− 1)! + 1

we see that qn is also of the form g(n).n + b where g(n) is the fully factorized
polynomial function:

g(n) = (n− 1)! = n!/n = (1)(2)(3)...(n− 2)(n− 1)

The factorial primes conjecture is the question: are there infinitely many
primes qn = n! + 1?
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9.2. A useful congruence for factorial primes. As qn = n(n− 1)! + 1, we
also have:

3qn = 3n(n−1)!+1 ≡ 3× 3n(n−1)!

≡ 3× (3(n−1)!)n

≡ 3× 3(n−1)!(3(n−1)!)(n−1)

and with prime n = p > 3:
≡ 3× 3(p−1)!(3(p−1)!)(p−1)

Now, as from Fermat’s little theorem for primes p > 3, we have:
(3(p−1)!)(p−1) ≡ 1 mod p

we get: 3qp ≡ 3× 3(p−1)! ≡ 3(p−1)!+1 mod p
3qp ≡ 3qp−1 mod p

As this congruence defines a recurrence on 3qp that begins with 3qp−1 = 3q1 =
3p1!+1 = 32!+1 = 33, we finally have for any odd prime n = p > 3:

(6) 3qp ≡ 27 mod p

9.3. Proof of factorial primes conjecture.

Proof. According to Fermat’s little theorem, for an existing prime number qn,
we have:

(7) 3qn ≡ 3 mod qn

With congruence (6) and still for an existing prime number qn, we get the
system of two verified congruences:

3qn ≡ 27 mod pn
3qn ≡ 3 mod qn

Now, in order to generalize the problem by including the possibility of non
existing primes qn, let’s replace 3qn by x. This gives the system:

x ≡ 27 mod pn
x ≡ 3 mod qn

and we know from the chinese theorem that this system has always a solution:

x ≡ x0 mod m
with:

m = m1m2 = pnqn
x0 = 27b1qn + 3b2pn

bj being determined by:
m

mj

bj ≡ 1 mod mj

As with:

qp = pn! + 1
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x = 3qp verifies the system, it proves that these numbers qp always exist as a
solution of this system and, as the primes p are infinitely many, they are also
infinitely many.

Moreover, as x = 3qp verifies the second congruence which is Fermat’s test
of primality for qp, it proves that these numbers qp are generally prime, except
those qp’s that are pseudoprimes in base 3.

These two last points prove that factorial primes qn = pn! + 1 are infinitely
many, which is exactly the factorial primes conjecture. �

9.4. List of n’s that generate factorial primes. In less than 3 minutes on
a laptop computer, the following GP/PARI program gives the list of n 6 427
(prime or not) that generate factorial primes qn = n! + 1:

n = 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, ...

Bigger lists can be found in [4] and [5]. The GP/PARI program for factorial
primes follows:

# /* to start the timer */
pmax=427;b=1;oldfact=2;
for(n=3,pmax,oldfact=oldfact*n;q=oldfact+b;\

if(isprime(q)==1,print1(n,”, ”));)
# /* to stop the timer */
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