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Abstract—Hidden Markov models (HMMs) are a popular
approach for modeling sequential data, typically based on the
assumption of a first- or moderate-order Markov chain. However,
in many real-world scenarios the modeled data entail temporal
dynamics the patterns of which change over time. In this paper,
we address this problem by proposing a novel HMM formulation,
treating temporal dependencies as latent variables over which
inference is performed. Specifically, we introduce a hierarchical
graphical model comprising two hidden layers: on the first layer,
we postulate a chain of latent observation-emitting states, the
temporal dependencies between which may change over time;
on the second layer, we postulate a latent first-order Markov
chain modeling the evolution of temporal dynamics (dependence
jumps) pertaining to the first-layer latent process. As a result of
this construction, our method allows for effectively modeling non-
homogeneous observed data, where the patterns of the entailed
temporal dynamics may change over time. We devise efficient
training and inference algorithms for our model, following the
expectation-maximization paradigm. We demonstrate the efficacy
and usefulness of our approach considering several real-world
datasets. As we show, our model allows for increased modeling
and predictive performance compared to the alternative methods,
while offering a good trade-off between the resulting increases
in predictive performance and computational complexity.

Index Terms—Temporal dynamics; hidden Markov models;
expectation-maximization; variable order; dependence jumps.

I. INTRODUCTION

Modeling sequential data continues to be a fundamental
task and a key challenge in the field of machine learning,
encountered in a plethora of real-world applications, includ-
ing bioinformatics, document analysis, financial engineering,
speech processing, and computer vision, to name just a few.
In this paper, we focus on the problem of sequence prediction,
dealing with continuous, possibly high-dimensional obser-
vations (time-series). Machine learning literature comprises
a rather extensive corpus of proposed prediction algorithms
for sequences of continuous observations. Among them, the
hidden Markov model (HMM) is one of the most popular
methods, used in a great variety of application contexts. This
popularity is mainly due to the fact that HMMs are flexible
enough to allow for modeling complex temporal patterns
and structures in sequential data. Specifically, HMMs are
popular for their provision of a convenient way of modeling
observations appearing in a sequential manner and tending to
cluster or to alternate between different possible components
(subpopulations) [1].

Most popular HMM formulations are based on the postu-
lation of first-order Markovian dependencies; in other words,
only one-step-back temporal dynamics are considered. Such

an assumption allows for increased simplicity and low com-
putational complexity of the resulting model training and
inference algorithms. However, postulating first-order tempo-
ral dynamics does also entail ignoring the possibility of the
modeled data comprising longer temporal dynamics. Even
though this assumption might be valid in some cases, it is
well-known to be unrealistic in several application scenarios,
including handwriting recognition, molecular biology, speech
recognition, and volatility prediction in financial return series,
thus undermining the modeling effectiveness.

To resolve this problem, several researchers have attempted
to introduce HMM-type models with higher-order depen-
dencies. Characteristic examples are the methods presented
in [2] and [3], with successful applications to the problem
of speech recognition, the method presented in [4], applied
to handwriting recognition, the method of [5], designed to
address challenges related to pattern recognition tasks in
molecular biology, and the method presented in [6], which
was successfully applied to the field of robotics. However,
a major drawback of such higher-order HMM approaches
is their considerably increased computational costs, which
become rather prohibitive as model order increases. An effort
to ameliorate these issues of higher-order HMMs is presented
in [7]. In that work, instead of directly training R-th order
HMMs on the data, a method of fast incremental training is
used that progressively trains HMMs from first to R-th order.

Note, though, that using higher-order HMMs gives rise
to a source of significant burden for researchers and practi-
tioners, namely the need to determine the most appropriate
order for the postulated models. This procedure entails fitting
multiple models to the available data to choose from, and
application of some cross-validation procedure, which, apart
from computationally cumbersome, is also likely to become
prone to overfitting [8]. Finally, another limitation of the
existing higher-order HMM formulations concerns their static
and homogeneous assumptions, i.e. their consideration that the
temporal dynamics order in the modeled data does not change
over time. Indeed, sequential data with variable order in the
entailed temporal dynamics are quite often encountered in real-
world application scenarios [9], [10], [11], [12]. Therefore,
allowing for capturing more complex structure of temporal
dynamics in the modeled data, where effective model order
may change over time as a result of dynamic switching
between different temporal patterns, is expected to result in
much better modeling and predictive performances. Indeed,
previous works such as [13] and [14] have proven the efficacy
of postulating simple variable-order Markov chains in diverse
application settings. However, development of a variable-order
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HMM-type model has not yet been considered in the literature.
To address these problems of conventional higher-order

HMMs, some researchers have proposed appropriate models
with variable order Markovian dynamics assumptions. For
instance, a variable order Markov model is presented in [10] to
address the problem of prediction of discrete sequences over
a finite alphabet; the method is successfully applied to three
different domains, namely English text, music pieces, and
proteins (amino-acid sequences). More recently, [11] presented
a simple and effective generalization of variable order Markov
models to full online Bayesian estimation. Generalization of
variable order Markov models in this context enables perpetual
model improvement and enrichment of the learned temporal
patterns by accumulation of observed data, without any need
for human intervention. Despite these merits, a drawback
of both these approaches concerns their inability to model
sequential data comprising continuous observations, i.e. se-
quences each frame of which is a (probably high-dimensional)
D-dimensional vector of real values, defined in RD. Finally,
[15] propose a two-stage modeling approach towards variable
order HMMs: the first stage consists in discovering repetitive
temporal patterns of variable length, while the second stage
consists in performing prediction by means of a separate sim-
ple HMM fit to the temporal pattern determined to be relevant
at each specific time point. Similar to the previous approaches,
a major limitation of [15] consists in its incapability to model
sequential observations taking continuous values in RD.

In this paper, we address the aforementioned shortcomings,
by introducing an HMM variant capable of capturing jumps
in the temporal dependence patterns of modeled sequential
data. Specifically, we introduce a hierarchical graphical model
comprising two hidden layers: on the first layer, we postulate a
chain of latent observation-emitting states, the dependencies
between which may change over time; on the second layer,
we postulate a latent first-order Markov chain modeling the
evolution of temporal dynamics (dependence jumps) pertaining
to the first-layer latent process. As a result of this construction,
our model allows for effectively modeling non-homogeneous
observed data, where the patterns of temporal dependencies
may change over time. To allow for tractable training and
inference procedures, our model considers temporal depen-
dencies taking the form of variable order dependence jumps,
the order of which is inferred from the data as part of the
model inference procedure.

Our method is designed to allow for modeling both discrete
and continuous observations; it allows for capturing seasonal
effects in the modeled sequences, and enhances modeling
in the implied autocorrelation structure of the observed se-
quences. In addition, contrary to the related methods of [9]
and [12], our method does not require utilization of any kind
of approximation to perform model training and inference.
Indeed, both model training and inference can be performed
exactly and in a computationally efficient way, using ele-
gant algorithms derived under the expectation-maximization
paradigm [16]. We demonstrate the efficacy of our approach
considering real-world application scenarios.

The remainder of this paper is organized as follows: In
Section II, we introduce our proposed model and derive its

training and inference algorithms. In Section III, we exper-
imentally evaluate our approach, and exhibit its advantages
over existing approaches. Finally, in Section IV we conclude
this paper, summarizing and discussing our results.

II. PROPOSED APPROACH

A. Motivation

In real-world applications, it is often the case that stochastic
processes are characterized by non-homogeneous evolution,
exhibiting higher-order dependencies. For example, time series
of financial asset returns are known to exhibit variable auto-
correlation and non-stationarity [17]; such forms of dynamics
in the modeled data cannot be sufficiently captured by using a
simple Markov process. In the same vein, historical volatility
of financial asset returns usually exhibits long temporal inter-
dependencies, slow autocorrelation decay, fat distribution tails,
as well as temporal pattern switching over time, e.g. shifting
between low volatility and high volatility regimes [18], [19],
[20], [21], which are manifested as jumps driven by shocks or
unexpected news [22], [23].

Several studies have examined whether conventional HMM
formulations are capable of capturing such stylized facts in
modeled time-series. For example, [24] examined the efficacy
of simple first-order HMMs; further, [25] used hidden semi-
Markov models (HSMMs) as an alternative solution allowing
for better capturing the autocorrelation structure. However,
the outcome of all these studies has been quite unsatisfactory
compared to the state-of-the-art in the literature pertaining to
the related applications, e.g. the literature on financial return
series modeling. Motivated from these results, in this work we
aim to come up with an elegant and computationally efficient
HMM variant capable of accommodating the above-mentioned
stylized facts in observed time-series, namely: (i) distributions
with fat tails; (ii) seasonality and temporal clustering dynam-
ics; and (iii) non-homogeneous temporal dynamics patterns,
exhibiting dependence jumps over time.

B. Model Definition

As we have already discussed, in this work we are seeking
to devise an HMM variant allowing for modeling sequen-
tial data with variable temporal dependence patterns, i.e. a
model capable of determining dependence jumps in the chain
of observation-emitting latent states. For this purpose, we
postulate an HMM variant, the hierarchical construction of
which comprises two hidden layers: The first layer essentially
consists of the chain of observation-emitting latent states, the
dependencies between which may change form over time. The
second layer comprises a latent first-order Markov chain that
determines (and generates) the dependence jumps taking place
in the observation-emitting latent chain of the first layer.

Let us postulate N observation-emitting states on the chain
of the first layer of our model, where the hidden emission
density of each state is modeled by a M -component finite
mixture model. Let us also postulate a latent first-order Markov
chain comprising K states on the second layer; K is essentially
the number of alternative temporal dependence patterns con-
sidered on the first layer of the model. Even though multiple
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alternative configurations could be considered for the form of
the modeled temporal dependence patterns of the first-layer
observation-emitting chain, in this work we limit ourselves to
pairwise latent emitting state transitions between the current
emitting state and some previous state that occurred at a
time point a number of steps back; this number of steps
back is determined from the latent values generated from the
second-layer dependence jumps-generating Markov chain of
our model.

Let us introduce here some useful notation. We denote as
O = {ot}Tt=1 an observed data sequence, with ot ∈ RD.
The latent (unobserved) data associated with this sequence
comprise: (i) the corresponding emitting state sequence Q =
{qt}Tt=1, where qt = 1, . . . , N is the indicator of the state the
tth observation is emitted from; (ii) the sequence of temporal
dependence form indicators Z = {zt}Tt=1 that indicate the
pairwise emitting states transition that is relevant (“active”) at
time t, where zt = 1, . . . ,K; and (iii) the sequence of the
corresponding mixture component indicators L = {lt}Tt=1 ,
where lt = 1, . . . ,M indicates the mixture component density
that generated the tth observation. A graphical illustration
of the generative model and the latent interdependencies
assumptions of our model is provided in Fig. 1.

The above-described model comprises the set of parameters
Θ = {Φ,Ψ}, where Φ denotes the parameters set of the
emission distributions of the model, and Ψ denotes the set
of parameters of the postulated latent processes pertaining to
the observed data dynamics (first-layer process) and the de-
pendence jump dynamics (second-layer process). Specifically,
since the second-layer process is a simple first-order Markov
chain, it comprises the parameters

$̂k , p(z1 = k) (1)

that denote the (prior) probabilities of the initial state of this
Markov chain, and the parameters

π̂kk′ = p(zt = k′|zt−1 = k) ∀t > 1 (2)

denoting the transition (prior) probabilities of this Markov
chain. From the above model definition, we observe that, if
the transition probability π̂11 in the above-defined transition
matrix Π̂ , [πkk′ ]k,k′ is close to one, then the observation-
emitting process of our model (first model layer) almost
reduces to a first-order Markov chain. In this paper, for
simplicity we set $̂k = 1

K ∀k and π̂kk′ = 1
K ∀k, k′;

in other words, we consider all dependence forms a priori
of equal probability. These assumptions, although relatively
limiting, allow for deriving tractable and computationally
efficient model training and inference algorithms, as we show
further on.

In a similar fashion, the postulated first-layer process of our
model comprises the parameters

$i , p(q1 = i) (3)

denoting the (prior) probabilities of the initial observation-
emitting state, with $ , [$i]

N
i=1. In addition, turning to

the variable-form temporal dynamics of this process, we also
introduce the set of dependence form-conditional transition

(prior) probability matrices {Πk}Kk=1, with

Πk , [πkij ]
N
i,j=1 (4)

where

πkij ,p(qt = j|qt−1, . . . , qt−k = i; zt = k)

= p(qt = j|qt−k = i; zt = k)
(5)

In other words, we consider different (pairwise) state transition
probabilities, depending on the inferred dependence form k
(number of steps back) generated from the postulated second-
layer process. By limiting hidden state dependence to pairwise
interactions, as described in (5), we facilitate tractability of
the inference algorithms of our model, without restricting its
modeling power in a harmful manner. Indeed, this is the case
in many scientific fields, e.g. in finance, where it is well-
understood that temporal dynamics tend to be dominated (at
each time point) by one specific past state [26], [21].

Having defined the latent processes of our model, with
effective parameters set Ψ =

{
$, {Πk}Kk=1

}
, we can now

proceed to the definition of the (conditional on the first-
layer states) emission distributions of our model. In this
work, we focus on modeling continuous-valued observations;
for this reason, we postulate M -component finite mixture
models, as we have already discussed. Specifically, to also
allow for modeling distributions with fat tails, we consider
two alternative selections: (i) multivariate Gaussian mixture
models, yielding

p(ot|qt = i) =

M∑
m=1

wimN (ot|µim,Σim) (6)

where N (·|µ,Σ) is a multivariate Gaussian with mean µ and
covariance matrix Σ, while {wim}m is the set of mixture
component weights of the qt = i state; and (ii) multivariate
Student’s-t mixture models, yielding

p(ot|qt = i) =

M∑
m=1

wimS(ot|µim,Σim, νim) (7)

where S(·|µ,Σ, ν) is a multivariate Student’s-t distribution
with parameters µ, Σ, and ν degrees of freedom. On this basis,
the parameters set Φ yields Φ = {wim,µim,Σim}i,m or Φ =
{wim,µim,Σim, νim}i,m, respectively. As discussed in [27],
HMM-type models with Student’s-t mixture emission distri-
butions allow for better modeling sequential data stemming
from populations with long tails, which are quite common in
real-world application scenarios. Note that these assumptions
do not harm the generality of our approach. Modeling discrete-
valued sequences can be performed in a straightforward way,
by simply postulating multinomial conditional distributions
instead of the finite mixture models in (6)-(7).

This concludes the definition of our model. We dub our
approach the variable dependence jump HMM (VDJ-HMM).
From Eqs. (1)-(7), the joint distribution of VDJ-HMM yields:

p(O,Q,Z|Θ) = $̂z1$q1

T−1∏
t=1

π̂zt,zt+1

∏
t>1

πzt
qt−zt

,qt

T∏
t=1

p(ot|qt = i)

(8)
Note that, as observed from (8), a major advantage from
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Figure 1: Graphical illustration of the generative model and
the latent interdependencies assumptions of VDJ-HMM.

the computational point of view of the proposed VDJ-HMM
model compared to higher-order HMM formulations (e.g., [2],
[6], [7]) is the much fewer number of parameters postulated
from VDJ-HMM. As a result, VDJ-HMM is capable of
capturing seasonal effects in the modeled data while allowing
for significantly more efficient training and inference algo-
rithms compared to existing alternatives. In addition, the lower
number of trainable parameters reduces the tendency of the
model to overfitting, as well as the associated requirements in
training data availability to ensure effective model training.

C. Model Training

To perform training for our model given a sequence O =
{ot}Tt=1, we resort to the familiar expectation-maximization
(EM) paradigm [generalization of the here-derived algorithm
for the case of training with multiple sequences is straightfor-
ward]. Based on the definition of VDJ-HMM [Eqs. (1)-(7)], the
complete data of our model comprise the observable sequence
O, the corresponding emitting state sequence Q = {qt}Tt=1,
the dependence form sequence Z = {zt}Tt=1, and the sequence
of corresponding mixture component indicators L = {lt}Tt=1.
In addition, based on the derivations of [27], in the special
case of considering multivariate Student’s-t mixture models
as the emission distributions of VDJ-HMM, to allow for
effective model training and inference procedures, we resort to
expressing the multivariate Student’s-t distributions as scale-
mixtures of Gaussians, yielding [27]:

p(ot|qt = i; {uimt}Mm=1) =

M∑
m=1

wimN (ot;µim,Σim/uimt)

(9)
where uimt is a precision scalar corresponding to the observa-
tion ot given it is generated from the jth component density
of the ith emitting state, and is Gamma-distributed as [27]

uimt ∼ G
(νim

2
,
νim
2

)
(10)

Under this setup, the above introduced set of precision scalars
{uimt} is also regarded as part of the complete data configu-
ration of our model.

The EM algorithm comprises optimization of the posterior
expectation of the complete data log-likelihood of the treated
model [16]

Q(Θ; Θ̂) , EΘ̂(logLc(Θ)|O) (11)

where Θ̂ denotes the currently obtained estimator of the
model parameters set Θ, and logLc(Θ) is the expression of
the complete data log-likelihood of the model, which reads
(ignoring constant terms)

logLc(Θ) =

N∑
h=1

{
I[q1 = h] log$h

+

K∑
k=1

∑
t

I[zt = k]

N∑
i=1

I[qt−k = h, qt = i] logπkhi

}

+

T∑
t=1

N∑
i=1

I[qt = i]logLc(ot|qt = i)

(12)

where I[·] is the boolean operator. In Eq. (12), logLc(ot|qt =
i) is the complete data log-likelihood of the emission dis-
tribution of the ith hidden state with respect to ot, and
the associated latent variables lt and (in case of Student’s-t
models) {uimt}m. In the case of Gaussian mixture emission
distributions, logLc(ot|qt = i) yields

logLc(ot|qt = i) =

M∑
m=1

I[lt = m]

{
logwim −

1

2
log|Σim|

− 1

2
d(ot,µim;Σim)

}
(13)

where d(ot,µim;Σim) is the Mahalanobis distance between
ot and µim, with covariance matrix Σim. On the other
hand, in the case of Student’s-t mixture emission distributions,
logLc(ot|qt = i) yields

logLc(ot|qt = i) =

M∑
m=1

I[lt = m]
{
−logΓ

(νim
2

)
+
νim
2
×[

log
(νim

2

)
+ loguimt − uimt

]
+ logwim

− uimt
2

d(ot,µim;Σim)− 1

2
log|Σim|

}
(14)

where Γ (·) is the Gamma function.
As usual, the EM algorithm for our model is an iterative

procedure, each iteration of which comprises an E-step and
an M-step. On the E-step of the algorithm, we compute a set
of posterior expectations pertaining to the latent variables of
our model (sufficient statistics), using the current estimator of
the model parameters set Θ̂. Subsequently, on the M-step of
the algorithm, we optimize the model parameters set Θ using
the sufficient statistics computed previously, in order to obtain
an updated estimator of the model parameters set, Θ̂.

1) E-step: From (11) and (12), it directly follows that the
E-step of our algorithm consists in computing the posterior
probabilities of the latent states on the first and second
hidden layers of our model, as well as the corresponding
state transition posteriors. It also comprises computation of
the emitting state-conditional mixture component posteriors,
as well as the posteriors of the precision scalars uimt, when
considering Student’s-t mixture emission distributions.
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Let us begin with the mixture component posteriors, here-
after denoted as ξimt; we have

ξimt , EΘ(lt = m|ot, qt = i) =
p(ot|qt = i, lt = m)∑M
h=1 p(ot|qt = i, lt = h)

(15)
This expression yields

ξimt =
wimN (ot|µim,Σim)∑M
h=1 wihN (ot|µih,Σih)

(16)

when considering Gaussian mixture emissions, and

ξimt =
wimS(ot|µim,Σim, νim)∑M
h=1 wihS(ot|µih,Σih, νih)

(17)

in the case of Student’s-t mixture emissions.

Regarding the posterior expectations of the precision scalars
uimt (if applicable), we have

ûimt , EΘ (uimt|ot) =
νim +D

νim + d(ot,µim;Σim)
(18)

Further, to obtain the rest of the sought posteriors, we
need to define a set of auxiliary distributions, which can be
computed by means of a variant of the well-known forward-
backward algorithm [28], [1]. Specifically, let us define the
forward probabilities

αt(i, k) , p({oτ}tτ=1, qt = i|zt = k) (19)

These probabilities can be computed iteratively, with initial-
ization

α1(i, k) =

{
$ip(o1|q1 = i), k = 1

0, k > 1
(20)

and recursion

αt(j, k) =p(ot|qt = j)
∑
qt−k

πkqt−k,j

∑
qt−1

∑
zt−1

π̂zt−1,zt

× αt−1(qt−1, zt−1)

(21)

In a similar way we define the backward probabilities of our
model, which yield

βt(i, k) , p({oτ}Tτ=t+1|qt = i; zt+k = k) (22)

These probabilities can also be computed iteratively, with
initialization

βT (i, k) = 1, ∀k (23)

and recursion

βt(i, k) =
∑
qt+k

πki,qt+k
p(ot+k|qt+k)

∑
qt+1

∑
zt+1

π̂zt,zt+1

× βt+1(qt+1, zt+1)

(24)

Having obtained the forward and backward probabilities of
our model, we can now proceed to obtain the remaining sought
posteriors. For the emitting state posteriors, hereafter denoted
as γjt, we have

γjt , p(qt = j|O) ∝
[ K∑
k=1

ζktαt(j, k)

][ K∑
k′=1

ζk′,t+k′βt(j, k
′)

]
(25)

Similarly, the emitting state transition posteriors yield

γλijt ,p(qt = i, qt+λ = j|Z;O)

∝
K∑

k,k′=1

αt(i, k)βt+λ(j, k′)πλijp(ot+λ|qt+λ = j)
(26)

Finally, regarding the (“active”) dependence form posteriors,
hereafter denoted as ζkt, we have

ζkt , E(zt = k|O) ∝
∑
i

αt(i, k)βt(i, k) (27)

This concludes the E-step of our algorithm.

2) M-step: Having obtained the required posterior expecta-
tion expressions on the E-step of the training algorithm of our
model, we now proceed to optimization of the objective func-
tion (11) over the model parameters to obtain the expressions
of the model parameter updates. Let us introduce the notation

rimt , γitξimt (28)

We then have
πi = γi1 (29)

πλhi =

∑
t γ

λ
hit∑

t γht
(30)

wim =

∑T
t=1 rimt∑T
t=1 γit

(31)

Further, the parameters of the emission distributions yield the
following expressions:
(i) In case of Gaussian mixture emissions, we have

µim =

∑T
t=1 rimtot∑T
t=1 rimt

(32)

Σim =

∑T
t=1 rimt(ot − µim)(ot − µim)T∑T

t=1 rimt
(33)

(ii) In case of Student’s-t mixture emissions, we have

µim =

∑T
t=1 rimtûimtot∑T
t=1 rimtûimt

(34)

Σim =

∑T
t=1 rimtûimt(ot − µim)(ot − µim)T∑T

t=1 rimt
(35)

while the degrees of freedom are obtained by solving w.r.t.
νim the equation

1− ψ
(νim

2

)
+ log

(νim
2

)
+ ψ

(
ν̂im +D

2

)
− log

(
ν̂im +D

2

)
+

1∑T
t=1 rimt

T∑
t=1

rimt (logûimt − ûimt) = 0

(36)

where ν̂im is the current estimate of the degrees of freedom
νim, and ψ(·) is the Digamma function.

This concludes the training algorithm of our model. An
outline of the EM algorithm for VDJ-HMM is provided in
Alg. 1.
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Algorithm 1 EM Algorithm for the VDJ-HMM model.

Initialize the model parameters estimate Θ̂. Set the maxi-
mum number of iterations, MAXITER, and the convergence
threshold of the EM algorithm.
For MAXITER iterations or until convergence of the objec-
tive function Q(Θ; Θ̂) do:

1) Conduct the forward-backward algorithm to obtain the
forward probabilities αt(j, k) and the backward prob-
abilities βt(i, k), using Eqs. (20)-(21) and (23)-(24),
respectively.

2) Effect the E-step of the algorithm by computing the
posteriors pertaining to the mixture components, ξimt,
the precision scalars, ûimt, the chain of observation-
emitting states, γjt and γλijt, and the Markov chain of
dependence jumps, ζkt. For this purpose, use Eqs. (15),
(18), (25)-(26), and (27), respectively.

3) Effect the M-step by computing the new estimates of
the model parameters πi, πλhi, wim, µim, Σim, and νim,
using Eqs. (29)-(36), respectively.

D. Inference Algorithm

A first inference problem we consider in this work is the
problem of predicting the next emitting state, say at time t+1,
denoted as qt+1, given the values of the currently observed
data, i.e. the observations set {oτ}tτ=1. From the definition
of our model, it is easy to deduce that the probability of
the emitting state at time t + 1, given the sequence of past
observations {oτ}tτ=1, can be written in the form

p(qt+1 = j|{oτ}tτ=1) =
∑
k

N∑
i=1

p(qt−k+1 = i|{oτ}tτ=1)

×p(qt+1 = j|qt−k+1 = i; zt−k+1 = k)

=
∑
k

N∑
i=1

πkijγi,t−k+1

(37)
where the emitting state posteriors γjt are computed by (25),
using the sequence of observations {oτ}tτ=1. On this basis,
determination of the first-layer state of our model, say q̂, that
is most likely to emit the (next) observation at time t+ 1 can
be performed by maximization of the conditionals p(qt+1 =
j|{oτ}tτ=1), yielding:

q̂ , argmax
j

p(qt+1 = j|{oτ}tτ=1) (38)

Another inference problem quite common in the related
literature is the task of determining the probability of a given
sequence w.r.t. a trained VDJ-HMM model. For this purpose,
we can resort to the forward algorithm of our model, similar to
conventional HMMs. Specifically, let us consider a sequence
O = {ot}Tt=1 and a trained VDJ-HMM model with parameter
estimate Θ̂. Then, following the definition of our model, the
probability of sequence O w.r.t. the available VDJ-HMM
model yields

p(O|Θ̂) =

N∑
i=1

K∑
k=1

αT (i, k) (39)

Table I: EUR-USD exchange rate volatility: Optimal VDJ-
HMM model configuration.

Parameter Value
K 4
N 2
M 3

Finally, as discussed in the Introduction, the key inference
problem we focus on in this work is the problem of sequence
prediction. Let us consider a sequence {oτ}tτ=1. Then, the
sequence prediction problem we consider here is the problem
of performing an one-step ahead forecast, i.e. predicting the
observation value ot+1 at time t+1, given the values {oτ}tτ=1.
To address this problem, we exploit the above obtained
results regarding computation of the next-state probabilities,
p(qt+1 = j|{oτ}tτ=1). Specifically, we effect the sequence
prediction task at time t+ 1 as follows:
(i) We use Eq. (38) to obtain the emitting state probabilities
at the following time point (t + 1), given the current set of
observations (up to time t), i.e. p(qt+1 = j|{oτ}tτ=1).
(ii) We set the generated predicted value ôt+1 of the obser-
vation at time t + 1 equal to the mean value of the modeled
variable o at time t+1, based on the fitted VDJ-HMM model
with parameters set Θ̂. Specifically, considering mixtures of
Gaussians or Student’s-t densities as the emission distributions
of our model, as discussed previously, this procedure yields:

ôt+1 =

N∑
n=1

M∑
m=1

p(qt+1 = n|{oτ}tτ=1)wnmµnm (40)

E. Computational Complexity

We conclude this section with a short discussion on the
computational complexity of our model. From Eqs. (19)-(27),
we can easily observe that the main difference between VDJ-
HMM and a simple first-order HMM concerns computation of
the set of forward and backward probabilities, {αt(j, k)}t,j,k
and {βt(j, k)}t,j,k, respectively, which are distinct for each
possible temporal dependence pattern, k = 1, . . . ,K. Indeed,
the computational complexity of computing the forward and
backward probabilities of a first-order HMM comprising N
states and M component Gaussian distributions per state,
given a D-dimensional observed sequence of length T , can
be shown to be O(3N2T + NTMD). Consequently, the
corresponding computational complexity in the case of our
model becomes O(3N2TK + NTMDK), where K is the
maximum order of the postulated model. Hence, the related
increase in computational complexity introduced by our model
is linear w.r.t. K.

III. EXPERIMENTS

In this section, we perform an extensive evaluation of
the proposed VDJ-HMM model. For this purpose, we first
consider a set of time-series forecasting experiments dealing
with real-world applications from the computational finance
domain. Further, we consider a computer vision application,
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Table II: EUR-USD exchange rate volatility: Performance (RMSE) of the evaluated methods.

HMM HMM Second Order HMM Third Order HMM HMM∞ HMM∞

(Gaussian) (Student’s-t) (Gaussian) (Gaussian) (Gaussian) (Student’s-t)
3/3/2009 - 10/12/2009 1.607 1.559 1.599 1.593 1.591 1.534

10/13/2009 - 5/25/2010 0.738 0.721 0.734 0.730 0.730 0.713
5/26/2010 - 12/30/2010 0.683 0.696 0.681 0.680 0.677 0.691

Total 1.094 1.07 1.090 1.087 1.086 1.059

Table III: EUR-USD exchange rate volatility: Performance (RMSE) of the evaluated methods (cont.).

HSMM HSMM VDJ-HMM VDJ-HMM
(Geometric - Gaussian) (Geometric - Student’s-t) (Gaussian) (Student’s-t)

3/3/2009 - 10/12/2009 1.689 1.74 1.504 1.435
10/13/2009 - 5/25/2010 0.717 0.703 0.7 0.702
5/26/2010 - 12/30/2010 0.681 0.687 0.672 0.669

Total 1.113 1.146 1.028 1.011

(a) (b) (c)

Figure 2: EUR-USD exchange rate volatility: Performance (RMSE) fluctuation obtained by varying model configuration
(validation set).

(a) (b) (c)

Figure 3: EUR-USD exchange rate price prediction: Performance fluctuation (directional prediction accuracy) obtained by
varying model configuration (validation set).

Table IV: Time-series of multiple correlated exchange rates
and market indices: Optimal VDJ-HMM model configuration
under the univariate modeling setup.

Parameter Value
K 3
N 2
M 2

dealing with the problem of visual workflow recognition from
sequences of depth images.

Specifically, we begin by considering volatility forecasting
and return value prediction in financial return series. Broad
empirical evidence (see, e.g. [18], [20], [22]) has shown
that financial return series exhibit variable order non-linear
temporal dependencies, as well as dependence jumps, both

when it comes to volatility forecasting and concerning future
value prediction. As such, leveraging the merits of our model
in the context of these applications is expected to yield a
significant performance improvement over the competition. To
provide some comparative results, apart from our method we
also evaluate the related HMM∞ model [12], which postu-
lates infinitely-long temporal dependencies at each time point,
baseline first-order, second-order, and third-order HMMs, and
explicit-duration HSMMs [29]. In addition, we cite the perfor-
mance of other popular alternatives, as they have been reported
in the recent literature.

At this point, we must underline that the order of asset price
return series is typically up to two, while for asset volatility
it is usually up to three (see, e.g. [19]). Hence, one can
expect that the values of K discovered by VDJ-HMM should
not normally exceed that level. This fact, in turn, strongly
implies that any observed performance differences between
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Table V: Time-series of multiple correlated exchange rates and market indices: Performance (RMSE) obtained under the
univariate modeling setup.

Scenario HMM Second Order HMM Third Order HMM HSMM HMM∞ GARCH VHGP GPMCH VDJ-HMM
#1 0.0442 0.0303 0.0250 0.0292 0.0235 0.0705 0.0146 0.0121 0.0108
#2 0.0841 0.0419 0.0357 0.0589 0.0353 0.2785 0.0552 0.0360 0.0351
#3 0.0744 0.0455 0.0334 0.0578 0.0331 0.0552 0.0542 0.0345 0.0329

Table VI: Time-series of multiple correlated exchange rates
and market indices: Optimal VDJ-HMM model configuration
under the multivariate modeling setup.

Parameter Value
K 3
N 2
M 2

our approach and medium-order HMMs should be due to the
variable-order modeling capabilities of our approach, rather
than the adopted (maximum) model order per se. In all cases,
to ensure the validity of our comparisons, we perform model
training following exactly the same experimental setup as in
the case of the cited papers.

Finally, our evaluations dealing with computer vision ap-
plications are performed using a publicly available database,
while performance comparisons are made against some pop-
ular alternatives, including hidden conditional random fields
(H-CRFs) [30], dual-functionality conditional random fields
(DF-CRFs) [31], as well as baseline first-order, second-order,
and third-order HMMs.

A. Financial Time-Series Modeling

1) Volatility Forecasting: In this set of experiments, we
apply our model to prediction of the volatility in daily returns
of financial assets. Consider a modeled asset with price Pt
at time t; then, its daily return at time t is defined as the
logarithm rt , log Pt

Pt−1
. On this basis, (historic) volatility is

defined as the square of the return series r2
t ; as discussed

in [32], this groundtruth measurement constitutes one of
the few consistent ways of volatility measuring. To evaluate
the considered algorithms, we employ performance metrics
typically considered in the literature. These include the root
mean squared error (RMSE) between the model-estimated
volatilities and the squared returns of the modeled return
series, the corresponding mean square error (MSE), or the
corresponding mean absolute error (MAE).

In all cases, our experimental setup is the following: For
each one of the considered applications, we split the available
data into a training sample, a validation sample, and a testing
sample; we adopt the same splits as the authors of the state-
of-the-art methods reported in the literature, to render our
performance measurements comparable with these results. We
use the available training samples to train multiple VDJ-
HMM models with different configurations; specifically, we
evaluate models with different maximum allowed numbers
of alternative temporal dependence patterns (maximum steps
back) K, numbers of emitting states N , and numbers of

mixture components per emitting state M . We select the
optimal model configuration on the basis of the obtained
predictive performances on the available validation samples.
Finally, we use the available test samples to obtain the reported
performance figures. Similar is the experimental setup we
adopt for the considered competitors. In all cases, to alleviate
the effect of random model initialization on the reported
performance results, we repeat our experiments 10 times, with
different model initializations each time, and report average
performance figures over these repetitions.

Euro-United States Dollar exchange rate volatility: Our
first experimental scenario regarding volatility forecasting is
dealing with the EUR-USD exchange rate time series1. Specif-
ically, for the purposes of this experiment, we use data from
the period 5/17/2007 – 8/10/2008 as our training set, and data
pertaining to the period 9/10/2008 - 2/3/2009 as our validation
set. To perform model evaluation, we consider three distinct
test samples, pertaining to the periods: 3/3/2009 - 10/12/2009,
10/13/2009 - 5/25/2010, and 5/26/2010 - 12/30/2010, respec-
tively. This way, we allow for evaluating model performance
in periods with different levels of inherent volatility in the
European economy. In all cases, the evaluated methods are
trained using a rolling window of the previous 60 days of
returns to make daily volatility forecasts for the following
10 days. Under this setup, we essentially retrain the models
every 10 days, allowing for adapting to structural breaks in the
EUR-USD exchange rate time series that cannot be accounted
for otherwise. We use both Gaussian mixtures and Student’s-t
mixtures as the state-conditional emission distributions. In the
case of the HSMM method, we consider Poisson, Negative
Binomial, Geometric, and Logarithmic densities for modeling
state duration.

In Table I, we depict the optimal configuration parameters
of our model, obtained by utilizing the available validation
set, as described previously. In Tables II and III, we illustrate
the obtained performances of the evaluated methods. Note that
these results are obtained for optimal model configuration (as
determined in the validation set) both in the case of our model
and the considered competitors. As we observe, in all cases
our VDJ-HMM model yields the best performance among
the evaluated methods. In addition, it appears that utilization
of Student’s-t mixture emission distributions yields in most
cases only negligible performance improvements over models
postulating Gaussian mixture emission distributions. We also
observe that the HSMM model yielded best performance when
postulating Geometric state duration distributions (we omit the
results pertaining to different HSMM model configurations for
brevity).

1The used data have been obtained from the official website of the European
Central Bank.
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Table VII: Time-series of multiple correlated exchange rates and market indices: Performance (RMSE) obtained under the
multivariate modeling setup.

HMM Second Order HMM Third Order HMM HMM∞ GPMCH VDJ-HMM
Scenario #1 0.0345 0.0338 0.0335 0.0333 0.0341 0.0330
Scenario #2 0.0712 0.0682 0.0614 0.0609 0.0557 0.0605
Scenario #3 0.1512 0.1416 0.1212 0.1109 0.9905 0.0744

Table VIII: Oil price time-series volatility: Optimal VDJ-
HMM model configuration.

Parameter Value: Brent Value: WTI
K 3 3
N 2 2
M 3 4

Table IX: Oil price time-series volatility: Performance (MSE
and MAE) of the evaluated approaches.

Method Brent Brent WTI WTI
(MSE) (MAE) (MSE) (MAE)

GARCH 0.698 0.065 0.933 0.693
IGARCH 0.856 0.000 0.690 0.000

GJR 0.987 0.811 0.847 0.000
EGARCH 0.609 0.000 0.058 0.000
APARCH 0.557 0.002 0.846 0.031
FIGARCH 0.083 0.111 0.514 0.074
FIAPARCH 0.157 0.586 0.501 0.668
HYGARCH 0.080 0.030 0.546 0.000

HMM 0.087 0.095 0.200 0.067
2-Order HMM 0.082 0.091 0.194 0.071
3-Order HMM 0.080 0.088 0.192 0.070

HSMM 0.100 0.090 0.181 0.090
HMM∞ 0.079 0.088 0.191 0.071

VDJ-HMM 0.050 0.001 0.044 0.000

Finally, in Figs. 2a-2c, we illustrate how model performance
changes by varying model configuration, i.e. the hyperpa-
rameter values K (maximum order of dependence jumps),
N (number of emitting states), and M (number of mixture
components). Specifically, in each one of these figures we
show how performance changes by altering the values of
one hyperparameter in the set {K,N,M}, while keeping the
other two equal to their determined best value. It is apparent
that model configuration plays a critical role in the obtained
performance. This is especially true for the maximum order
of dependence jumps K: selecting too big a value results
in performance deterioration, while values close to K = 1

Table X: Gold market time-series volatility: Optimal VDJ-
HMM model configuration.

Parameter Value
K 3
N 3
M 2

(i.e., reducing to a simple first-order HMM) yield inferior
performance compared to a fully-fledged VDJ-HMM.

Time-series of multiple correlated exchange rates and mar-
ket indices: In this set of experiments, we consider three
application scenarios:

• In the first scenario, we model the return series pertaining
to the following currency exchange rates, over the period
December 31, 1979 to December 31, 1998 (daily closing
prices):
1. (AUD) Australian Dollar / US $
2. (GBP) UK Pound / US $
3. (CAD) Canadian Dollar / US $
4. (DKK) Danish Krone / US $
5. (FRF) French Franc / US $
6. (DEM) German Mark / US $
7. (JPY) Japanese Yen / US $
8. (CHF) Swiss Franc / US $.

• In the second scenario, we model the return series per-
taining to the following global indices, for the business
days over the period April 27, 1993 to July 14, 2003
(daily closing prices):
1. (TSX) Canadian TSX Composite
2. (CAC) French CAC 40
3. (DAX) German DAX
4. (NIK) Japanese Nikkei 225
5. (FTSE) UK FTSE 100
6. (SP) US S&P 500.

• Finally, in the third scenario, we model the return series
pertaining to the following seven indices, for the business
days over the period February 7, 2001 to April 24, 2006
(daily closing prices for the first 6 indices, and annual
percentage rate converted to daily effective yield for the
last index):
1. (TSX) Canadian TSX Composite
2. (CAC) French CAC 40
3. (DAX) German DAX
4. (NIK) Japanese Nikkei 225
5. (FTSE) UK FTSE 100
6. (SP) US S&P 500
7. (EB3M) Three-month Euribor rate.

These series have become standard benchmarks for assessing
the performance of volatility prediction algorithms [33], [34],
[35]. In our experiments, we follow an evaluation protocol
similar to [34], [36]. We adopt the same data split as in
[36]; all the evaluated methods are trained using a rolling
window of the previous 120 days of returns to make daily
volatility forecasts for the following 10 days. Under this setup,
we essentially retrain the models every 7 days, allowing for
adapting to structural breaks in the markets, similar to the
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Table XI: Gold market time-series volatility: Performance (MSE and MAE) of the evaluated approaches.

HM MA(20) MA(40) MA(120) HMM HSMM Second Order HMM Third Order HMM HMM∞

MSE 105.24 84.64 83.29 87.97 85.77 85.5 84.89 84.56 84.52
MAE 5.43 5.96 5.72 5.40 5.69 5.82 5.67 5.63 5.63

Table XII: Gold market time-series volatility: Performance (MSE and MAE) of the evaluated approaches (cont.).

AR(5) MAD(5) ARMA EMWA GARCH GARCH-M VDJ-HMM
MSE 86.08 90.08 84.24 83.81 86.94 86.35 84.16
MAE 5.67 5.54 5.68 5.84 5.56 5.68 5.60

Table XIII: EUR-USD exchange rate price prediction: Optimal
VDJ-HMM model configuration.

Parameter Value
K 3
N 2
M 2

Table XIV: EUR-USD exchange rate price prediction: Perfor-
mance of the evaluated models.

Model Directional Annualized
Accuracy Return

KNN 50.11 -2.26
Naïve Bayes 48.83 -3.08

BP 50.12 1.59
SVM 52.65 3.98
RF 53.50 7.28

HMM 52.5 4.05
2-Order HMM 52.9 5.13
3-Order HMM 53.17 6.6

HSMM 51.2 1.5
HMM∞ 53.18 6.44

VDJ-HMM 54.05 9.50

previous experiment.
To begin with, we consider modeling each asset with a

different VDJ-HMM model; i.e. we postulate as many VDJ-
HMM models as the assets modeled in each scenario. The
same univariate setup is also adopted for the considered
HMM-based competitors2. Under this setup, the determined
optimal configuration for our model is provided in Table IV.
In Table V, we provide the obtained results for the three
considered scenarios (for optimal model configuration, as
determined in the validation set). These results are computed
over all the assets modeled in each scenario (averages). The
performances of the state-of-the-art methods GARCH [37],
[38], VHGP [39], and GPMCH [36] have been cited from
[36]. We observe that VDJ-HMM performs better than the
competition in all scenarios, with the obtained performance
differences becoming more significant in the case of scenario
#1, which involves only currency exchange rates in the set of
modeled assets. We tend to attribute this finding to the fact that

2All HMM-based models are evaluated using Gaussian mixture emission
distributions.

currency exchange rates have a unique mean-reverting prop-
erty [40], which seems that our proposed VDJ-HMM model
is capable of capturing much better than the competition.

Further, we consider the case of jointly modeling all the
assets available in each scenario. For this purpose, we essen-
tially postulate VDJ-HMM models with D-variate emission
distributions, where D is the number of jointly modeled assets.
The same holds for all the considered HMM-type competitors
of our method. In Table VI, we report the determined optimal
configuration of our model for this experimental setup. The
corresponding predictive performances are reported in Table
VII. In this table, we also cite the performance of the multi-
output GPMCH model (using Clayton copulas), as reported in
[36]. As we observe, our approach yields results comparable
to or slightly better than the state-of-the-art in all cases. Note
also that this performance improvement does also come for
a significantly lower computational complexity compared to
the second best performing method in these experiments, i.e.
the GPMCH method (which, for instance, entails expensive
computation and inversion of large gram matrices).

Oil price time-series volatility: Further, we consider the
problem of volatility forecasting in oil prices. For this purpose,
and similar to the experimental setup of [41], we use the daily
price data of the Brent index and the West Texas Intermediate
(WTI) index from January 6, 1992, to December 31, 2009
(prices expressed in US dollars per barrel). From these time-
series, the data pertaining to the last three years, i.e., 2007
to 2009, are used to evaluate the predictive performance of
the evaluated models, while the data pertaining to the period
1/3/2006 - 12/29/2006 are used as our validation sample (and
the rest for model training). All the evaluated methods are
trained using a rolling window of the previous 60 days of
returns to make daily volatility forecasts; we retrain the models
every 5 days.

In Table VIII, we report the optimal configuration of our
model for our experiments with both time-series (Brent and
WTI). In Table IX, we provide the obtained performances of
the evaluated models. Note that all HMM-based models are
evaluated using Gaussian mixture emission distributions. The
performances of ARCH and its variants have been reported
from [41]. As we observe, the proposed VDJ-HMM model
consistently yields the best observed performance expressed
in terms of the resulting MSE metric, with significant perfor-
mance differences from all the considered competitors. On the
other hand, when evaluation is performed using the MAE met-
ric, we observe that our method manages to yield performance
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Table XV: Action recognition from depth images: Confusion matrix for the segmentation task. The results are normalized
based on the total number of frames per activity, considering all cross-validation runs.

Recognized Class
1 2

True Class
1 .69 .31
2 .16 .84

Total error = 23.34%

(a) HMM

Recognized Class
1 2

True Class
1 .74 .26
2 .13 .87

Total error = 17.45%

(b) Second-Order HMM

Recognized Class
1 2

True Class
1 .77 .23
2 .12 .88

Total error = 16.86%

(c) Third-Order HMM

Recognized Class
1 2

True Class
1 .836 .163
2 .107 .893

Total error = 13.50%

(d) CRF

Recognized Class
1 2

True Class
1 .925 .075
2 .09 .91

Total error = 8.25%

(e) DF-CRF

Recognized Class
1 2

True Class
1 .97 .03
2 .034 .966

Total error = 2.91%

(f) VDJ-HMM

comparable to the state-of-the-art, but it cannot obtain further
improvements; note though that the reported state-of-the-art
MAEs are already exceptionally low, and therefore the room
for further performance improvement is rather limited.

Gold market time-series volatility: Here, we explore the
performance of VDJ-HMM in volatility prediction for daily
return series of Gold. The dataset used for this experiment
consists of the daily Gold fixing prices of the London Bullion
Market3. Specifically, following [42], we use the daily PM
fixings price released at 15:00, and forecast the daily volatility
during the second semester of 2008. This is an interesting and
quite challenging experimental scenario, since the considered
forecast period coincides with the period when the recent
financial crisis took place. Similar to [42], our training and
validation samples pertain to the period 1/4/1999 - 6/30/2008,
while evaluation is performed using the MSE and MAE
metrics.

In Table X, we report the optimal configuration of our
model. In Tables XI-XII, we provide the obtained perfor-
mances of the evaluated models. Note that all HMM-based
models are evaluated using Gaussian mixture emission distri-
butions. The performances of the reported state-of-the-art com-
petitors, namely historical mean (HM), autoregressive mod-
els (AR(k)), moving average models (MA(k) and EWMA),
ARMA, as well as several GARCH variants [38], [37], have
been cited from [42]. As we observe, the proposed VDJ-
HMM model yields a quite satisfactory performance in this
experiment, yielding error figures comparable to the state-of-
the-art results reported in the recent literature.

2) Return Value Prediction: Finally, we apply our model
to prediction of the future values of the daily return series
of modeled financial assets, rt. Specifically, under our experi-
mental setup, we are interested in correctly predicting the sign
of the return value at future time points. This sign can be used
as the foundation of a simple portfolio management policy as
follows: If the predicted future return sign is positive, then the
policy suggests that the asset be retained by the investment

3Data obtained from the official website of the London Bullion Market
Association (www.lbma.org.uk).

portfolio manager; on the other hand, if the predicted future
return sign is negative, then the policy creates a “sell” signal.
All HMM-based models evaluated in these experiments postu-
late Gaussian mixture models as their emission distributions.

To this end, we consider the task of future value prediction
for the EUR-USD exchange rate. We use a training sample
pertaining to the period 1/17//2002 – 5/16/2008, a validation
sample pertaining to the period 5/17/2008 - 3/2/2009, and a
test sample pertaining to the period 3/3/2009 - 12/30/2010. All
the evaluated methods are trained using a rolling window of
the previous 60 days of returns to make daily price prediction
for the following 10 days; we retrain the models every 5 days.

On this basis, model evaluation is performed according to:
(i) the comparison of the signs of the generated predictions
with the actual ones (hereafter referred to as directional
prediction); and (ii) the resulting annualized return of the
aforementioned portfolio management policy, defined as the
mean obtained profit adjusted for the return standard deviation
over the whole forecasting period.

In Table XIII, we depict the optimal configuration of our
VDJ-HMM model as determined by utilizing the available
validation set. In Figs. 3a-3c, we show how VDJ-HMM
model performance changes by varying the adopted config-
uration (results obtained on the available validation set). As
we observe, model configuration plays a crucial role to the
obtained performance. Further, another interesting finding is
that, similar to the volatility forecasting experiment, model
performance reaches its optimal value for a moderate value
of K, while experiencing a significant decrease for too high
values of K or when K = 1.

In Table XIV, we provide the obtained performance results
for the evaluated methods (for optimal model configuration).
Note that the performances of the methods k-nearest neighbor
(KNN), Naïve Bayes, back-propagation neural network (BP),
support vector machine (SVM) [43], and random forest (RF)
[44] have been cited from [45]. As we observe, our method
completely outperforms the competition, yielding the state-of-
the-art result in this dataset.

http://www.lbma.org.uk


12

B. Action recognition from depth images

In these experiments, we apply our method to data dealing
with a computer vision application. Specifically, we consider
the task of classifying sequences of depth images, which depict
humans performing actions in an assistive living environment.
To this end, we use the dataset described in [46], which
includes several actions from which we have selected the
following: (1) get up from bed, (2) go to bed, (3) sit down,
(4) eat meal, and (5) drink water. We seek to recognize two
activities: activity #1 comprises actions (1)-(2) (see Fig. 4 for
an example); activity #2 comprises actions (3),(4),(5). In all
cases, the observable input is the sequence of vectors x, which
is extracted as described next. Due to the aforementioned
nature of the modeled dataset, we expect that this experiment
will allow us to: (i) exhibit the applicability of our approach
to data from diverse application domains; and (ii) evaluate our
method in a setting where quite high maximum order values
might be needed in order to successfully model the observed
data (contrary to financial data modeling, where maximum
order values are not theoretically expected to exceed K = 3,
as we confirmed in the majority of our previous experiments).

For each depth image, we extract features similar to [46]
using a variation of Motion History Images (MHIs). MHIs are
among the first holistic representation methods for behavior
recognition [47]. In an MHI Hτ , pixel intensity is a function
of the temporal history of motion at that point.

HI
τ (x, y, t) =

{
τ, if |I(x, y, t)− I(x, y, t− 1)| > δIth

max(0, HI
τ (x, y, t− 1)− 1), otherwise.

(41)
Here, τ is the longest time window we want the system
to consider, and δIth is the threshold value for generating
the mask for the region of motion. The result is a scalar-
valued image where more recently moving pixels are brighter.
Note that the MEI can be generated by thresholding the MHI
above zero. Ni et al. [46] proposed the use of a depth sensor,
and introduced the motion history along the depth changing
directions. To encode the backward motion history (decrease
of depth), they introduced the backward-DMHI (bDMHI):

HfD
τ (x, y, t) =

{
τ, if D(x, y, t)−D(x, y, t− 1) < −δIth
max(0, HfD

τ (x, y, t− 1)− 1), otherwise.
(42)

Here, HbD
t denotes the backward motion history image and

D(x, y, t) denotes the depth sequence. δIth is the threshold
value for generating the mask for the region of backward
motion. Similarly is defined the forward history image, which
we don’t use in our experiments, but is expected to give similar
results.

In order to calculate the depth change-induced motion
history images, according to the above equations, we use
depth maps captured by a KinectTM device. However, Kinect
depth maps have the main disadvantage of the presence of
a significant amount of noise. After frame differencing and
thresholding, we noticed that motion is encoded even in areas
where there are only still objects. To tackle this problem, we

use a median filtering at the spatial domain. In the temporal
domain, each pixel value is replaced by the minimum of its
neighbors. The MHI images are represented by means of the
complex Zernike coefficients A00, A11, A20, A22, A31, A33,
A40, A42, A44, A51, A53, A55, A60, A62, A64, A66, for each
of which the norm and the angle are included in the provided
descriptors. We use a total of 31 parameters (constant elements
were removed), thus providing an acceptable scene reconstruc-
tion without a computationally prohibitive dimension.

In our experiments, we use 35 action sets per type (these
are the first 35 samples in the dataset for each action). We use
cross-validation in the following fashion: in each cycle, fifteen
of these sets are randomly selected to perform training, and the
rest twenty are used for testing. We run the same experiment
50 times to account for the effect of random selection of
samples. To evaluate the sequence classification performance
of our model, we use our model to classify the test workflows
into two classes corresponding to actions 1 and 2, respectively.
For comparison, we repeat the same experiment using baseline
first-order, second-order, and third-order HMMs, HCRFs with
4 hidden states, and the DF-CRF method, trained as described
in [30] and [31], respectively.

The obtained results are given in Table XV; therein, the
reported “optimal” performance of VDJ-HMM has been ob-
tained with M = 3, N = 2,K = 8. As we observe, our
approach outperforms the competition, including the popular
HCRF method, and the recently proposed DF-CRF approach.
We also underline here that, in order to examine the statistical
significance of the reported differences between the evaluated
methods, we have made use of the Student-t hypothesis test;
our results have verified the statistical significance of the
observed performance differences, in all cases. Finally, it is
interesting to emphasize that the best performance of VDJ-
HMM is obtained with the maximum model order set to
K = 8. Since the used dataset is well-expected to entail
long temporal dynamics (contrary to the previously considered
financial time-series, where high K values are not expected to
be needed due to frequent changes in the economic cycles),
this finding supports our claims regarding the capability of our
approach to capture the actual (variable) length of the temporal
dynamics entailed in the modeled data.

C. Further Examination
We conclude the experimental section of our work, attempt-

ing to get a better feeling of whether our model actually
captures variable forms of temporal dependencies, and how
often related dependence jumps actually take place. To this
end, we focus on one example use case of Section III.A,
namely gold market time-series volatility prediction. In Fig.
5, we show the obtained values of the posterior probabilities
ζkt , E(zt = k|O) at each time point, where k ∈ {1, 2, 3}.
As we observe, the possibility zt = 1 takes the highest
posterior probability most often, followed by the possibility
zt = 3, while zt = 2 yields the highest posterior probability
value least often. In an attempt to explain these findings, in
Fig. 6 we show how the value of zt yielding the maximum
posterior probability fluctuates with the corresponding (his-
toric) volatility values. We observe that high volatility periods
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(a) Color images (b) Depth images

Figure 4: Key frames from activity 1: action 1 - go to bed (frames 1,2), and action 2 - get up from bed (frames 3,4))

Figure 5: Gold market time-series volatility: p(zt|O) values at
each time point.

Figure 6: Gold market time-series volatility: ẑt =
argmaxp(zt|O) values fluctuation with historic volatility.

result in the winning values of zt being equal to one (or
two in some rare occasions), while low volatility periods may
result in winning values of zt equal to three. In our view,
this is a quite interesting and encouraging finding: Indeed,
high volatility periods are characterized by structural breaks
that render assumptions of long temporal dependencies rather
invalid. On the contrary, such assumptions may be accurate
and useful for the modeling algorithm when volatility is low.

IV. CONCLUSIONS

In this paper, we focused on the problem of modeling
sequential data the temporal dynamics of which may switch
between different patterns over time. To address this problem,
we introduced a hierarchical model comprising two hidden
chains of temporal dependencies: on the first layer, our model
comprises a chain of latent observation-emitting states, the
dependencies between which may change over time; on the
second layer, our model utilizes a latent first-order Markov
chain modeling the evolution of temporal dynamics pertaining
to the first-layer latent process. To allow for tractable train-
ing and inference procedures, our model considers temporal
dependencies taking the form of variable order dependence
jumps, the order of which is inferred from the data as

part of the model inference procedure. We devised efficient
model training and inference algorithms under the maximum-
likelihood paradigm.

To evaluate the capacity of our method in effectively mod-
eling non-homogeneous observed sequential data, where the
patterns of temporal dependencies may change over time, we
considered a number of applications from diverse domains.
Our experimental results provided strong evidence that our
method is actually capable of delivering on its goals. As we
showed, these encouraging performance results come for only
an increase in computational complexity linear w.r.t. K com-
pared to baseline first-order HMMs. Taking into consideration
that the maximum required K value in our real-world appli-
cation experiments did not exceed K = 9, we can, thus, argue
that our method offers a favorable performance/complexity
trade-off.

An issue we have not fully addressed in this work is how
we could allow for automatic determination of the optimal
model configuration, without the need of resorting to cross-
validation (as we did in our experimental evaluations). For
this purpose, one could resort to devising a nonparametric
Bayesian construction for the VDJ-HMM model, by imposing
appropriate priors over the model parameters (e.g., Dirichlet
process priors [48] over the transition probability matrices
of our model), and performing Bayesian inference instead
of maximum-likelihood training. This issue remains to be
addressed in our future work.
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