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The present reading is the first in a series where we suggest a Dirac equation for the Proton.
Despite its great success in explaining the physical world as we know it, in its bare form, not only
is the Dirac equation at loss but fails to account e.g. for the following: (1) Why inside hadrons
(Proton in this case) there are three, not four or five quarks; (2) Why quarks have fractional
electronic charges; (3) Why the gyromagnetic ratio of the Proton is not equal to two as the Dirac
equation requires. In the present reading, we make an attempt to answer the first question of why
inside the proton, there are three, not four or five quarks.
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INTRODUCTION

In July of 2008, we presented [1] three equations that we
proposed as the equivalent of the Dirac equation [2, 3]
on a curved spacetime. These equations have thus far
not generated the much anticipated interest in the scien-
tific community. We hope this is set to change as we will
demonstrate in the present reading that these equations
[1] are capable of explaining the Proton as a fundamental
particle comprising of three quarks with exactly the frac-
tional electronic charges that quarks are found to have
in Nature.

When the Dirac equation was serendipitously discov-
ered in 1928 by the eminent British physicist, Professor
Paul Adrien Maurice Dirac (1902− 1984) in 1928 while
staring at a fire [4], he christened it the “Equation of the

Electron” because it did two remarkable things, i.e.:

(1).It explained the then mysterious origins of the Electron’s
spin as a relativistic phenomenon.

(2).It unprecedentedly gave the correct value of the gyro-
magnetic ratio of the Electron (ge ≃ 2).

In our series of reading – of which the present is the
first, we will write down an “Equation for the Pro-

ton” and our suggestion as to why this equation should
be thought of as an equation for the Proton are threefold;

(1).We account for the existence of the three quarks
believed to inhabit the Proton. This is accomplished in
the present reading (Paper I).

(2).We deduce the the correct fractional electronic charges
of these quarks i.e. qj = (±1/3,∓2/3,∓2/3)]. This is
accomplished in the second reading (Paper II).

(3).We give an acceptable account of the gyromagnetic ratio

of the Proton [gp = 5.585694710(50). We do not deduce

the exact value of the gyromagnetic ratio of the Proton

from our theory, but, an account why it must differ from

the Dirac prediction of (g = 2). This is accomplished in

the third reading (Paper III).

If these three outcomes are to be taken as ponderable
achievements of the proposed theory, then, there might
exist some very and credible strong grounds on which to
call this proposed equation an “Equation for the Proton”.
However, before this can happen, there is much more that
the proposed equation still has to do. At the moment,
it must be taken as an interesting equation that may
hold the potent seed that may one-day lead to it being
christened the “Equation for the Proton”

The Proton is a Baryon[27] and deep inelastic scatter-
ing experiments [5, 6] have revealed it to be composed
of two up quarks (u) and one down quark (d). Further,
it is considered to be a stable particle, the meaning of
which is that it does not decay (decompose/disintegrate)
into smaller constituents. However, developments in the
Grand Unification Theories (GUTs) have suggested that
it might decay with a half-life of ∼ 1032 years. De-
spite this prediction, at present, there is currently no
experimental evidence whatsoever that Proton decay ac-
tually occurs. Be that it may, at a 90% confidence level,
recent experiments [7] at the Super-Kamiokande water
Cherenkov radiation detector in Japan gave lower limits
for Proton half-life of about 6.60 × 1033 years via anti-
Muon decay (p 7→ µ+π0) and about 8.20 × 1033 years
via positron decay (p 7→ e+π0), while newer, preliminary
results from the Super-Kamiokande seem to estimate a
newer half-life of no less than ∼ 1.29 × 1034 years via

positron decay[28]. If anything, it looks like experiments
are pushing this value further and further from the initial
prediction of ∼ 1032 years.

The up-quark carries an electric charge of + 2
3e while



2

the down-quark carries an electric charge of − 1
3e. Why

the Proton [together with the Neutron with gn =
−3.82608545(90)] contains three quarks is not known and
worse off, why these quarks contain fractional charges.
Furthermore, it is presently a complete mystery as to
why the Proton, together with the Neutron possess the
gyromagnetic ratios that they possess. Their non-Dirac
gyromagnetic ratios have been taken to mean they are
not fundamental Dirac particles.
This work does not make the claim that it conclusively

addresses these three issues – we merely lay down a pro-
posal that seeks to address them. In so doing, we hope
that this reading gives credence to the work present in
Refs [1, 8]. Further, we hope this work that we present in
series of papers is going to generate debate on the afore-
cited works [1, 8]; on whose shoulders the present work
stands.
Now, we give the synopsis of the present reading – it

is organised as follows: in section “Dirac Equation”, for
instructive purpose, we formally present the Dirac equa-
tion. In section “Curved Spacetime Dirac Equations”,
we give an exposition of the proposed curved spacetime
Dirac equations in the context of the proposed UFT [8].
In section “Why Three Quarks”, we embark on the main
task of the presenting where we make the endeavour to
answer the question of why the Proton (or hadrons in
general) has (have) three and not four quarks or any
number of quarks. In section “Derivation: Quark Equa-

tions”, in accordance with the present model, we present
the equations governing the three quarks. Lastly, in sec-
tion “General Discussion”, we give a general discussion
and the conclusion drawn from the present reading.

DIRAC EQUATION

For a particle whose rest-mass and wave-function are m0

and |ψ〉 respectively, its Dirac equation is given by:

[ı~γµ∂µ −m0c] |ψ〉 = 0, (1)

where:

γ0 =

(
I2 0
0 −I2

)

, γi =

(
0 σi

−σi 0

)

, (2)

are the 4 × 4 Dirac gamma matrices (I2 and 0 are the
2×2 identity and null matrices respectively) and |ψ〉 is the
four component Dirac wave-function, ~ is the normalized
Planck constant, c is the speed of light in vacuum, ı =√
−1 and:

|ψ〉 =

∣
∣
∣
∣
∣
∣
∣
∣

ψ0

ψ1

ψ2

ψ3

〉

=

∣
∣
∣
∣

ψL

ψR

〉

, (3)

is the Dirac 4× 1 four component wavefunction and |ψL〉
and |ψR〉 are the Dirac bispinors that are defined such
that:

|ψL〉 =
∣
∣
∣
∣

ψ0

ψ1

〉

and |ψR〉 =
∣
∣
∣
∣

ψ2

ψ3

〉

, (4)

Throughout this reading – unless otherwise specified; the
Greek indices will here-and-after be understood to mean
(µ, ν, ... = 0, 1, 2, 3) and the lower case English alpha-
bet indices (i, j, k ... = 1, 2, 3). Further - throughout this
reading – in the presentation of the wavefunction, we
shall use the Dirac Notion as has already been done.

CURVED SPACETIME DIRAC EQUATIONS

Since the time that we first set our mind on the Dirac
equation [2, 3] and understood it at a common consensus
level, we have had the general inexplicable inner feel-
ing – call it intuition or what you will; that, despite its
great and unparalleled success in explaining a vastness of
phenomenon in the quantum world, there is dire need to
revisit this equation at its most fundamental and elemen-
tary level if physics is to make its next great leap forward.
This feeling is shared by other researchers as-well [9–11].
At the genesis of our quest to understand at a much

deeper level the Dirac equation, our first port of call was
to ask:

“If any, what is its [the Dirac equation] gen-
eralization in curved spacetime?”

This question we asked despite our knowledge in the exis-
tence of alternative attempts [12–20] at a Curved Space-
time (CST) Dirac equation. Our general feeling which led
us directly to search for yet another CST-Dirac equation
is that we strongly felt the issue of the preponderance of
matter over antimatter (which the bare Dirac equation
fails to explain) should be explained by a more general
Dirac equation such as a CST-Dirac equation.
As is well known, the Dirac equation exhibits a perfect

symmetry, that is to say, it obeys the charge conjuga-
tion symmetry (C-symmetry), space conjugation sym-
metry (P-symmetry), time conjugation symmetry (T-
symmetry) and any combination of these there symmet-
rices i.e. CP, CT, PT and CPT-symmetries. The afore-
mentioned alternatives [12–20] also uphold these symme-
tries. We felt a CST-Dirac equation should violate some
of these symmetries in which event one might be able to
explain the preponderance of matter over antimatter. We
have since demonstrated [21], that the CST-Dirac equa-
tions [1] do violate some of the above mentioned sym-
metries and this violation can – in-principle - be used
to explain the preponderance of matter over antimatter.
We will be clear here on the afore-cited work [21], that it



3

is on-going work, the meaning of which is that its find-
ings should be taken as preliminary and at the sametime
seriously.
As is common knowledge, the Dirac equation is an

equation applicable to a Minkowski spacetime and not to
a curved spacetime. As pointed above, other researchers
have proposed alternative versions of the curved space-
time Dirac equation [12–20]. However, this did not de-
tour nor dent our searching spirit in seeking another ver-
sion of the Dirac equation on a curved spacetime. Our
quest culminated in the publication of the reading [1].
With all modesty – allow us to say that, what makes

the effort [1] unique in comparison to these other efforts
[12–20] on the same endeavour is that the approach, that
has been used to arrive at the proposed curved spacetime
Dirac equations therein [1], is the same as that used by
Dirac in arriving at his equation. This approach [1] is
the simplest imaginable when compared to these other
efforts seeking a curved spacetime Dirac equation.
As is well known – i.e. – with regard to how Dirac

arrived at his equation – is that - Dirac was motivative by
his displeasure with the Klein-Gordon equation [22, 23]:

� |ψ〉 =
(m0c

~

)2

|ψ〉 . . .
(

where � = ∇
2 − 1

c2
∂2

∂t2

)

,

(5)
because it gave negative probabilities which are obviously
meaningless[29]. His suspicion was that this was as a
result that the Klein-Gordon equation was second order
in the space and time derivatives. So, he decided to write
an equation which is first order in the space and time
derivatives. He [Dirac] proposed that this equation be
given by:

[

γ0 ∂

∂ct
+ γ1 ∂

∂x
+ γ2 ∂

∂y
+ γ3 ∂

∂z

]

|ψ〉 = −ı
(m0c

~

)

|ψ〉 , (6)

such that “upon squaring”, this equation (6) should yield
the usual Klein-Gordon equation [2]. What Dirac noted
about this linearised equation is that the mathematical
objects γµ : (µ = 0, 1, 2, 3) can not be ordinary num-
bers but that at the very least, these can only be 4 × 4
matrices. After the serendipitous milestone achievement
of the discovery of the Dirac equation, our modest, fee-
ble but very strong feeling is that the next logical step
should have been to seek a curved spacetime version of
this noble and beautiful equation. It is our strong feel-
ing that this curved spacetime Dirac equation must have
been sort alone the same lines as those championed by
Dirac on his journey of discovering the Dirac equation.

For some reason, researchers have had other ideas as this
seems to have skipped them somehow.
On our part in the search for such an equation alone

the Dirac’s path, in [1], what we did was to take-off from
the first step taken by Dirac (i.e. equation 6); were we
judiciously added by the sleight of hand, a space and time
varying four vector function Aµ = Aµ(r, t) as follows:

[

A0γ0 ∂

∂ct
+ A1γ1 ∂

∂x
+ A2γ2 ∂

∂y
+A3γ3 ∂

∂z

]

|ψ〉 = −ı
(m0c

~

)

|ψ〉 .
(7)

As Dirac did (provided γµ(1)A
µ∂µA

ν∂ν |ψ〉 = 0), if we

are to demand that “upon squaring”, this equation (7)
should result in the curved spacetime Klein-Gordon equa-
tion i.e.:

gµν(1)∂µ∂ν |ψ〉 =
(m0c

~

)2

|ψ〉 , (8)

then, inevitably, one comes to the interesting conclusion
that the metric of spacetime gµν(1) must now be such that

it is given by gµν(1) = 1
2 {Aµγµ, Aνγν}, where:

gµν(1) =







+A0A0 0 0 0
0 −A1A1 0 0
0 0 −A2A2 0
0 0 0 −A3A3







I4. (9)

The object I4 in equation (9), is the 4×4 identity matrix.
In this way, gµν(1) = 1

2 {Aµγµ, Aνγν} is now a function of a

four vector. The bracket {, } in gµν(1) = 1
2 {Aµγµ, Aνγν}

is the usual anticommutator bracket. Additionally, we
have written the metric gµν(1) with a subscript “(1)”; this

we have done with the anticipation of the two other met-
rics, namely gµν(2) and gµν(3). The metric gµν(1) has all the

off-diagonals equal to zero. We should in general be able
to have a metric with non-zero off-diagonals.
In the new setting, the metric no-longer is a function

of ten potentials as before but of four! This is an obvious
reduction in complexity. Further, we noted that the pro-
posal (7) resulted in three versions of the curved space-
time Dirac equation [1]. Thus far, not much exploration
of these equations has been done by other researchers
other than ourself. Because this reading unearths some-
thing that no other endeavours on the Dirac equation
have unearthed, we are hoping that this reading might
lead to a change of fortunes insofar as the appreciation
of these CST-Dirac equations is concerned.
To obtain a second equation, we write:

[

A0γ0(2)
∂

∂ct
+A1γ1(2)

∂

∂x
+A2γ2(2)

∂

∂y
+A3γ3(2)

∂

∂z

]

|ψ〉 = −ı
(m0c

~

)

|ψ〉 , (10)
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where:

γ0
(2) =

(

I2 0
0 −I2

)

= γ0,

γk
(2) =

1
2





2I2 ı
√
2σk

−ı
√
2σk −2I2



 .

(11)

The object I2 is the 2× 2 identity matrix.
Now, as Dirac did (provided γµ(2)A

µ∂µA
ν∂ν |ψ〉 = 0),

if we are to demand that “upon squaring”, this equation
(10) should result in the curved spacetime Klein-Gordon
equation i.e.:

gµν(2)∂µ∂ν |ψ〉 =
(m0c

~

)2

|ψ〉 , (12)

then, inevitably, one comes to the interesting conclusion
that the metric of spacetime gµν(2) must now be such that

it is given by gµν(2) = 1
2

{

Aµγµ(2), A
νγν(2)

}

, where:

gµν(2) =







+A0A0 +A0A1 +A0A2 +A0A3

+A1A0 −A1A1 +A1A2 +A1A2

+A2A0 +A2A −A2A2 +A2A2

+A3A0 +A3A +A3A2 −A3A3







I4. (13)

As one would expect for a generally curved spacetime
metric, the metric gµν(2) has non-zero off-diagonals terms.

We should in general be able to have a metric with non-
zero off-diagonals.

For the third equation, we write:

[

γ0
(3)

∂

∂ct
+ γ1

(3)

∂

∂x
+ γ2

(3)

∂

∂y
+ γ3

(3)

∂

∂z

]

|ψ〉 = −i
(m0c

~

)

|ψ〉 , (14)

where now:

γ0(3) =

(
I2 0
0 −I2

)

= γ0,

γk(3) = − 1
2





2I2 ı
√
2σk

−ı
√
2σk −2I2



 .

(15)

As before (provided γµ(3)A
µ∂µA

ν∂ν |ψ〉 = 0), if we are to

demand that “upon squaring”, this equation (14) should
result in the curved spacetime Klein-Gordon equation
i.e.:

gµν(3)∂µ∂ν |ψ〉 =
(m0c

~

)2

|ψ〉 , (16)

then, inevitably, one comes to the interesting conclusion
that the metric of spacetime gµν(3) must now be such that

it is given by gµν(3) = 1
2

{

Aµγµ(3), A
νγν(3)

}

, where:

gµν(3) =







+A0A0 −A0A1 −A0A2 −A0A3

−A1A0 −A1A1 +A1A2 −A1A3

−A2A0 −A2A1 −A2A2 −A2A3

−A3A0 −A3A1 +A3A2 −A3A3







I4. (17)

Again, as one would expect for a generally curved space-
time metric, the metric gµν(3) has non-zero off-diagonals
terms.

In-general[30], equations (7), (10) and (14) can all be
written in a condensed form as:

ı~Aµγµ(a)∂µ |ψ〉 = m0c |ψ〉 , (18)

where the 4× 4 matrices γµ(a) are such that:

γ0(a) =

(
I2 0
0 −I2

)

= γ0,

γk(a) =
1
2





2λaI2 ıλa|λa|
√
2|λa|σk

−ıλa|λa|
√
2|λa|σk −2λaI2



 .

(19)

The λa’s in (19) are defined such that when:

a =







1, then (λ1 = 0) : Quadratic Spacetime (QST).
2, then (λ2 = +1) : Parabolic Spacetime (PST).
3, then (λ3 = −1) : Hyperbolic Spacetime (HST).

(20)

The index “a” is not an active index as are the Greek in-
dices. This index labels a particular curvature of space-
time i.e. whether spacetime is flat[31], positive or nega-
tively curved as defined by the resulting metric gµν(a) which

is given in equation (22).
In summary and in a condensed form – provided the

condition holds (γµ(a)A
µ∂µA

ν∂ν |ψ〉 = 0); squaring (18)

in the usual Dirac way of squaring, results in the Klein-
Gordon equation:

gµν(a)∂µ∂ν |ψ〉 =
(m0c

~

)2

|ψ〉 , (21)

where the general and condensed metric gµν(a) is such that:
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gµν(a) =







+A0A0 λA0A1 λA0A2 λA0A3

λA1A0 −A1A1 λA1A2 λA1A3

λA2A0 λA2A1 −A2A2 λA2A3

λA3A0 λA3A1 λA3A2 −A3A3







I4. (22)

The condition (γµ(a)A
µ∂µA

ν∂ν |ψ〉 = 0), shall be taken as

a gauge condition imposed upon the four vector potential
Aµ and the wavefunction |ψ〉. Alternatively, the above
metric can in-short, be written as:

gµν(a) = 1
2

{

Aµγµ(a), A
νγν(a)

}

= 1
2

{

γµ(a), γ
ν
(a)

}

AµAν

= σµν

(a)A
µAν

. (23)

where σµν

(a) =
1
2

{

γµ(a), γ
ν
(a)

}

. What we have just done is

to give a exposition of the seemingly banal CST-Dirac
equations that we first presented in [1]. Equation (18) is
the most general way of writing these three equations (7,
10, 14). Apart from the said exposition, what we have
done is to demonstrate that the metric tensor is suscep-
tible to decomposition into a tensor field describable by
four unique fields that form a relativistic four vector. In
[24]’s General Theory of Relativity (GTR), the metric
tensor exists as a compound mathematical object com-
prising ten unique fields.
Now, after having written down this CST-Dirac equa-

tion (18), we wondered what interpretation to give to
the four vector Aµ. It is then that we developed the all-
encompassing Unified Field Theory (UFT) given in [8].
At first sight, it is tempting to identify Aµ with the elec-
tromagnetic four vector potential of the particle in ques-
tion. Our investigation in [25] lead us on a different path.
This path however still allows for the this four vector Aµ

to be a function of the electromagnetic four vector po-
tential of the particle in question. As such, in the present
reading, we shall take Aµ to be the electromagnetic four
vector potential of the particle in question.

WHY THREE QUARKS

We now come to the first part of what this reading is all
about. Our first port of call is to answer the question as
to why three quarks are found in a Proton. In-order for
us to answer the question as to why three quarks and not
four or any other number, we will have to do some little
linear algebra. The fact that the Dirac wavefunction ψ
can be written as a set of two by bispinors, this fact alone
is enough to prove why there must exist three quarks in
a Proton. This very fact that the wavefunction is a set
of two by bispinors implies that it can be decomposed

into a linear combination of three fundamental bispinors
spanning a vector space.
In general, a basis of a vector space V is defined as

a subset (v1, . . . , vn) of vectors in V that are linearly
independent and this set of subset of vectors spans V .
Consequently, if (v1, . . . , vn) is a list of vectors in V , then
these vectors form a basis if and only if every (v ∈ V )
can be uniquely written as (v = a1v1+ · · ·+anvn) where
ak are elements of the base field. The base field is almost
always a real number (∈ R) or a complex number (∈ C).
A vector space V will have many different bases, but
there are always the same number of basis vectors in each
of them. The number of basis vectors in V is called the
dimension of V . Every spanning list in a vector space
can be reduced to a basis of the vector space.
Given the above, it is not difficult to show that if

the Dirac wavefunction is taken as an ordered pair of
bispinors, then, this wavefunction can be decomposed
into a set of three linearly independent set of bispinors
|ψj〉, that is to say:

|ψ〉 =
3∑

j=1

qjτj |ψj〉 , (24)

where (qj ∈ R) are the usual probability coefficients of a
quantum mechanical wavefunction, and τj is such that:

τj =

(
σj 0
0 σj

)

for (j = 1, 2, 3). (25)

The matrix τj commutes with the γµ(a), i.e.:

[

τj , γ
µ

(a)

]

≡ 0. (26)

Like the Dirac wavefunction (2), the sub-system |ψj〉, is
defined:

|ψj〉 =

∣
∣
∣
∣
∣
∣
∣
∣

ψj0

ψj1

ψj2

ψj3

〉

=

∣
∣
∣
∣

ψjL

ψjR

〉

, (27)

where, likewise:

|ψjL〉 =
∣
∣
∣
∣

ψj0

ψj1

〉

and |ψjR〉 =
∣
∣
∣
∣

ψj2

ψj3

〉

. (28)

From the above, it follows that:

〈ψ| |ψ〉 =
3∑

j=1

q2j 〈ψj | |ψj〉 , (29)
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The wavefunction |ψ〉 is normalised (〈ψ| |ψ〉 = 1), so are
the sub-states |ψj〉, that is to say: 〈ψj| |ψj〉 = 1. It
follows from this and from (29) as-well, that:

3∑

j=1

q2j = 1. (30)

In general, the q’s can be complex and time variable.
However, in our model, these are fixed by the internal
logic of the theory so that they (the q’s) are real and
eternally fixed. In the end, they (the q’s) also determine
the fractional charges of quarks.

DERIVATION: QUARK EQUATIONS

In-order to write down the equations that govern the
three sub-systems |ψj〉, we will need to decompose the
matrix γµ(a). Each of these sub-systems |ψj〉 are going to

have their own matrix γµ(a) which we shall denote γµ(aj)
:

aj is defined as (aj = j). Now, in our decomposition of
γµ(a), we shall write γµ(a) as a linear combination of the

matrices γµ(aj)
, i.e.:

γµ(a) = ±
3∑

j=1

qjγ
µ

(aj)
. (31)

From the definitions of |ψj〉 and γµ(a) in (24) and (31)

respectively, it follows that:

γµ(a) |ψj〉 =
3∑

i=1

3∑

j=1

qiqjγ
µ
ai
τj |ψj〉 (32)

For the equations that we seek, in-order for them to
describe particles that behave independently with no
clearly visible interference with one another – in their
totality – the ij-cross-terms i.e., the terms for which
(i 6= j), these must vanish identically. Without destroy-
ing the particle system into a senseless triviality, this can
be achieved if we set:

γµ(ai)
τj |ψj〉+ γµ(aj)

τi |ψi〉 = 0, for (i 6= j). (33)

This attainable condition (33) can be summed-up as:

〈ψj |
[

τj

(

γµ(ai)

)−1

γµ(aj)
τi

]

|ψi〉 = −1, for (i 6= j). (34)

In (34), the matrix γµ
−1

(ai)
is the inverse of γµ(ai)

. With (33)

as a given, it follows that:

γµ(a) |ψ〉 =
3∑

j=1

q2j γ
µ
aj
τj |ψj〉 . (35)

Now, inserting (24) and (35) into (18), we will have:

3∑

j=1

[

ı~q2j τjA
µγµ(aj)

∂µ − qjτjm0c
]

|ψj〉
︸ ︷︷ ︸

Must Vanish Identically

= 0. (36)

Clearly, if the sub-systems |ψj〉 are to act as independent
non-interacting particles – as quarks do; then, the term
in (36) in the under-brace (or, in the summation sign:
∑3

j=1) must vanish identically. This implies:

[

ı~q2j τjA
µγµ(aj)

∂µ − qjτjm0c
]

|ψj〉 = 0, for (j = 1, 2, 3).

(37)
By dividing (37) throughout by qj and multiplying by
τ−1
j from the left, this equation (37) reduces to:

[

ı~qjA
µγµ(aj)

∂µ −m0c
]

|ψj〉 = 0, for (j = 1, 2, 3).

(38)
This equation (38), is our sought for equation which gov-
erns the behaviour and evolution of the three sub-systems
|ψj〉. We shall call these sub-systems |ψj〉, quarks. From
this equation, it is manifestly clear that if Aµ represents
a quantum of the electromagnetic field, qjA

µ represents
a fraction of this quantum if (qj < 1). Thus, if the pro-
posed equation (38) is that of the three quarks found
inside the Proton, the q’s must match with the q-values
obtained from experimental philosophy.
Now, in order that our claim be believable or that this

claim have some real substance to it – i.e., the claim
that the sub-systems |ψj〉 be regarded as quarks; there
obviously is need to at least demonstrate that the elec-
tronic charges qj of these particles, are as they are found
in Nature for quarks, that is: (qj = ±1/3,∓2/3,∓2/3).
We shall indeed demonstrate in Paper (II) that (qj =
±1/3,∓2/3,∓2/3). In the present, all we have done is to
demonstrate that the system of equations that we have
proposed [1] allows for a composite particle to have or to
comprise of three distinct “non-interacting” sub-systems
(sub-particles). The three quark can each have distinct
spacetime configurations: gµν(1), g

µν

(2) and g
µν

(3).

GENERAL DISCUSSION

The all-beautiful Dirac equation has been in existence
for 88 years now. After it was discovered and promptly
accepted, it was taken-up [by Dirac; Richard Feynman
(1918− 1987); Julian Seymour Schwinger (1918− 1994);
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etc] and used to develop QED and QFT. Today, the Dirac
equation is an integral part of the Standard Model of
Particle Physics (SMPP). It is such an indispensable and
integral part of the SMPP without which the SMPP can
not be understood. Actually, it is unimaginable to imag-
ine someone trying to understand the SMPP without the
Dirac equation. Despite all this, there is still much more
that we are to learn from this noble equation.

In our approach to trying to get a better understand-
ing of the Dirac equation, we have had to go back in
time to 1928 and seek a curved spacetime version of this
equation directly from the curved spacetime version of
the Klein-Gordon equation. This curved spacetime Dirac
equation we have demanded that it be derived using the
same prescription as that used by Dirac when he derived
his beautiful equation from the Minkowski version of the
Klein-Gordon equation. To a larger extent, we believe we
did succeed in this endeavour. As we shall demonstrate
in our series of readings – our seemingly banal approach
[1] to a curved spacetime Dirac equation is not only dif-
ferent from the common approaches that have been used
by other researchers [12–20], but it brings in very inter-
esting insights into some of the intriguing questions in
particle physics.

In the present, we have demonstrated that one can
use these three equations to account for the three quarks
found inside the Proton. This approach can also be em-
ployed to the original Dirac equation. However – as
we shall demonstrate in the second reading is that, if
one employs the Dirac equation alone, they will not be
able to account for the fractional quark charges as in
this Dirac theory with three independent subsystems,
the electronic charges of these subsystems will have to
be variable. This variability of the electronic charges
does not entail a violation of the Law of Conservation
of electronic charge. Despite this, we know that this
variability of the electronic charge of quarks is not the
case in Nature. In exact conformity with the reality
of Nature as we have experience Her, we will demon-
strate in Paper (II) that our proposed scheme of trying
to explain the Proton yields the much desired “magic
numbers” (qj = ± 1/3,∓2/3,∓2/3). Allow us with
modesty to say that – this [theoratical prediction that
(qj = ± 1/3,∓2/3,∓2/3)] is a significant noteworthy
achievement of the theory.

In-closing – further allow us to say that, in all the
existing literature – at least the vast literature that we
have had the fortune of peruse; there seems to not exist
a theory that explains why there should be three quarks
(subsystems) inside a Proton and worse-off, any theory
that has produced the exact electronic charges of these
quarks. This achievement of the proposed CST-Dirac
equations [1] to explain the fractional electronic charges
as they are found Nature, this ought to be taken as the
clearest evidence yet, that the proposed CST-Dirac equa-
tions [1] may contain in them a potent gem of truth that

has a possible correspondence with physical and natural
reality.
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