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Abstract

The Hall effect, especially integer, fractional and anomalous quantum Hall effect, has been

addressed with the Eyring’s rate process theory and free volume concept. The basic assumptions are

that the conduction process is a common rate controlled ”reaction” process that can be described

with Eyring’s absolute rate process theory; the mobility of electrons should be dependent on the free

volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as

e2/h with prefactors related to both the magnetic flux quantum number and the magnetic quantum

number via azimuthal quantum number, with and without an externally applied magnetic field.

This article focuses on two dimensional (2D) systems, but the approaches developed in this article

can be extended to 3D systems.
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I. INTRODUCTION

The Hall effect, the current induced by a magnetic field perpendicular to an initial electric

field, is the most amazing and rich phenomena in condensed matter physics, in addition to the

superconductivity. There are so many successful theories generated to explain the beautiful

integer and fractional quantum Hall effect.1–7 No matter which theory one may prefer, the

conductivity is generally considered to be induced from the movements of charge carriers like

electrons and ions; The inter-electron interferences cannot be overlooked and the resistivity

comes from not only electron-lattice interactions, but also electron-electron interactions;

At low temperatures close to zero Kelvin, electrons may tend to condensate, forming pair

structures as suggested in BCS theory8 and even crystal lattice structures predicted by

Wigner.9 Recent experimental evidences confirm the existences of cooper pairs,10 the body-

centered cubic (bcc) structures in 3D (three dimension),11 and triangular lattice structures

in 2D (two dimension) systems.12

Like other elementary particles, electrons should bear particle and wave duality, result-

ing in classical and quantum mechanical treatments in dealing with the rich conductivity

phenomena. Both approaches show advantages and limitations, and the general consensus

is that the classical or semiclassical approaches provide relatively simple and easy interpre-

tations on Hall effect.13 Complications come from interactions among electrons and between

electrons and phonon, a tough many-body problem and hard to be resolved satisfactorily.

Theories of Hall effect thus remains highly controversial and need to be refined from a brand

new stand of points.

Free volume theory,14–17 originated from molecular systems, is a most successful mean

field theory in dealing with many-body problems. All different kinds of interactions among

entities are factored into a single term, the free volume available in the systems. At ex-

tremely low temperatures, electrons may show high probability of particle rather than wave

behaviors, if electron condensation truly happened. Therefore, one may reasonably assume

that there should be a free volume unoccupied by electrons available in low temperature sys-

tems, as Hao18 introduced previously to treat superconductivity phenomena. In this article,

we borrow the free volume concept again to treat the behaviors of electrons, with the aid

of the Eyring’s rate process theory that successfully describes chemical reactions, diffusions,

viscosity, electrical conductivity processes.19 Attempt is made to explain the fascinating
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normal and anomalous integer and fractional quantum Hall effect in a much simpler way,

avoiding the complicated quantum mechanical calculations.

II. THEORY

Let’s consider 2D systems under an electric field E and a perpendicular magnetic field

B, a typical Hall experimental set up. In such a case, the conductivity of this system should

be a tensor and may be expressed as:

σ =

σxx σyx

σxy σyy

 (1)

where σxx is the conductivity along the applied electric field direction, and σyx is the Hall

conductance. The relationship between these two parameters may be expressed as20,21:

σyx = σxxωcτ

σxx =
σ0

1 + ω2
cτ

2

(2)

where σ0 is the zero magnetic field conductivity, ωc is the cyclotron frequency, ωc = eB/m∗,

m∗ is the effective mass of electron, e is the elementary charge, B is the magnetic field

strength, and τ is the relaxation time related parameter. The conductivity of a material in

general without a magnetic field may be expressed as20,21:

σ0 = eNc
vd
E

(3)

where Nc is the number of conduction electrons, vd is the drift velocity of conduction elec-

trons, and E is the applied electric field strength. Combining Eq. 2 and Eq. 3 leads to:

σyx =
eBτ

m∗
σ0

[1 + ( eBτ
m∗ )

2]
=

e2Bτ

Em∗
Ncvd

[1 + ( eBτ
m∗ )

2]
(4)

For a material with area A, Eq. 4 may be re-written as:

σyx =
e2BAτ

AEm∗
Ncvd

[1 + ( eBτ
m∗ )

2]
(5)

The term BA in the equation above is the magnetic flux and should obey the Dirac quan-

tization condition at extremely low temperature22:

BA = n
h

e
(6)
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where n is an integer number and h is the Planck constant. Therefore Eq. 5 may be further

re-written as:

σyx =
nehτ

AEm∗
Ncvd

[1 + (nhτ
m∗ )

2]
(7)

where Nc

A
is the conduction electron concentration in 2D systems and has been worked out

through the zero order incomplete Fermi-Dirac integral as23,24:

Nc

A
=

4πm∗kBT

h2
ln[1 + exp

(Ef − Ec)

kBT
] (8)

where kB is the Boltzmann constant, T is the temperature, Ef is the Fermi energy, and Ec

is the conduction band edge energy. Substituting Eq. 8 into Eq. 7 leads to:

σyx = 4πne
kBT

Eh

τvd

[1 + (nhτ
m∗ )

2]
ln[1 + exp

(Ef − Ec)

kBT
] (9)

Based on Eyring’s rate process theory and free volume concept, Hao18 has recently derived

conductivity equations that seem to work for many conductivity phenomena observed so

far, especially for superconductivity. The obtained drift velocity of electrons, vd, can be

expressed as18:

vd = K+λ[exp
αeλE

kBT
− exp

−(1− α)eλE

kBT
] (10)

where K+ is the specific ”reaction” rate in any direction for undisturbed systems, λ is the

distance between the initial equilibrium position and the final position, similar to mean free

path of electrons, and α is directly related to the coordinate number, cn, of an electron

with the relationship, α = 1/cn. The term [exp αeλE
kBT

− exp −(1−α)eλE
kBT

] in Eq.10 can be

mathematically written in a more concise form:

[exp
αeλE

kBT
− exp

−(1− α)eλE

kBT
] = G

eλE

kBT
(11)

where the parameter G is an exponential function. Replacing vd with Eq.11 in Eq. 9, one

may obtain:

σyx = 4πn
e2

h

τK+λ2G

1 + (nhτ
m∗ )

2
ln[1 + exp

Ef − Ec

kBT
] (12)

Now we need to determine the relaxation time parameter τ and the specific reaction rate

K+. One may consider the conduction process analogously as a rate controlled ”reaction”

process, adopting the same ideas from the theory of rate process proposed by Eyring.19

As we know, there are a huge amount of electrons in the systems, assuming its effective

concentration is Ne1. The effective concentration has a chemical name dubbed ”activity”
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and both two terms will be used interchangeably. Some small portion of these electrons

are ”activated” into the conduction band under an external electric field to participate the

conduction process with effective concentration or called activity, ac, while the big portion

of electrons still remains uninvolved, with the effective concentration of Ne2. This process

can be simply described as below:

Ne1

E

 ac +Ne2

Since the concentration of conduction electrons should be much smaller than the total

amount of electrons, Ne1 should be almost identical to Ne2. So the equilibrium constant

of this process, Kc, can be written as:

Kc =
acNe2

Ne1

= ac (13)

It is worth emphasizing that in the equilibrium constant calculation shown in Eq.13, the

activity or effective concentrations of each ”reactants” should be used, instead of the regular

concentrations. This is why we need to figure out what is the effective concentrations of

conduction electrons. As one may already realize, electrons move in spiral cyclo-circles

under both an electric and magnetic fields that are perpendicular with each others.25,26 So

the effective free area that electrons can freely travel could be larger than the sample area A

in 2D systems. Since electrons can only spiral in one direction, the perimeter instead of the

linear distance should be used to calculate the area. Therefore, the active/effective area thus

should be 2π(L/2)W = πA, where L and W are the length and width of the sample, under

the assumption that electrons spiral along the horizontal length direction, L. So the activity

or the effective concentration of conduction electrons, should be the ”effective” number of

conduction electrons divided by the active free area (corresponding to the free volume in

3D). The occupied area isn’t available for conduction electrons and shouldn’t be counted in

the activity calculation. As Hao already formulated,18 the specific free volume, or the free

volume per unit volume, of an electron, may be expressed as:

fv = (1− 4

9πNv

) (14)

where Nv is the number of valence electrons per unit cell. So for 2D systems with an effective

area πA, the active free area that electrons may travel, Aa, is:

Aa = πA(1− 4

9πNv

) (15)
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Eq. 15 tells the effective free area available for conduction electrons. We still need to know

the effective number of conduction electrons in order to calculate the effective concentration

of conduction electrons. From quantum mechanics, a set of four quantum numbers is used to

describe the unique states of electrons; Conduction electrons usually reside the outer layer

of orbitals and the energy levels are mainly determined by the principal and Azimuthal

quantum numbers. However, in a magnetic field the energy levels are further split into

sub-levels, and the number of states, the magnetic quantum numbers ml, has a relationship

with the Azimuthal quantum number, `, ml = 2`+1. This is why the Zeeman effect occurs.

As a general rule, two electrons with opposite spin directions would reside at each state

and the inner orbitals will be filled up first; the most outer orbital could be occupied by

just one electron or simply unoccupied, depending on how many conduction electrons are

available. So in the end the energy states that conduction electrons may occupy is 2` ± 1,

and the number of electrons, nce, that may occupy these states at these three cases, may be

expressed as:

nce =


2× 2`+ 1 = 4`+ 1 odd number of conduction electrons,

2× (2`+ 1) = 4`+ 2 even number of conduction electrons,

2× 2` = 4` the most outer obital unoccupied.

(16)

Note that electrons occupying the same states are indistinguishable and can be considered

as ”same” entities. If the total number of conduction electrons is Nc, then the effective

number of conduction electrons, Nce, with distinguishable energy states could be expressed

as:

Nce =
Nc

nce

=


Nc

4`+1
odd number of conduction electrons,

Nc

4`+2
even number of conduction electrons,

Nc

4`
the most outer obital unoccupied.

(17)

Since electrons can only move freely in the free area, the effective concentration of conduction

electrons, ac, thus should be written as:

ac =
Nce

Aa

=


Nc

Aπ(4`+1)(1− 4
9πNv

)
odd number of conduction electrons,

Nc

Aπ(4`+2)(1− 4
9πNv

)
even number of conduction electrons,

Nc

(4`Aπ)(1− 4
9πNv

)
the most outer obital unoccupied.

(18)
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Once we know the activity of the conduction electrons in the systems as shown in Eq. 18,

one may easily obtain the equilibrium constant of the conduction process from Eq. 13,

Kc = ac.

For rate controlled activation processes, according to Eyring, the relaxation time τ is

equal to the average time of crossing the activation energy barrier that can be expressed

as19:

τ = δ(
2πm∗

kBT
)1/2 (19)

and the specific rate can be written as19:

K+ = Kc
1

δ
(
kBT

2πm∗ )
1/2 (20)

where δ is the length of top activation barrier. From Eq. 19, 20, and Eq. 13, one may easily

obtain the term τK+ shown below:

τK+ = Kc = ac (21)

Substituting Eq. 21 into Eq. 12 leads to:

σyx =


4n

4`+1
e2

h
Nc

A(1− 4
9πNv

)
λ2G

1+(nhτ
m∗ )2

ln[1 + exp
(Ef−Ec)

kBT
] odd number of conduction electrons,

4n
4`+2

e2

h
Nc

A(1− 4
9πNv

)
λ2G

1+(nhτ
m∗ )2

ln[1 + exp
(Ef−Ec)

kBT
] even number of conduction electrons,

n
`
e2

h
Nc

A(1− 4
9πNv

)
λ2G

1+(nhτ
m∗ )2

ln[1 + exp
(Ef−Ec)

kBT
] the most outer obital unoccupied.

(22)

According to definition, λ2 simply represents the free area that an electron may have in 2D

geometry and should be equal to the total free area divided by the number of conduction

electrons:

λ2 =
A(1− 4

9πNv
)

Nc

(23)

therefore, Eq. 22 can be re-written as:

σyx =


4n

4`+1
e2

h
G

1+(nhτ
m∗ )2

ln[1 + exp
(Ef−Ec)

kBT
] odd number of conduction electrons,

4n
4`+2

e2

h
G

1+(nhτ
m∗ )2

ln[1 + exp
(Ef−Ec)

kBT
] even number of conduction electrons,

n
`
e2

h
G

1+(nhτ
m∗ )2

ln[1 + exp
(Ef−Ec)

kBT
] the most outer obital unoccupied.

(24)

Using Eq. 19 to replace τ and Eq. 8 to replace m∗, one may reach:
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σyx =



4n
4`+1

e2

h

G ln[1+exp
Ef−Ec

kBT
]

1+ 8π2n2δ2

Nc
ln[1+exp

Ef−Ec

kBT
]

odd number of conduction electrons,

4n
4`+2

e2

h

G ln[1+exp
Ef−Ec

kBT
]

1+ 8π2n2δ2

Nc
ln[1+exp

Ef−Ec

kBT
]

even number of conduction electrons,

n
`
e2

h

G ln[1+exp
Ef−Ec

kBT
]

1+ 8π2n2δ2

Nc
ln[1+exp

Ef−Ec

kBT
]

the most outer obital unoccupied.

(25)

Since δ is a very small distance of nanometer scales and Nc is very large number, one

may reasonably assume that the term 8π2n2δ2

Nc
ln[1 + exp

(Ef−Ec)

kBT
] is much smaller than 1,

thus 1 + 8π2n2δ2

Nc
ln[1 + exp

(Ef−Ec)

kBT
] u 1. This approximation should be true, as the applied

magnetic field, as well as the corresponded parameter n, cannot be huge enough to overtake

the term δ2/Nc. Thus Eq. 25 can be simplified as:

σyx =


4n

4`+1
e2

h
G ln[1 + exp

Ef−Ec

kBT
] odd number of conduction electrons,

4n
4`+2

e2

h
G ln[1 + exp

Ef−Ec

kBT
] even number of conduction electrons,

n
`
e2

h
G ln[1 + exp

Ef−Ec

kBT
] the most outer obital unoccupied.

(26)

Let’s evaluate the conduction equations, Eq. 26, in two extreme limits, non-degenerate

limit when Ef − Ec � 0, and degenerate limit when Ef − Ec � 0, defined according

to the literature.23,24 When Ef − Ec � 0, the term ln[1 + exp
Ef−Ec

kBT
] approaches to zero,

so the conductivity becomes zero, too. In other words, Hall resistance should be huge.

When Ef − Ec � 0, the situation becomes complicated and can be resolved with Wigner’s

idea that electrons may condensate at extremely low temperature and form Wigner crys-

tal structures,9,27 which was adopted in my previous publication to successfully treat the

conductivity.18 If electrons form pair structures like Cooper pairs, then the coordinate num-

ber cn = 1, and thus α = 1/cn = 1. Eq. 11 will becomes:

[exp
eλE

kBT
− 1] = G

eλE

kBT
(27)

Note that we are dealing with the degenerate case when Ef −Ec � 0. One may reasonably

assume that
Ef−Ec

kBT
= − eλE

kBT
= x. i.e., the work required for electrons to move a distance λ

under an electric field E, within the framework of the Eyring’s rate controlled conduction

process, is equal to the energy gap. The negative sign is used due to the negative charge of

electrons. Replacing the parameter G with Eq. 27 in Eq. 26 leads to:
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σyx =


4n

4`+1
e2

h
exp(−x)−1

−x
ln[1 + expx] odd number of conduction electrons,

4n
4`+2

e2

h
exp(−x)−1

−x
ln[1 + expx] even number of conduction electrons,

n
`
e2

h
exp(−x)−1

−x
ln[1 + expx] the most outer obital unoccupied.

(28)

Eq. 28 is the Hall conductivity under the assumption that electrons form pair structures and

the applied magnetic field is not unreasonably strong. Again, n and ` are integers, originated

from the quantization of magnetic flux assumption for n, and the magnetic quantum number

via Azimuthal quantum number or called the orbital angular momentum quantum number,

`. The term exp(−x)−1
−x

ln[1 + exp x] tends out to be 1 when x � 0, which is the case at

extremely low temperature. Fig. 1 show the vales of this term at wide x ranges, plotted as

normalized Hall conductivity σyx/(
n
`
e2

h
) vs. x(= −eλE/kBT ).
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e2 h
)

Pair
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FIG. 1: Normalized Hall conductivity σyx/(
n
`
e2

h ) vs. x(= −eλE/kBT ) when the electrons form

pair structures. The circle shows the magnified area at the left top region.

.

Therefore, the Hall conductivity equations, Eq. 28, may be written as:

σyx =


4n

4`+1
e2

h
odd number of conduction electrons,

4n
4`+2

e2

h
even number of conduction electrons,

n
`
e2

h
the most outer obital unoccupied.

(29)
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These are the Hall conductivities at three different cases in term of the number of conduction

electrons. Note that both n and ` are integer and have physical meanings, too. Obviously,

these equations are consistent with experimental observations on both integer and fractional

quantum Hall effects. The Hall coefficient, ν, the prefactor in front of the term e2

h
, is

experimentally found to be integers of either a general expression ν = p/(2p ± 1) where

p is another integer, or 5/2.5,7,28,29 With Eq. 29, one can easily verify these experimental

results. The integer quantum Hall effect corresponds to the equation σyx = n
`
e2

h
with ` = 1

and n takes integer numbers, while the fractional quantum Hall effect corresponds to the

remainder two equations with ` = n/2± 1.

Utilizing the same procedures above, one may easily obtained the Hall conductivity equa-

tions when electrons form Wigner crystals of the coordinate number 2, 3, 4, 8, and so on,

which correspond to α =1/2, 1/3, 1/4, and 1/8..., respectively. The obtained general equa-

tions can be expressed as below:

σyx =


4n

4`+1
e2

h
exp(−αx)−exp (1−α)x

−x
ln[1 + exp x] odd number of conduction electrons,

4n
4`+2

e2

h
exp(−αx)−exp (1−α)x

−x
ln[1 + exp x] even number of conduction electrons,

n
`
e2

h
exp(−αx)−exp (1−α)x

−x
ln[1 + exp x] the most outer obital unoccupied.

(30)

Since the term exp(−αx)−exp (1−α)x
−x

ln[1 + expx] isn’t equal to 1 in these cases, thus Eq. 30

cannot predict integer or fractional quantum Hall effects. Using the simple form equation

σyx = n
`
e2

h
exp(−αx)−exp (1−α)x

−x
ln[1 + expx], the normalized conductivity σyx/(

n
`
e2

h
) is plotted

against x(= −eλE/kBT ) in Fig.2 with three different Wigner crystal structures: honeycomb

for α = 1/3, tetrahedral for α = 1/4, and body-centered cubic (bcc) for α = 1/8. When

many more electrons coordinate together, the predicted Hall conductivity becomes even

large. Note that when temperature approaches to zero, the parameter x approaches to in-

finity and the Hall conductivity reaches the infinity, too; at high temperatures, x approaches

to zero, so does the Hall conductivity, no matter which crystal structures are going to be

formed. Comparing with Fig. 1, one may easily reaches the conclusion that the integer

and fractional quantum Hall effect can only happen when electrons form pair structures.

As we know, the electron pair structures provide the possibility for the materials to reach

superconductivity state where the magnetic flux is always quantized. This coincidence is

consistent with one of the early assumptions that the magnetic flux, the parameter BA, is

quantized, as shown in Eq. 6. This is the power and beauty of treating electrical conduction
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process with Eyring’s rate process theory and free volume concept: many amazing phenom-

ena like Kondo insulators and Anderson transitions etc. can be easily understood, without

introducing complicated quantum mechanical treatments. The detailed discussions on how

electrical conductivity even superconductivity is treated with the Eyring’s rate process the-

ory and the free volume concept, can be found in my previous article.18 The current article

simply extends the previous same approaches and/or ideas to Hall effect.

0 2 4 6 8

0

50

100

150

200

x

σ
y
x
/(

n `
e2 h
)

Honeycomb
Tetrahedral

Body-centered cubic

FIG. 2: Normalized Hall conductivity σyx/(
n
`
e2

h ) vs. x(= −eλE/kBT ) when the electrons form

honeycomb, tetrahedral, and body-centered cubic structures

.

Note that the derivations above only take use of two approximations: the number of

conduction electrons is much smaller than the number of total electrons in the systems; the

applied magnetic is not unreasonably strong, thus 1+ 8π2n2δ2

Nc
ln[1+exp

Ef−Ec

kBT
] u 1. The first

approximation should be always true, and the second one may not hold all the time if the

applied magnetic field is exceptionally strong and the temperature is extremely low. Let’s

now consider the extremity, when ω2
cτ

2 � 1, corresponding to the very high magnetic field

(large ωc, ωc = eB/m∗ ) and extremely low temperature (large τ , see Eq.19). Thus Eq. 2

will becomes:

σyx =
σ0

ωcτ
=

σ0m∗
eBτ

(31)

Using the same procedures for deriving Eq. 26, one may obtain the Hall conductivity
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equations as:

σyx =


e2

h
NcAG

2π2δ2n(4`+1)
odd number of conduction electrons,

e2

h
NcAG

2π2δ2n(4`+2)
even number of conduction electrons,

e2

h
NcAG
8π2δ2n`

the most outer obital unoccupied.

(32)

if the parameter δ is equal to:

δ2 =


NcAG

π2(4`+1)2
odd number of conduction electrons,

NcAG
π2(4`+2)2

even number of conduction electrons,

NcAG
π2`2

the most outer obital unoccupied.

(33)

then Eq.32 becomes:

σyx =


e2

h
(4`+1)
2n

odd number of conduction electrons,

e2

h
(4`+2)
2n

even number of conduction electrons,

e2

h
`
8n

the most outer obital unoccupied.

(34)

Comparing Eq. 29 with Eq. 34, one may realize immediately, no matter which approxima-

tions are taken, ω2
cτ

2 � 1 or 8π2n2δ2

Nc
ln[1 + exp

Ef−Ec

kBT
] � 1, integer and fractional quantum

Hall effect will be achieved in the end. Interestingly, Eq. 33 may indicate that the top

activation barrier length δ is actually related to the number of distinguishable conduction

electrons per unit area on one direction, such as (Nc

A
)1/2/(4` + 2), times the radius of the

sample area (A/π), a measure on how crowded the electrons are in the conduction (electric

field) direction. For graphene the Hall conductance follows σyx = ±4(p + 1/2) e
2

h
.28 This

actually corresponds to the equation σyx = e2

h
(4`+2)
2n

with n = 1.

The anomalous quantum Hall effect,5,7,29 happened without an externally applied mag-

netic field, could be explained with the same approach shown above. Without an externally

applied magnetic field, the parameter B in Eq. 2 cannot assume to be zero, as an ”intrin-

sic” magnetic field may exist, resulting from the ferromagnetic properties of the material or

spins of electrons. In this case, the parameter B should be very small, therefore one may

reasonably assume ω2
cτ

2 � 1, i.e.,1 + ω2
cτ

2 u 1. Eq. 2 should be re-written as:

σyx = σxxωcτ (35)

σxx = σ0 (36)

12



Following the same procedures in deriving Eq. 29, one may easily obtain the anomalous

Hall conductivity equations:

σyx =


n

4`+1
e2

h
odd number of conduction electrons,

n
4`+2

e2

h
even number of conduction electrons,

n
4`

e2

h
the most outer obital unoccupied.

(37)

under the assumption that
Ef−Ec

kBT
= − eλE

kBT
, which requires the electrons to form pair struc-

tures. Comparing Eq. 37 with Eq. 29, one may notice that these two equations are very

similar, but the anomalous quantum Hall conductivities are 4 times smaller than the normal

Hall conductivity predicted with Eq. 29, the prefactors have a difference of ”4”.

III. DISCUSSION

Note that Eq. 29 is obtained under the approximation 8π2n2δ2

Nc
ln[1 + exp

(Ef−Ec)

kBT
] � 1;

at such conditions, electrons are required to form pair structures in order to show the

integer and fractional quantum Hall effect; Other Wigner crystal structures cannot generate

integer and fractional quantum Hall effect. While in contrast, Eq. 34 is derived under the

condition ω2
cτ

2 � 1. There is no requirement for electrons to form pair structures and

nothing restricted on how low the temperature and how high the magnetic field should be.

Replacing ωc with ωc = eB/m∗, m∗ with Eq. 8, and τ with Eq. 19, one may obtain:

ω2
cτ

2 =
8π2e2B2δ2A

Nch2
ln[1 + exp

(Ef − Ec)

kBT
] (38)

when temperature is very high like room temperature, T = 300K, e(Ef−Ec)/kBT ≈ 1, thus

ln[1 + exp
(Ef−Ec)

kBT
] ≈ ln 2. The condition ω2

cτ
2 � 1 may require:

B � (
Nch

2 ln 2

8π2e2δ2A
)1/2 (39)

Taking graphene as an example, Nc/A = 1016m−2 from the literature,30 one may reach:

B � 3.89× 10−8

δ
or, δ � 3.89× 10−8

B
(40)

If the applied magnetic field B = 38.9 T, then δ � 10−9m, 1 nm, which can be achieved

easily for electrons under an electric field, as electron mean free path usually is double digits

nanometers.31 This means that integer and fractional quantum Hall effect could potentially

happen even at room temperature if the applied magnetic field is strong enough, which has

been evidenced experimentally.30
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It is worth mentioning that both the integer and fractional quantum Hall effect at con-

dition 8π2n2δ2

Nc
ln[1 + exp

(Ef−Ec)

kBT
] � 1 and the anomalous quantum Hall effect require that

electrons form pair structures, where the superconductivity becomes possible. It is thus

not surprising to see the anomalous quantum Hall effect is observed in magnetic topological

insulators,29 as the topological insulators potentially are superconductors.18

IV. CONCLUSIONS

In conclusions, Eyring’s rate process theory and free volume concept is successfully em-

ployed to treat the Hall effect in 2D systems. Conductivity equations with and without an

external magnetic fields are derived, and both the normal and anomalous quantum Hall ef-

fects are predicted; The Hall prefactors are revealed to be related to the magnetic flux integer

n and magnetic quantum numbers ml via the Azimuthal quantum number `. The quantum

Hall effect can be realized when the conduction electrons form the pair structures under

the approximation 8π2n2δ2

Nc
ln[1 + exp

(Ef−Ec)

kBT
] � 1 for normal or ω2

cτ
2 � 1 for anomalous

quantum hall effect; Under these two conditions the quantum Hall effect wouldn’t occur if

electrons form Wigner’s crystal structures other than pairs. When the applied magnetic field

strength is very high or the temperature is very low that satisfies ω2
cτ

2 � 1, the integer and

fractional quantum Hall effect doesn’t require electrons to form pair structures and could

even happen at room temperature if the applied magnetic field is strong enough. Many

other mystical puzzles like 5/2 filling factor can be easily understood with the equations

developed in this article. Our approaches are very simple and don’t involve the complicated

wavefunctions, providing a new way to look at the important and interesting Hall effect.
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