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Abstract. In the special theory of relativity there is a time dilation between two reference frames moving 
relative to each other at a constant speed. The Lorentz transformation provides the magnitude of this 
time dilation. The present work focuses on the fact that the times observed on the ‘other’ system will 
depend on the location of the clocks used for time comparisons, and we refer to positional (location 
specific) time. The paper points to the various ‘observational principles’, i.e. the specification of which 
clocks to apply, and we present a unified framework for these principles. It is argued that the total picture 
of the observed time dilations is more informative than the usual approach of focusing on one specific 
expression for time dilation, apparently being based on a somewhat arbitrary definition of simultaneity. 
The motivation of the paper is to challenge the current narrative regarding time dilation.  

Key words: Lorentz transformation; time dilation; special theory of relativity; symmetry; length 
contraction; positional time. 

1. Introduction 

The Lorentz transformation provides the mathematical description of space-time for two reference 
systems moving relative to each other at constant speed; i.e. the situation described in the special theory 
of relativity (STR). This paper strives to explore the full potential of the Lorentz transformation, and 
thereby the interpretation of time dilation. 

We specify the various expressions for the time dilation following from the Lorentz transformation. In 
doing so, we introduce the concept of 'observational principle'; that is, the specification of which clocks 
to use for the required time comparisons. A unified framework for these observational principles is 
given, stressing that time measurements for 'the other system' is given by the location where the time 
reading/comparison is carried out. Thus, we will refer to positional (location specific) time. 

So rather than specifying one ‘generic’ time dilation formula – typically being based on a somewhat 
arbitrary definition of simultaneity – we look at the total picture of all expressions for time dilation.  

Regarding simultaneity, we will in this paper restrict to consider events which occur at the same location 
and time. We will assume that each reference frame has a set of calibrated clocks, located at virtually 
any position. So in principle we can at any position compare the clocks of the two reference frames. 
Thus, any convention to define simultaneity across reference frames by use of light rays is not part of 
the considerations in the present paper.  

A vast literature exists on the special theory of relativity (STR). As a basis for our discussions we will 
in Chapter 2 review and shortly comment on a few aspects from a small sample of these references. 
Next we present a list of assumptions for the further discussion. In particular we assume a strict 
symmetry between the two reference frames.  

The various 'observational principles' based on the Lorentz transformation are thoroughly discussed in 
chapters 3, 4. The provided results are well-known, but the presentation is in some respect believed to 
be original. Next, the concluding chapters 5-6 present a common, consistent framework for all the time 
dilation expressions. In an Annex we includes a simple derivation of the Lorentz transformation and 
finally provide a discussion of length contraction. Throughout we restrict to consider one space co-
ordinate (x). 
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Obviously, a substantial part of the present work presents standard results, for most readers providing 
trivial material. However, the main objective is not tutorial but to arrive a consistent description of time 
dilation, as derived from the Lorentz transformation. We arrive at views that in some respect seem to 
challenge the prevailing understanding of time dilation. We note that the present work is a report of an 
observer from outside the physical community. The considerations are essentially mathematical, but 
with necessity we also touch upon the physical interpretation of time dilation.  

2. The Lorentz transformation 

This chapter provides a background for the discussions in subsequent chapters. First we review a small 
sample of the literature on time dilation. Next, we specify basic assumptions, and also present the 
Lorentz transformation (for one space coordinate). Finally, we comment on the concept of simultaneity. 

2.1 Review of some literature 

The basis for the discussions is the standard theoretical experiment, with two co-ordinate systems 
(reference frames), K and K' moving relative to each other at speed, v. We investigate the relation 
between space and time parameters, (x, t) on system K and the corresponding parameters (x', t') on 
system K'. The relation is provided by the Lorentz transformation, (e.g. [1] - [4]). 

A vast amount of literature exists on this topic. As a background we consider a small sample, authored 
by experienced scientists in the field: First two older books (‘classics’), Einstein's introduction to the 
STR, [1], and Chapters 3 and 4 of the Feynman lectures, [2]. Further, the more recent and insightful 
books by Giulini, [3] and Mermin, [4], which are frequently referred on the topic. Finally we consider 
some web pages: that of Andrew Hamilton, [5]; Pössel, (‘Einstein Online’), [6]. These references mainly 
address non-experts: But it is of interest to see how the main ideas of the STR are presented, and we 
shortly review a few aspects of these works, being relevant for the subsequent discussions.  

Definition of simultaneity becomes crucial as clocks are moving relative to each other. It seems to be a 
common understanding that no unique definition of simultaneity exists across systems (reference 
frames); these definitions being based on utilizing light rays. The arguments on time dilation are 
frequently based on such a definition of simultaneity. This tends to introduce some asymmetry between 
the two systems, (see Chapter 4, below); resulting in an asymmetric solution to a symmetric situation.  

The question of symmetry is interesting. The STR essentially describes a symmetric situation for the two 
systems/observers moving relative to each other. And for instance the reference [5] specifies an 
experiment of complete symmetry, referring to two spaceships moving relative to each other. Other 
references, however, are not found that explicit. Some will for instance include examples, like the 
'travelling twin', e.g. [4 ], which clearly involves asymmetry. But claiming that the slower aging of the 
'travelling twin' is not restricted to the acceleration/deceleration periods; this seems to be taken as an 
example of time dilation occurring under the conditions of the STR. The present paper, however, restrict 
to consider absolute symmetry. 

Regarding the basic concept of time dilation, I firstly miss a more precise discussion of the multitude of 
(time) solutions offered by the Lorentz transformation. It is treated by some authors, e.g. in [4], but in 
my opinion not in sufficient depth. More generally, it is to me not completely clear that the sources are 
fully consistent; i.e. telling 'the same story' regarding time dilation. In particular, to what extent do they 
agree regarding the physical reality of time dilation? 

So, how should we interpret the common statement: 'Moving clock goes slower'? Many authors apply 
the expression 'as seen' by the observer on the other reference system, indicating that it is an apparent 
effect, not a physical reality, without elaborating on the interpretation of 'as seen'. However, others stress 
that 'everything goes slower' on the 'moving system', not only the clocks; truly stating the time dilation 
represents a physical reality also under the conditions of STR, (no gravitation etc.).  
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Giulini [3] is relatively clear (see Section 3.3 of his book) by stating: ‘Moving clocks slow down’ is 
‘potentially misleading and should not be taken too literally’. However, he does not follow up on this 
and explicitly state whether time dilation is just an apparent effect without physical reality. I do not find 
his expression ‘not to be taken too literally’ to be a very strong (or precise) statement.  

As pointed out e.g. by Pössel [6] the phenomenon of time dilation stems from the fact that clocks of the 
two systems have to be compared at least twice, so it cannot be the same two clocks being compared. 
Since movement is relative, however, an interesting question is how to decide which system (clock) is 
moving. Mermin [4] states that what 'moves' is decided by which clocks are chosen to be synchronized. 
This seems to be is in line with the views of the present paper: the procedure of clock synchronization 
and clock comparison decides which reference system has the time moving faster/slower. But this might 
also imply that time dilation does not represent a physical reality (in this situation). 

In conclusion, I find the sources somewhat ambiguous regarding the very interpretation of time dilation. 
What is actually the message of the physical community? In what sense – and under which precise 
conditions – is time dilation to be considered a true physical phenomenon? In the completely symmetric 
situation – e.g. the case of two free floating spaceships moving relative to each other – one would hardly 
consider time dilation as a 'physical reality', even if it is an 'observational reality'. So, will the 
phenomenon described by the Lorentz transformation with necessity imply that time dilation is a true 
physical phenomenon? In other words: when do we have a ‘true time dilation’.  

2.2 Basic assumptions 

The main focus of this paper is the Lorentz transformation, describing two reference frames, K and K' 
passing each other at a relative speed, v. We consider just one space co-ordinate, (x-axis), and all 
observations, (space, time), represent differences, relative to an arbitrarily chosen origin, (time = 0, space 
coordinate = 0), being identical for the two systems. This represents the definite starting point, from 
which all events are measured. So this point of initiation is chosen freely, but will then play a special 
role in the description of subsequent events. In total the discussions of the present paper will be based 
on the following assumptions regarding this idealized experiment: 

 Speed of light will be measured to be constant in both directions and equal to c, independent both of 
the speed of the observer and speed of the light source. 

 Length contraction. There is observed a length contraction, kx along the x- axis of ‘the other’ reference 
frame. When we from a specific location on K observe the passing of a measure stick of length, x', 
(as measured on K'), then the time observed between the passing of its two endpoints, will correspond 
to the stick (apparently) having a length kxx'; (cf. Annex B). 

 There is a complete symmetry between the two co-ordinate systems, K and K'. This symmetry will 
include the past history of the systems; (how they came into this state of relative movement). Thus, 
in our idealized experiment we consider the systems to be identical in all respects. 

 On both reference frames we can apply an arbitrary number of identical, synchronized clocks, located 
at various positions where it is required to measure time. All discussions on simultaneity 'across 
systems' will relate to readings of clocks being at the 'same location at the same time', cf. Section 2.4.  

 In order to observe a time dilation, we must somehow distinguish between the two systems. Thus, 
we will choose the perspective of one of the systems (typically K), and refer to this as the primary 
system. This will simply mean that at any instant, the time on this system for any position, x is given 
as a constant, t(x) ≡ t; and consequently the observed time t' on the 'other' system will depend on the 
location, x. We might think of a 'primary' observer located on the primary system, making 
observations (of clocks) on the 'other' system. What this actually means is that the time comparisons 
are performed at instances when the clocks on K give identical time readings.               

 Further, we apply ‘Newtonian/classical’ arguments for events relative to a specific system. We also 
assume a completely idealized situation: systems are 'free floating', moving without disturbance, 
neglecting gravitational forces; all data can be gathered precisely, without measurement errors; etc.  
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2.3 Formulation of the Lorentz transformation 

The Lorentz transformation represents the fundament for our discussion of time dilation (cf. Annex A). 
We consider the ‘standard situation’: The reference frame K' moves relative to K with the velocity, v 
along the x-axis. At any instant, the position, x on K is at the same location as x' on K', and at this position 
time equals t on K and t' on K'. Initially at time t = t' = 0 the origins 0 on K and 0' on K' have the same 
location, (‘point of initiation’). We also introduce the so-called length contraction, 

                                                                     ݇௫ = ට1 − (
௩


)ଶ                                                                (1) 

being the inverse of the so-called Lorentz factor. The Lorentz transformation for one space co-ordinate 
is now given by  

ᇱݔ                                                                        =  
௫ି௩௧

ටଵି(ೡ


)మ
                                                                    (2) 

ᇱݐ                                                                        =  
௧ି ೡ

మ௫

ටଵି(ೡ


)మ
                                                                    (3) 

So this relates simultaneous time readings, t and t' performed at identical locations x and x'. 

2.4 The concept of simultaneity 

Before starting to apply the Lorentz transformation we remark that, within one reference frame the 
concept of simultaneity does not represent any problem. We may locate stationary clocks ‘all over’ the 
system (at any location we want), synchronize these in a standard way, and simultaneity may then be 
confirmed by comparing clock readings. 

But when we now consider events involving more than one reference system, we will restrict to consider 
simultaneity of events occurring at the same time and at the same location. So the events are actually 
identical (but measured in different bodies of reference). At these identical points there will be a 
difference in the time readings of the clock located on K and the clock on K'. However, the time readings 
as such are objective, and the observers on both reference frames agree on the observed times of the two 
clocks at the specified location.  

This direct coupling to the same location and time is also what we find in the Lorentz transformation. 
Here (x, t) on K corresponds to (x', t') on K', which means that when a clock on K, located at x shows 
time t, then relative to K' this point has location x', and the clock in this position shows time t'. In short: 

i. Observers (observational equipment) at different locations on K will all agree regarding the 
current time on K, (synchronization), but they will disagree on the time at K', cf. Lorentz 
transformation, (2)-(3). 

ii. Similarly all observers (clocks) on K' agree regarding the time on K', but will disagree on the 
current time on K. 

iii. An observer at K and an observer at K', which at an instant in time are at the same location - 
actually passing each other at the moment in question - will (usually) observe t ≠ t', but they 
will agree both on the time t at K and on the time t' at K'; these observed values being specified 
by the Lorentz transformation. 

 

3 Two observational principles regarding time dilation 

We now point out some direct consequences of the Lorentz transformation presented in Section 2.3. 
Due to the relative movement of the two reference frames, one should specify exactly how the 
comparisons of time and length are carried out. So now we present two different observational principles 
for observing time on 'the other system' moving relative to the observer. We choose the perspective of 
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system K; just meaning that clock comparisons at various locations are carried out at instances when all 
clocks on K show the same time; (cf. Section 2.2).  

 Principle A: Following a fixed clock on ‘the other system’, K'. A set of clocks and observational 
instruments are located along the x-axis, allowing the observer on K to follow a fixed clock on K'; 
thus, observing both the time t’ on K' and t on K at the moment when this clock passes. In particular, 
considering a clock at position, x' ≡ 0 on K', this corresponds to specifying the location x = vt at 
time t on K, and the Lorentz transformation, (3) directly gives the relation 

ᇱݐ                                                                      = ට1 ݐ  − (
௩


)ଶ                                                             (4) 

 which equals the 'standard' time dilation formula; e.g. see [1]. 

 Principle B: Observing various clocks on ‘the other system’ from a fixed location. The observer on 
K has one clock at a fixed location on the x-axis, and from this position makes registrations of clocks 
on K' as they pass along. For example choosing the location x ≡ 0 on K, the Lorentz transformation 
gives that at time t on K the observed time on K' at this location equals 

ᇱݐ                                                                       =  
ଵ

ටଵି(ೡ


)మ
 (5)                                                                 ݐ

In conclusion, considering observations carried out when time equals t all over K, both t' =  ݐ ට1 − (
௩


)ଶ 

and t' =  ݐ /ට1 − (
௩


)ଶ are valid results for the ‘simultaneous’ time observed on K'. The first expression 

being valid at position, x = vt, (x' = 0); the second for position x = 0, (ݔᇱ = −
௩௧

ටଵିቀೡ


ቁ
మ

=  As .(′ݐݒ− 

observed, all results being a direct consequences of the Lorentz transformation. 

Of course we achieve the identical result considering the perspective of system K'. It is still the case that 
if we choose to follow the clock on K which at time 0 is located at position 0, we conclude that the 
relation (5) holds between the times on K and K'. If, however, we choose to follow the clock located at 
0' on K' at time 0 we arrive at the relation (4) for describing relative time. 

So, actually, it is not the perspective (location of ‘primary observer’) that matters, but the specification 
of which clocks are used for the comparisons. The question is: Which reference system applies a single 
clock, and which reference system utilizes at least two clocks for the time comparisons. Thus, assuming 
both observers utilize the same clocks (both on K and K') for the comparisons, it could be more 
informative to summarize the above results as follows: 

Let A be the reference frame where there are used at least two clocks for time comparison, letting xA 
and tA be the position and time measurements on this system. Thus, there at least two clocks on A, 
located at xA = 0 and xA = vtA, respectively.  

Let B be the reference frame with just one clock, letting xB and tB be the length and time measurements 
on this system. Thus, system B has one clock located in xB = 0.  

Then, identical time measurements, (i.e. clock readings at same location, same time), will be related by 
the formula: 

ݐ                                                                  = ට1ݐ − (
௩


)ଶ                                                               (6) 



6 
 

Given this observational set-up, it is essential to point out that observers on both reference frames agree 
on this. Thus, I find it utterly misleading in this situation to use the phrase 'as seen'1 (by the observer on 
the other system); an expression used by several authors. Time readings are objective, and all observers 
on the location 'see' the same thing. The point is that observers (observational equipment) at different 
locations will disagree. 

Again, the result could be summarized as follows: An observer at rest at one location, seeing clocks 
passing by, will see these clocks going slower than his own set of synchronized clocks. So, of course, 
this confirms-– in a rather narrow sense – the standard phrase: ‘moving clock goes slower’. However, 
in such a narrow sense, I find the statement of limited interest. It can hardly follow from the choice of 
such an observational set-up, (which may also be interchanged at random), will represent a ‘true’ time 
dilation; i.e. affect the relative time as such on the two systems, (including aging).  

In the next chapter we explore further implications of the Lorentz transformation; still providing well-
known results, but within the framework suggested by the above discussion. 

4 Time dilation and light rays 

We now consider the utilization of light rays to provide time measurements at the reference frames. 

4.1 Unidirectional flashes. A third observational principle based on light rays 

In Chapter 3 we compared time measurements when the clock on one of the reference frames had a 
fixed location, and this clock was compared with time readings of (at least two) clocks on the other 
reference frame passing by. So no clock/object was moving with respect to both reference frames, and 
no light flashes were involved.  

Now consider the result obtained by inserting x = ct, and thus also x' = ct' in (3). Thus, at time t = t' =0 
there is emitted a flash of light at location x = x' = 0 along the positive x-axis, and we compare the times 
at the location of this flash at a later time, t on K. The Lorentz transformation directly gives the following 
relation between the clock readings at x = ct, and x' = ct': 

ᇱݐ                                                    =
ଵି௩/

ටଵି(ೡ


)మ
= ݐ ඥଵି௩/

ඥଵା௩/
;ݐ ݔ)    =  (7)                                        (ݐܿ

So here we apply (at least) two clocks on both system: one at x = 0 and x = ct on K, and similarly, one 
at x' = 0 and x' = ct' at K'. We may refer to this approach for time measurement/comparison as 
observational principle C. So it utilizes the constancy of speed of light to give the relation between time, 
t' on K' and time, t on K at a specific position along the positive x-axis, (i.e. at locations, x = ct).  

So eq. (7) is valid when the light ray is emitted in the positive direction (x > 0; i.e. c having the same 
direction as the velocity v, as seen from K). In the negative direction, (x = - ct) we similarly get 

ᇱݐ                                                  =
ଵା௩/

ටଵି(ೡ


)మ
= ݐ  ඥଵା௩/

ඥଵି௩/
;ݐ ݔ)     =  (8)                                     (ݐܿ−

We refer to this result as being obtained using observational principle C*. So the difference between 
these two observational principles is not so much the different use of clocks, rather the direction of the 
light flash. Also the results (7) and (8) are of course well-known, e.g. see [3], [4]. Again these relations 
demonstrate that we may observe both t' < t, and t' > t; now depending on whether we observe a light 
flash having the same or the opposite direction of the relative movement, v.   

                                                           
1 Here we talk about clock readings. Length contraction, on the other side, implies that observers on different 
systems will ‘see’ (i.e. observe) different lengths of the same object, cf. Annex B. 
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Note that the time measurements of (7)-(8) are based on unidirectional flashes of light. In Section, 4.3 
we will also consider taking averages of these time measurements; thus, applying bidirectional rays. 
However, we first present a generalization of observational principles, A, B and C. 

4.2 A generalized observational principle 

We have seen that different observational principles give different relations between t and t'. The case 
is that when the time all over K is measured to equal t, one will at different locations on K observe 
different times, t' on K'. For observational principle B we choose the fixed position, x = 0, which 

implies ݔᇱ = −
௩௧

ටଵିቀೡ


ቁ
మ

=  ,Applying principle A, we have a moving position, x = vt .′ݐݒ− 

corresponding to x' = 0, and for principle C, we have x = ct and x' = ct'. 

Now consider a generalization of these principles A, B and C. In general let x' = ut', and then specify a 
w so that at any instant, the position, x' = ut' corresponds to (has same location as) x = wt. Then we find 
the relation between t and t' at this position. Thus, we consider an ‘object’ that starts out from origin, 0 
= 0' at time 0 and moves on with speed u relative to K', along the positive x'-axis. First by inserting x = 
wt in (3) we get 

′ݐ                                                                       =
ଵି ೡೢ

మ

ටଵି(ೡ


)మ
 (9)                                                                 ݐ

By also inserting x' = ut', in (2) we get 

′ݐ                                                                      =
ටଵି(ೡ


)మ

ଵା ೠೡ
మ

 (10)                                                                 ݐ

These are seen as two fundamental relations regarding time dilation. As a by-product we first use (9) 
and (10) to obtain the well-known result regarding the speed of the ‘moving object relative to K:  

ݓ                                                                       =
௫

௧
=

௨ା௩

ଵାೠೡ
మ

                                                                (11) 

But more fundamentally, we directly see that the results for the observational principles A, B and C 
directly follows from (9) by choosing w = 0, w = v and w = c, respectively. And they follow from (10) 
by choosing u = -v, u = 0 and u = c, respectively.  

Thus, equations (9) and (10) provide the relation between clock readings at identical locations if the 
location at K is given by x = wt and the location at K' is given by x' = ut'. So in general at least two 
clocks are required on both reference frames; (principles A and B representing exceptions). Further, eq. 
(9) for instance tells that, given time t on K, the time t' on K' is a linear, decreasing function in w. Eq.  
(10) similarly tells that time t' is a decreasing, nonlinear function in u. 

In addition, now having these general expressions, (9), (10), we could ask which value of u and w would 
results in t = t'. It is easily derived that this equality is obtained by choosing 

ݓ                                          = ݑ− = ݓ =
మ

௩
ቆ1 − ට1 − ቀ

௩


ቁ

ଶ
ቇ =  

௩

ଵାටଵି(ೡ


)మ
                                 (12) 

This means that if we consistently consider the positions where simultaneously x = w0t and x' = -w0t', 
then no time dilation will be observed in these positions. Thus, at such locations we have t' = t and x' = 
-x, providing a nice symmetry. Note that we also obtain (12) directly from the Lorentz transformation, 
by requiring t = t'. 

We add this choice, x = w0t as an observational principle D. As stated, this gives t' = t and will in all 
respects maintain the symmetry between the two reference systems.  
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Again we note that the above approach is based on applying direct clock comparisons 'on location'.  
Actually, it now seems possible to define simultaneity for events at moving reference frames without 
the use of light rays. At location x = w0t on K and x' = -w0t' on K' there is actually a perfect simultaneity 
across the reference systems. The two clocks at this position show same time, t = t'; further, all clocks 
on K show the same time, t; and all clocks on K' show the same time t'. So the described symmetry of 
the situation might actually suggest t = t' as a candidate for defining a kind of time simultaneity.  

4.3 Bidirectional rays. The atomic clock 

Now return to the investigation of time determined by light rays, representing a common approach for 
investigating time dilation. Section 4.1 presented the approach of light flashes emitted along the x-axis. 
However, it was observed that the result depended on the direction of the flashes. So when comparing 
time measurements on K and K' it is common to consider a ‘round trip’; i.e. a flash going from one 
location, then being reflected, and finally returning to the ‘same’ location. Such a light flash can also be 
seen to represent an atomic clock, the time of one round trip representing the time unit. 

So let a ray be emitted from the origin, 0 = 0' at time t = t' = 0. Further, the ray is reflected back in 
opposite direction simultaneously at locations, say D and D' at time t1 and t1', measured in K and K', 
respectively. Finally they return (simultaneously) to the location of emission at times t2 and t2', 
respectively. Obviously the point of return must be specified, as location 0 no longer coincides with 0'.  

If the flash starts in the positive direction, eq. (7) is valid until the reflection occurs, thereafter eq. (8). 
Thus, we have 

ଵݐ                                                  
ᇱ =

ටଵିೡ


ටଵାೡ


ଵݐ =
ଵି௩/

ටଵି(ೡ


)మ
                                                                                                                             ଵ                                                             (13a)ݐ

ଶݐ                                        
ᇱ − ଵݐ

ᇱ =
ටଵାೡ



ටଵିೡ


ଶݐ) − (ଵݐ =
ଵା௩/

ටଵି(ೡ


)మ
ଶݐ) −  ଵ)                                             (13b)ݐ

So, to decide on the time dilation it is actually common to compare the times of return (total time of a 
round trip), that is t2' and t2. But at this point, we have to decide on the ‘point of return'. Is it 0 (located 
on K or 0' located of K'. At the time of emission these points where located at the same place. But by 
the return they have moved relative to each other. If we choose 0 as the point of return, the distance in 
negative direction becomes longer than if we chose 0', and so the weighting of equations (7) and (8); i.e. 
(13a) and (13b) will differ.  

First, if we follow the ray on K', (return to 0'). Then the light will on K' passes the distance x' in both 
directions, and obviously ݐଶ′ − ′ଵݐ =   ଵ′. Then equations (13a), (13b) directly giveݐ

ଶݐ = ଶݐ) − (ଵݐ + ଵݐ = (ඥଵି௩/ 

ඥଵା௩/ 
+  ඥଵା௩/ 

ඥଵି௩/ 
  ′ଵݐ (

By also using ݐଶ′ =  ଵ′ it directly follows thatݐ2

ଶݐ                                                                   =  
ଵ

ටଵି(ೡ


)మ
 ଶ′                                                                 (14)ݐ

This means that if we consider times of return only, then the relation between time measured on K', (t') 
and time measured on K, (t) is given by, (14), being equivalent to (4). Now using subscript AvL to 
indicate Average Low, we will in this case get 

௩ݐ                                                                
, = ට1ݐ − (

௩


)ଶ                                                              (15)                  

Secondly, if we choose to follow the ray on K, that is return to 0, we have ݐଶ − ଵݐ =  ଵ, and (13a) andݐ
(13b) directly give  
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′ଶݐ                                                                    =  
ଵ

ටଵି(ೡ


)మ
 ଶ                                                                (16)ݐ  

So rather than (15) and (4) we now get the ‘opposite’ result, (16), being identical to (5). Letting subscript 
AvH indicate Average High we can write this as: 

௩ுݐ                                                                  
, = ට1/ݐ − ቀ

௩


ቁ

ଶ
                                                          (17) 

In conclusion, we have that the two formulas (4) and (5) of Chapter 3 can also be interpreted as the times 
for a round trip, i.e. time measurement when we restrict to record the time to the instants of the return 
of 'round trip' flashes.  

The two solutions (15) and (17) demonstrate the problem of utilizing a specific definition of simultaneity 
(using light rays) to derive time dilation. The convention of current literature leads to (15) as the time 
dilation formula, even if one seems to agree that the definition of simultaneity is rather arbitrarily chosen. 

 

  Figure 1 Illustration of time readings, utilizing light rays for time comparison. 

Figure 1 provides an illustration. It gives the relation between t' and t when using unidirectional light 
rays, i.e. principle C (eq. (7)) and principle C* (eq. (8)); cf. the solid lines. The dotted lines represent 
examples of time for bidirectional (reflected) light flashes. These are alternately parallel with the C and 
C* line, and are here referred to as oscillating times. By considering only the points of return, we arrive 

at the time measurements ݐ௩
, = ට1ݐ − (

௩


)ଶ  and ݐ௩ு

, = ට1/ݐ − ቀ
௩


ቁ

ଶ
, respectively. Which result is 

obtained will depend on whether we follow a light ray returning to K', or a light ray returning to K. 
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So in case we do not restrict to consider the points of return, we get the oscillating time measurements, 
where eqs. (13a) and (13b) apply alternatingly; see dotted lines in figure. Note that we in the figure have 
exaggerated the length of the flashes before reflection. Usually the round trips are assumed very short, 
and the oscillating times are oscillating very closely around ݐ௩

, , (or possibly ݐ௩ு
, ). The figure does, 

however, illustrate that having these long round trips is indeed a possibility. 

This oscillating time is the more general time readings based on light flashes. It also depends on the 
length of the reflection distance, L. When L → 0, we get the average time(s), (15), (17), and when L → 
± ∞ we get the directional times, (i.e. principles C and C*, respectively). 

We should, however, realize that applying light flashes is just one approach for obtaining expressions 
for time dilation, (applying a specific type of clocks). As seen in Chapter 3, we can in general just refer 
to the clock readings, as given by the relevant version of the Lorentz transformation. 

For completeness, we also mention another possible approach for use of bidirectional rays. We could 
have an observer located at x = 0, also having two observers (equipment) located along the x-axis; one 
at location, x, and another at location –x. Emitting a ray in both directions from x = 0, the equipment at 
both positions observe the clock reading on K' when the ray arrives (after time t = x/c). These clock 
readings are given by (7) and (8), respectively, giving the arithmetic mean, ݐ௩ு

, , and geometric mean, 
t, (neither being equal to the standard time dilation expression); again demonstrating that it is hard to 
point to one specific time dilation formula.  

5 Summing up on time dilation. Discussion. 

We now sum up the main findings of the previous chapters regarding time dilation. 

5.1 Time dilation and observational principles 

A number of equations have been obtained, all expressing the time dilation between the two systems K 
and K'. This could seem confusing, but the different results have been related to various observational 
principles, hopefully contributing to a clearer picture. Table 1 summarizes these principles, providing 
reference to the corresponding equation relating t' and t. In particular it points out which expression for 
x (x') we insert in the Lorentz transformation in order to obtain this particular result for t'. 

Table 1 Review of observational principles; perspective of K; (initially, t = t' = 0 at x = 0) 

Principle Expression for t' Description 

A Eq. (4) Observation on K follows fixed point on K'; x' = 0 and x=vt 

B Eq. (5) Observation on K from fixed location; x = 0 

C Eq. (7) Observation follows light ray on both K and K'; x = ct and x' = ct' 

C* Eq. (8) Observation follows light ray; x = - ct and x' = - ct' 

D t' = t Observation on K obtained at x = w0t and x' = -w0t'; w0 given by eq. (12) 

 

So again we stress that the Lorentz transformation does not provide one unique answer regarding the 
time dilation; it rather provides a multitude of answers. Also recall that when we refer to time, we 
actually refer to time differences, that is the time elapsed since origins x = 0 and x' = 0' were at the same 
location at time t = t' = 0. Further, all clocks on K (distributed along the x-axis) are synchronized, and 
all show the same time, t on K. The same hold for the clocks on K'. However, the time t' observed on K' 
will depend on the observational principle, i.e. the location at time, t, where the observation is carried 
out; (and of course vice versa). 
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The various results, summarized in Table 1, are also illustrated in Figure 2; giving the observed time, t' 
at various positions on K, when time on K equals t. The figure demonstrates that the observational 
principles A, B, C, C* and D are just special cases of a general 'principle', saying that at time t we 
observe the time t' on K' from position x = wt. The possible values of w are ranging from –c to c.  

The principles C and C*, based on light rays, represent the extremes, providing the total range of t' 

values, given as (ඥଵି௩/

ඥଵା௩/
ඥଵା௩/  ,ݐ

ඥଵି௩/
 Observational principles A and B represent a considerable .(ݐ

narrowing of the range of t' values: (ݐට1 − (
௩


)ଶ, ට1/ݐ − ቀ

௩


ቁ

ଶ
). We note that principle A, which 

provides the lower limit of this interval, represents the 'standard' time dilation formula. However, it is 
worth mentioning that the geometric mean of the endpoints of both these two intervals equals t. This 
result, t = t', is also obtained by principle D.  

Figure 2 summarizes all possible observational principles, i.e. gives all possible t'-values that can be 
observed, when time on K is equal to t. Actually, this is just a presentation of eq. (3), giving t' as a linear, 
decreasing function of x, when t is fixed. It presents a total picture of the relation between t and t', as 
obtained by the Lorentz transformation, without utilizing e.g. any definition of simultaneity. From this 
total picture, it is far from obvious that observational principle A gives a more 'natural' time dilation 
formula than for instance principles B or D.  

An essential feature is that time, t' is uniquely given by the position, x on K where it is observed. At time 
t a comparisons of t and t' can be carried out at any position, satisfying -ct < x < ct. Each t'-value is the 
one directly being observed at the specified position, x on K, and we might thus refer to positional (i.e. 
location specific) time. The figure directly illustrates that at positions x > w0t we observe time, t' < t; 
while when x < w0t, then we observe time, t' > t on K'. Thus, the dilation factor is indeed varying all 
along the x-axis, taking values both >1 and <1.  

 

B

t’(x) 

x

C
A

D

C*

t(x) = t

eq. (7)

eq. (4)

eq. (5)

eq. (8)

Time t on K and t’ on K’, 
as observed at various   
locations, x on K

0 w0t vt ct- ct
 

Figure 2 Positional time: Time, t' = t'(x), (blue) on K' at different locations on K, when the time 
on K equals t, (red). Various observational principles specified along the line, t'(x). The dotted 
green line gives values of, t' = t'(x), when v is replaced by –v. 
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As a further illustration we have in Figure 2 also included a dotted green line, representing t', as 
measured from position x on K, on a system K', moving at speed –v. We see that the two lines 
corresponding to v and –v, respectively, forms a 'bow tie' with a knot in observational principle B, i.e. it 

is 'shifted upwards', relative to the line, t, with a factor 1/ට1 − ቀ
௩


ቁ

ଶ
. If – from this figure – we should 

suggest an 'overall time dilation' for the 'moving system, then this factor could seem quite appropriate; 
which would actually tell that 'moving clock goes faster'! 

Next a small comment regarding the notation: We could introduce tv(x) to represent t' as given by eq. 
(3). Then t0(x) = t represents the time on K, (red line), and the blue line and the dotted green line represent 
tv(x) and t-v(x), respectively.  

We consider the relations presented in Figure 2 to be rather fundamental for the interpretation of relative 
time. Being a direct consequence of the Lorentz transformation, it is of course well-known; being 
pointed out e.g. in Feynmann, [2], p 175. Further, Mermin [4] gives a thorough discussion on this 
relation, focusing on how the exact expression for ݐଶ

ᇱ − ଵݐ
ᇱ  depends on ݔଶ −  ଵ. In spite of this, also theseݔ

authors seem to accept the common formulation that the time dilation is basically given by equation (4); 
representing a rather narrow description of the phenomenon of time dilation.  

An alternative illustration of the various relations between t and t' is given in Figure 3. The lines of this 
figure present the relation between t and t', given specific observational principles; that is, the time 
comparisons are carried out at positions satisfying x = wt, with w being constant; thus, the oscillating 
times of Figure 1 are not included. 

′ݐ    =  
ඥ1−ݒ/ܿ 

ඥ1+ݒ/ܿ 
     ݐ

′ݐ    =  
ඥ1+ݒ/ܿ 

ඥ1−ݒ/ܿ 
   ݐ

′ݐ = ට1/ ݐ  − (
ݒ
ܿ

)2 

′ݐ  = ට1 ݐ  − (
ݒ
ܿ

)2 

 

Figure 3 Values for time t' on K' as a function of time t on K. Various observational principles, 
(i.e. locations). 
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5.2 Observing time by use of bidirectional light rays  

As stated, Figure 2 presents the total picture regarding time dilation. It tells the reading of a clock on K' 
at a given position on K, and given that time on K equals t. But as discussed in Section 4.3, it is in the 
literature also rather common to consider light flashes being reflected, and then comparing the time at 
the instances of return. At these instances one gets ‘average times’, see eqs. (15) and (17). These average 
times are here denoted tAvL' (Average Low) and tAvH' (Average High), respectively, and both represent 
averages of observational principles C and C*; also see Figure 1.  

However, this actually just corresponds to specifying the type of clocks to be used in the time 
comparisons. And these clocks - constructed by light rays performing roundtrips – are assumed to have 
fixed location. Thus, we actually apply observational principle A, (eq. (4); x = vt), and principle B, (eq. 
(5); x = 0), respectively. In this sense the results of Section 4.3 are special cases of the general result 
given in Figure 2, and provide no essential new information.  

However, if we do not restrict to define time (clock reading) by the instants of flash return, we could in 
principle also define an ‘oscillating time’. These 'oscillating' lines of Figure 1 present generalizations 
not included in Figure 3. Thus, as Figure 2 gives the complete picture regarding time comparisons at 
time t, Figure 3 only presents those cases where x = wt; and not the situations where w is changing with 
time, (as in the 'oscillating' case illustrated in Figure 1).  

6 Conclusions 

The main objective of this paper is to provide an overview and hopefully a deeper understanding of the 
time dilation occurring between two reference frame moving relative to each other under the conditions 
of the special theory of relativity (STR); including a strict symmetry between the two reference systems. 
The richness of the Lorentz transformation is utilized to explore the phenomenon of time dilation, and 
a number of –essentially well-known – results are presented within a structured framework. 

The overall conclusion is that there is a multitude of time dilation formulas to be obtained by a systematic 
use of the Lorentz transformation. In particular, time on K' - as observed from K - can certainly be seen 
to go slower than time on K itself. But – by following the Lorentz transformation- it is equally certain 
that it can also be seen to go faster. As the situation is here assumed to be completely symmetric, the 
results are (of course) also completely symmetric.  

We introduce the concept of observational principle to determine the time t' on (a clock at) K' 

corresponding to time t on K. In particular, the two relations ݐ′ = ට1ݐ − (
௩


)ଶ  and ݐ′ = ට1/ݐ − ቀ

௩


ቁ

ଶ
 

appear, corresponding to what we here denote observational principle A and B, respectively. So the 
choice of clocks used for time comparisons is crucial.  

This leads to the formulation of a framework for all possible observational principles, and the concept 
of positional time; i.e. stressing the fact that at a given time, t on K, the time t' observed on K' will 
depend on the position, x of the observer. We argue that the choice between these options (observational 
principles) could rather be seen as a practical decision on how we choose to observe and compare clock 
readings, not necessarily implying that 'time' on one reference frame is faster than 'time' of the other 
frame. We also stress that observers (observational equipment) on both reference frames agree on all 
the time readings (clock comparisons); as they are carried out ‘on location’, without utilizing any 
definition of simultaneity. 

Thus, by considering the total picture, it is hard to claim that one specific expression for time dilation 
should be considered to be the correct one, and in that case there is no unique value for time dilation. 
Thus, relying on just one observational principle may not give a trustworthy result. Therefore I am 

sceptical to reducing the Lorentz transformation to the simplified expression, ݐ′ = ට1ݐ − (
௩


)ଶ, 
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(‘moving clock goes faster’), and argue that one should look at the total picture, taking all information 
into account.  

So, could the conclusion be that the time on the 'other' system, K' is undetermined, since it seems 
unreasonable to favor one of the numerous time expression over the others? This is a possibility. The 
lack of one single solution relating t and t' seems to give a rather strong signal to be careful before 
adopting one specific time dilation expression as the 'truth'. 

However, the strict symmetry assumed here, after all points at the relation t' = t as the most plausible 
for relating the 'overall' time readings of the two systems. After all, we observed that if also the 
observational principle is symmetric (i.e. applying principle D: x = w0t and x' = -w0t',), then we obtain 
the relation t = t'. So deviations from this identity is caused by applying an asymmetric observational 
principle, (as everything else is symmetric!). In my view this further suggests that time dilation under 
the stated symmetry conditions does not represent a physical reality. It is rather describing a deficiency 
of observations when the observer is moving relative to the phenomenon in question. It further points to 
the important question on which departure(s) from this complete symmetry would result in a ‘true’ time 
dilation to occur. To my knowledge this does not seem to be fully explored. 

An additional conclusion might be that an observer moving relative to the reference frame where the 
event occurs, is a rather unreliable observer regarding time. The different observational principles will 
give different results. So one should be careful to let such an observer define the phenomenon. Even if 
a phenomenon appears in a particular way for this observer, it does not need to be the ‘correct’ answer; 
one should rather realize the imperfection of an observer to comprehend in full depth a phenomenon 
occurring on another reference frame. This comment could be relevant when discussing ‘time dilation 
phenomena’, like the ‘travelling twin’ and µ-meson; cf. e.g. [4]. 

Thus, the paper presents reservations to what seems to be the prevailing view regarding time dilation 
(under the conditions of STR). In addition to the complete symmetry between the two reference frames, 
the framework suggested here, is characterized by the following features: 

 We do not utilize any definition of simultaneity across systems. The approach restricts to explore 
direct comparisons of clocks being at the same location at the same time.  

 We do not use the expression ‘as seen’ (from the other reference frame). Observers on both frames 
will see the same time measurements; when being on the same location, i.e. comparing the same 
clocks.  

 We look at the total picture regarding time dilation; i.e. the overall solutions, as given by the Lorentz 
transformation. Such a holistic view is suggested to give a deeper understanding.  

 In particular, we specify how observed time, t' (on the 'other' system) depends on the position, x on 
the ‘primary’ reference frame; leading to the concept of positional time. 

 We specify the applied observational principle. The approach includes a general framework for all 
observational principles.  

 We specify the perspective of one of the reference frames (the ‘primary’); otherwise this perspective 
will be implicitly (and perhaps somewhat arbitrarily) chosen. To take the perspective of a specific 
reference system, means that time on this system is given as t(x) ≡ t, all x. 

In summary, the present work utilizes the Lorentz transformation to present a narrative on time dilation, 
which seems to deviate somewhat from the presentations of current literature. Overall it is found that a 
truly symmetric situation also has a symmetric solution. This might suggest that when we discuss cases 
of time dilation, we should identify any asymmetry between the two reference systems, and specify the 
effects of this asymmetry: could it possibly result in a ‘true’ time dilation? Thus, in further discussions 
on the topic, it could be an interesting task to identify precise conditions - in particular departures from 
symmetry - which could cause time dilation to represent a physical reality also for systems at constant 
speed.  
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Annex A.  A derivation of the Lorentz transformation 

Various derivations of the Lorentz transformation exist. The following - for one space co-ordinate (x-
axis) - is derived from the following three assumptions, cf. the three first assumptions of Section 2.2. 

1. Speed of light will be measured to be constant in both directions and equal to c, independent both of 
the speed of the observer and speed of the light source. 

2. Length contraction. There is observed a length contraction, kx along the x- axis of ‘the other’ reference 
frame. When we from a specific location on K observe the passing of a measure stick of length, x', 
(as measured on K'), then the time observed between the passing of its two endpoints, will correspond 
to the stick (apparently) having a length kxx'; cf Annex B below. 

3. There is a complete symmetry between the two co-ordinate systems, K and K', and we consider the 
systems to be identical in all respects. 

The first assumption, (speed of light being constant) is the fundamental one, as length contraction can 
be seen as a consequence of this.  

We consider the ‘standard situation’: The reference frame K' moves relative to K with the velocity, v. 
Initially at time t = t' = 0, the origins x = 0 on K and x' = 0' on K' have the same location. At any later 
instant, any location, x on K is positioned at the same location as x' on K', and at this position time is 
measured to equal t on K and t' on K'.  

 

 
Figure A1  Identical positions, x and x' at time t on K and time t' on K', (measured at this location). 

Observed on K the origin 0' has at time t moved a distance vt, (all clocks on K are synchronized). Thus 
x –vt corresponds to the length x' on K', (Figure A1). Utilizing the assumption of contraction, we will 
from K observe the distance, x' to have length kx∙x'. Thus, as measured on K: 

                                                                      x - vt = kx∙x'                                                                    (A1) 

In exactly the same way we have (cf symmetry) that observed from K': 
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                                                                     x'+ vt' = kx∙x                                                                    (A2) 

Next, we consider the case that a flash of light is emitted from the origin at time t = t' = 0. We now 
utilize the constancy of speed of light; i.e. if x = ct then also x’ = ct’, and vice versa. That is 

                                                           (x = ct) <=> (x’ = ct’)                                                              (A3) 

So as a special case we insert x = ct and x’ = ct’ in (A1) and (A2) and get, respectively          

ᇱݐ                                                                       =  
ଵିೡ



ೣ
 (A4a)                                                                    ݐ

′ݐ                                                                               =  
ೣ

ଵାೡ


   (A4b)                                                                    ݐ

By combining these two expressions we determine the length contraction: 

                                                                   ݇௫ = ට1 − (
௩


)ଶ                                                                (A5) 

Thus, the requirement x=ct iff x'=ct' is sufficient to determine kx. Next inserting the result, (A5) into 
(A1) and (A2), we easily obtain the Lorentz transformation 

ᇱݔ                                                                     =  
௫ି௩௧

ටଵି(ೡ


)మ
                                                                    (A6) 

ᇱݐ                                                                     =  
௧ି ೡ

మ௫

ටଵି(ೡ


)మ
                                                                    (A7) 

Thus, the Lorentz transformation, (A6) - (A7) in a very simple way follows from the three basic relations 
(A1) - (A3). We observe that the relations (A4) apply for the special case, x = ct, x' = ct'; while (A6), 
(A7) are general relations of simultaneous time readings, t and t' performed at identical locations x and 
x'.  

The expressions (A6), (A7) are also valid for negative x and x'. They are, however, derived under the 
assumptions that K' moves in the direction of the positive x-axis, as seen from K. By changing the 
direction of the relative movement, one should either let v be negative (replace v by –v), or, alternatively, 
interchange x and x', and t and t' in the formulas.  

Annex B.  Length contraction 

We include a short discussion on length contraction. The common approach is to place a rod of length 
x0 along the x'-axis of K'. We locate one end in the origin, O', and the other in a point, C' along the 
negative x'-axis. At time t = t' = 0, we have that the location of the origin, O', (x' = 0') on K' coincides 
with the origin, O, (x = 0) on K. The other end of the rod, located in C' with coordinate x' = - x0, 

corresponds to a point C on K. According to eq (2) this coordinate equals x =  ݔ′ට1 − (
௩


)ଶ = - 

x0ට1 − (
௩


)ଶ

 . This directly gives the distance x0 as measured from K. We simply observe that at time t 

= 0 the distance OC equals x = - x0ට1 − (
௩


)ଶ

 . So since OC at this instant ‘corresponds to’ O'C', and 

O'C' has length x0, it will of course follow that the length contraction is given by eq (1).  

So when the length of a rod on ‘the other’ reference frame (K') is measured by performing simultaneous 
position measurements within your own reference frame, (K), then we will observe the specified length 
contraction. We could, however, ask whether there exist observational principles, possibly giving other 
results. Above the observer utilized two observational positions (O and C), in this respect applying an 
approach similar to observational principle A of Chapter 3. Alternatively, we could apply just one 
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observational position (say in x = 0), and observe the rod as it passes along. This would correspond to 
observational principle B. We note that in order to apply this principle for lengths it is required that we 
already has measured the velocity, v between the two reference frames. (Both observers agree on this 
velocity, obtained by measuring the time it takes for a single point on the other system to pass a certain 
distance on his own reference frame.) 

Now using this second principle, we will at time t = 0 again let O' be positioned at O; thus, x = x' = 0, 
also giving t' = 0. So we have the same starting position as above. Now, however, time t is given as the 
time when C' is positioned in O. So this t is defined by having x = 0 and x' = - x0, resulting in ݐ =

ට1 ′ݐ − (
௩


)ଶ and x' = - vt'. Utilizing both these results, the length of O'C' observed from K will equal 

x= vt = ݐݒ′ ට1 − (
௩


)ଶ = −ݔ′ට1 − (

௩


)ଶ. Thus, we have the same result as obtained by the first 

observational principle. 

In conclusion, the Lorentz transformation gives that a rod, located parallel to the movement of the 
reference frames, will be observed to have a length contraction, irrespective of observational principle 
applied. In a way this differs from the phenomenon of time dilation.  


