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The present reading is the third in series where we suggest a Dirac equation for the Proton.
Despite its great success in explaining the physical world as we know it, in its bare form, not only
is the Dirac equation at loss but fails to account e.g. for the following: (1) Why inside hadrons
there are three, not four or five quarks; (2) Why quarks have fractional charges; (3) Why the
gyromagnetic ratio of the Proton is not equal to two as the Dirac equation requires. In the present
reading, we make an attempt to answer the third question of why the gyromagnetic ratio of the
Proton is not equal to two as the Dirac equation requires. We show that from the internal logic of
the proposed theory – when taken to first order approximation, we are able to account for ∼ 55.7%
[2.000000000] of the Proton’s excess gyromagnetic ratio [3.585694710(50)]. The remaining ∼ 44.3%
[1.585694710(50)] can be accounted as a second order effect that has to do with the Proton having
a finite size.

PACS numbers: 03.65.Pm, 11.30.j, 04.62.b, 04.62.+v, 98.80.Jk, 04.40.b

INTRODUCTION

The present reading is the third in series where we sug-
gest a Dirac equation for the Proton (and in a latter
reading, an equation for the Neutron as-well). In the first
part [1] [hereafter Paper I], an attempt was made at an-
swering the question of why the Proton has three quarks
and not any other number like 4, 5, 6, . . . etc. In the sec-
ond part [2] [hereafter Paper II], further attempts where
made at answering not only the question of why these
quarks which are held ‘eternal prisoners ’ inside the Pro-
ton have fractional electrical charges, but it was demon-
strated why these quarks have the very charges that they
are found to have in Nature. In the present reading, we
address the issue of the relatively large Proton gyromag-
netic ratio (g-factor), i.e., why the gyromagnetic ratio
of the Proton [3–5] differs significantly from Dirac’s bare
and natural value of (g = 2).

Historically, when the Dirac equation [6, 7] was
discovered by the eminent British physicist, Paul Adrien
Maurice Dirac (1902 − 1984) in 1928 while staring at a
fire [8], he christened it the “Equation of the Electron”
because it did two remarkable things, i.e.:

(1).It explained the then mysterious origins of the Electron’s
spin as a relativistic phenomenon.

(2).Without precedent, it gave the correct value (ge ≃ 2) of
the gyromagnetic ratio of the Electron.

Given this, and what we have thus far done i.e.:

(1).In Paper (I), we have – on the legitimate mathematical
grounds of the rich Lie-Algebra and the fact that the

Dirac 4 × 1 wavefunction is a bispinor of two bispinors;
accounted for the existence of the three quarks believed
to make-up the Proton.

(2).In Paper (II), we have deduced from the internal logic of

the proposed Proton model, the correct fractional elec-

tronic charges of these quarks i.e. qj = (± 1
3
,∓ 2

3
,∓ 2

3
).

and that in the present reading we are going to give an
acceptable account of the Proton g-factor, whose latest
measured value is gp = 5.585694710(50) [9]; these facts
all but point an “Equation for the Proton”. Off cause,
there is still a lot more to be done but these achievements
should be considered sufficient to be considered worth-
while to explore the proposed three Curved Spacetime
(CST)-Dirac equations of [10] as candidate equations for
further understanding of not only the Proton, but the
Neutron as-well.

The Proton is a Baryon and is considered to be com-
posed of two up quarks (u) and one down quark (d).
Further, it is considered to be a stable particle, the mean-
ing of which is that it does not decay into smaller con-
stituents. However, developments in the Grand Unifica-

tion Theories (GUTs) have suggested that it might decay
with a half-life of∼ 1032 years. Despite this prediction, at
present, there is currently no experimental evidence that
Proton decay occurs. Be that it may, at a 90% confidence
level, recent experiments at the Super-Kamiokande water
Cherenkov radiation detector in Japan gave lower limits
for Proton half-life of about 6.60 × 1033 years via anti-
Muon decay (p 7→ µ+π0) and about 8.20× 1033 years via
positron decay (p 7→ e+π0) [11], while newer, preliminary
results from the Super-Kamiokande seem to estimate a
newer half-life of no less than ∼ 1.29 × 1034 years via
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positron decay[26]. If anything, it looks like experiments
are pushing this value further and further from the initial
prediction of ∼ 1032 years.
The up-quark carries an electric charge of + 2

3e while
the down-quark carries an electric charge of − 1

3e. Why
the Proton [together with the Neutron with gn =
−3.82608545(90)] contains three quarks is not known and
worse off, why these quarks contain fractional charges.
Furthermore, at present, it is a complete mystery as to
why the Proton, together with the Neutron possess the
gyromagnetic ratios well in excess of the Dirac prediction
of (g = 2).
This reading (and the entire work) does not make the

claim that it conclusively addresses these three issues –
but, we merely lay down a proposal that seeks to address
them. This proposal is meant to generate debate. We
make use of the recently Unified Field Theory (UFT)
proposed in the reading [12] and as-well the proposed
Curved Spacetime (CST) Dirac Equations proposed in
[10]. In so doing, we hope that this reading gives credence
to these works: [10, 12]. Further, we hope this reading
will generate debate on these said works – [10, 12], on
whose shoulders the present work stands.

CURVED SPACETIME DIRAC EQUATIONS

For instructive and completeness purposes, we here give
a re-cap of the CST-Dirac equations. For a particle of
rest mass m0 whose Dirac 4 × 1 wavefunction is ψ, the
proposed general curved spacetime Dirac equation [10]
for such a particle is such that:

[

ı~Aµγµ(a)∂µ −m0c
]

ψ = 0, (1)

where we shall take Aµ is the four electromagnetic vector
potential of the particle in question and 4 × 4 matrices
γµ(a) are such that:

γ0(a) =

(
I2 0
0 −I2

)

= γ0,

γk(a) =
1
2





2λaI2 ıλa|λa|
√
2|λa|σk

−ıλa|λa|
√
2|λa|σk −2λaI2



 .

(2)

In (2), σk and I2 are the usual 2×2 Pauli matrices and the
identity matrix respectively. The λa’s in (2) are defined
such that when:

a =







1, then (λ1 = 0) : Quadratic Spacetime (QST).
2, then (λ2 = +1) : Parabolic Spacetime (PST).
3, then (λ3 = −1) : Hyperbolic Spacetime (HST).

(3)

The index “a” is not an active index as are the Greek in-
dices. This index labels a particular curvature of space-
time i.e. whether spacetime is flat[27], positive or nega-
tively curved as defined by the resulting metric gµν(a) which

is given in equation (6). In a condensed form – provided
the ‘gauge’ condition:

γµ(a)A
µ∂µA

ν∂νψ = 0, (4)

holds – then, squaring (1) in the usual Dirac way of
squaring[28], results in the Klein-Gordon equation:

gµν(a)∂µ∂νψ =
(m0c

~

)2

ψ, (5)

where the general and condensed metric gµν(a) is such that:

gµν(a) =













+A0A0 λaA
0A1 λaA

0A2 λaA
0A3

λaA
1A0 −A1A1 λaA

1A2 λaA
1A3

λaA
2A0 λaA

2A1 −A2A2 λaA
2A3

λaA
3A0 λaA

3A1 λaA
3A2 −A3A3













I4.

(6)
The condition (4), shall be taken as a gauge condition
imposed upon the four vector potential Aµ and the wave-
function ψ.

GENERAL SPIN CURVED SPACETIME DIRAC

EQUATIONS

As we did in the reading [13], for instructive purposes –
we are now going to transform the CST-Dirac equation
(1), into a General Spin Curved Spacetime (GSCST)
Dirac equation. As it stands, equation (1) would be a
horribly complicated equation insofar as its solutions
are concerned because the vector Aµ is expected to be
a function of space and time i.e. Aµ = Aµ(r, t). Other
than a numerical solution, there is no foreseeable way to
obtain an exact solution is if that is the case. However,
while pondering on possible solutions of (1), we found
a way round the problem of taming this otherwise
horribly complicated equation; we realised that this
vector can actually be used to arrive at a GSCST-Dirac
equation thereby drastically simplifying the equation.
This simplification scheme requires that:

(1).For Aµ, we set:

Aµ = φsµ, (7)

where sµ is vector that has no space nor time
dependence (we shall define this vector shortly) and
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φ = φ(r, t) is a scalar field. It has been shown in
the UFT presented in [12], that, indeed, one can
take Aµ as the electromagnetic four vector potential
of the particle in question as one can show [12] that
this vector represents not only the electromagnetic
field of the particle in question, but its Weak and
Strong Force Fields as-well.

(2).For the rest-mass, m0 of the particle, we replace this
with m0φ, that is to say:

m0 −→ m0φ. (8)

Inserting (7) and (8) into (1), one obtains:

[

i~γµ(as)∂µ −m0c
]

ψ = 0. (9)

where the new 4× 4 γ-matrices (γµ(as) = sµγµ(a)) are now

defined such that:

γ0(as) = s0
(

I2 0
0 −I2

)

,

γk(as) =
1
2s

k





2λaI2 ıλa|λa|
√
2|λa|σk

−ıλa|λa|
√
2|λa|σk −2λaI2



 ,

(10)
and [(s0 = 1); (sk = ±1,±2,±3, . . . etc)] (for justifica-
tion of this, see[13–15]). Since sµ is four vector, γk(as) is

a four vector as-well. Further, the space vector sk deter-
mines the spin of the particle. Furthermore, multiplica-

tion of (9) from the left by
[

i~γν(as)∂ν +m0c
]

, results in

the Klein-Gordon equation:

gµν(as)∂µ∂νψ =
(m0c

~

)2

ψ, (11)

where:

gµν(as) =
1

2

{

γµ(as), γ
ν
(as)

}

= σµν
(as). (12)

The space and time variable four vector Aµ has been
removed from our midst and has been replaced by the
non-space and non-time variable from vector sµ. From
here-on, we shall use equation (9) as our GSCST-Dirac
equation.

PROTON

As pointed out in the two readings [10, 13], each of the
three configuration gµν(as) (as represented by the a-index)

represent a particle of different energy. Consequently,
what this means is that one is able to explain the exis-
tence of the three generations that are seen in Leptons
and Quarks. We do not intend to go deep into these
matters here as there is a reading – which is part of the
present series of readings – where this issue is tackled.
What we want to point out here is that – for a given spin
setting, the present theory predicts three possible energy
states and this applies to all fundamental particles in-
cluding the Proton.
In the case of the Proton, in-order that they contain

quarks as we known them, these three possible configu-
rations must yield:

qj :=






±1

3
︸︷︷︸

q1

, ∓2

3
︸︷︷︸

q2

, ∓2

3
︸︷︷︸

q3






. (13)

As one can verify for themselves, the following three con-
figurations do just that, i.e.:

γµ(1s) = q1γ
µ
(1s) + q2γ

µ
(2s) + q3γ

µ
(3s) : 7→ (123) Configuration.

γµ(2s) = q1γ
µ
(2s) + q2γ

µ
(2s) + q3γ

µ
(3s) : 7→ (223) Configuration.

γµ(3s) = q1γ
µ
(3s) + q2γ

µ
(2s) + q3γ

µ
(3s) : 7→ (323) Configuration.

(14)
The configuration γµ(1s) represents the spin s/2 quadratic

Proton (a = 1), γµ(2s) represents the spin s/2 parabolic

Proton (a = 2) while γµ(3s) represents the spin s/2 hy-

perbolic Proton (a = 3). As afore-stated, we reiterate
that each configuration (γµ(1s), γ

µ
(2s) & γµ(3s)) has a differ-

ent mass and represents a generation of the Proton (or
the fundamental particle in question).
The (123)-configuration should contain three differ-

ent quarks, while the (223) and (323)-configuration con-
tains two quarks of the same kind with the third being
of the different kind. Given that the Proton contains
two u-quarks and one d-quark, it follows that the Pro-
ton must be described by one of the two configurations
[(223), (323)]. At the moment, we can not discern which
of the two represents the Proton as we know it. This is
something for latter readings. For the purposes of cal-
culating the g-factor, it will not affect our outcome as
these two configurations have the same gyromagnetic ra-
tio. In the next section, we present the calculation for
the gyromagnetic ratio for the three configurations.

GYROMAGNETIC RATIO

Now, we are going to calculate the gyromagnetic ratio for
the hyperbolic and parabolic particle respectively. As
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before, we proceed by taking the particle [i.e. the hy-
perbolic and parabolic particle: where a = (2, 3)] and
then placing it in an ambient magnetic field Aex

µ . To in-
cooperate this ambient magnetic field Aex

µ into the Dirac
equation (9), we have to replace the partial derivatives
∂µ with (Dµ = ∂µ − iqAex

µ /~) where q is the electrical
charge of the Proton (or the particle in question), i.e.

(∂µ 7→ Dµ). So doing will result in (9) reducing to:

[

i~γµ(as)Dµ −m0c
]

ψ = 0. (15)

Acting on this equation (15) from the left handside using

the operator
(

i~γµ(as)Dµ +m0c
)

, one obtains:

[

γµ(as)γ
ν
(as)DµDν +

m2
0c

2

~2

]

ψ = 0. (16)

We know that:

γµ(as)γ
ν
(as)DµDν = 1

2

({

γµ(as), γ
ν
(as)

}

+
[

γµ(as), γ
ν
(as)

])

DµDν

= ηµν(as)DµDν + σµν
(as)DµDν

,

(17)

where (ηµν(as) =
{

γµ(as), γ
ν
(as)

}

) & (σµν
(as) =

[

γµ(as), γ
ν
(as)

]

);

and:

σµν
(as)DµDν =

1

2
σµν
(as) [Dµ, Dν ] =

ıq

2~
σµν
(as)Fµν =

ıne

2~
σµν
(as)Fµν .

(18)

In the above equation (18), we have written (q = ne),
where [e = 1.6021766208(98)× 10−19C] is the elemen-
tary electrical charge and (n = 0,±1) where (n = 0) for
an electrically neutral particle, (n = −1) for negatively
change particle like an Electron and (n = +1) for nega-
tively changed particle like a Proton.

The components of σµν
(as) are such that (σii

(as) = 0),

with (σ0k
(as) & σk0

(as)), defined such that:

σ0k
(as) = σk0

(as) =





0 ıλa|λa|
√
2|λa|skσk

ıλa|λa|
√
2|λa|skσk 0



 ,

(19)

and:

σij
(as) = −









1
2
ı2λa|λa|+12|λa|sisj [σi, σj ] λaı

λa|λa|
√
2|λa|(siσi − sjσj)

λaı
λa|λa|

√
2|λa|(siσi − sjσj) 1

2
ı2λa|λa|+12|λa|sisj [σi, σj ]









= −









ı2λa|λa|+12|λa|sisjσk λaı
λa|λa|

√
2|λa|(siσi − sjσj)

λaı
λa|λa|

√
2|λa|(siσi − sjσj) ı2λa|λa|+12|λa|sisjσk









. (20)

In the above calculation (equation 20), we must remember the Lie-Algebra: (σiσj = +ıσk; σjσi = −ıσk). Further,
let us set (sisj = sk) where the sk’s do not satisfy the usual Lie-Algebra; so doing, we will have:

σij
(as) = −









ı2λa|λa|2|λa|skσk λaı
λa|λa|

√
2|λa|(siσi − sjσj)

λaı
λa|λa|

√
2|λa|(siσi − sjσj) ı2λa|λa|2|λa|skσk









. (21)

Furthermore, all the above calculations when put into
effect, they will reduce equation (16) to:

[

D2
i +D2

0 + 2DjD0 + 2(DiDj)i6=j +
ıne

2~
σµν
(as)Fµν +

m2
0c

2

~2

]

ψ = 0.

(22)

The terms [2DjD0 + 2(DiDj)i6=j ; DjD0] will be consid-

ered negligible [8] so that the resulting equation is:

[

D2
i +

ıne

2~
σµν
(as)Fµν +

1

c2
∂2

∂t2
+

m2
0c

2

~2

]

ψ = 0, (23)

where in equation (23) above, we have set (D2
0 = ∂20)

because the electric field is zero (or because the B-field
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is a static field).
Now, for the ambient magnetic field, we consider a

weak constant magnetic field in the z-axis and from
the Lorenz [16] and Coulomb gauge, we (can and) shall
choose that the magnetic vector potential of this mag-
netic field be such that A = 1

2r×B where the magnetic
field B is such that B = (0, 0, B) so that:

A =
1

2
x2Bî− 1

2
x1Bĵ, (24)

where (x = x1; y = x2), and:

Fµν =







0 −vyB/2 +vxB/2 0
+vyB/2 0 −B 0
−vxB/2 +B 0 0

0 0 0 0






. (25)

Now, to proceed with our calculation – on the assump-
tion that these terms are small, we will neglect second
order and higher terms. So doing, we obtain:

D2
i = ∂2i − ıne(∂iA

ex
i +Aex

i ∂i)− n2e2O(A2
ex,i)

= ∂2i − ıneB(x2∂1 − x1∂2)− n2e2O(A2
ex,i)

= ∇
2 + neB · L/~− n2e2O(A2

ex,i)

, (26)

where (L = r × p = −ı~r × ∇) is the orbital angular
momentum operator which means that the orbital angu-
lar momentum generates orbital magnetic moment that
interacts with the magnetic field. In this instance, the
angular momentum comprises only the z-component –
that is to say: [L = − ı~(x1∂2 − x2∂1)k̂]. As a starting
point in the calculation of the gyromagnetic ratio, the
second order term n2e2O(A2

ex,i) will be neglected. We
will take up this term in the next section when we try to
fully account for the Proton’s gyromagnetic ratio. As will
be seen shortly, neglecting this term results in ∼ 22.8%
of the Proton’s excess g-ratio not begin accounted for.
Now, if we write the Dirac four component wave-

function as:

ψ =

(
Φ
χ

)

, (27)

we find that in the non-relativistic limit – the component
Φ dominates, thus we will consider this component as
describing the wavefunction of the our particle.
To proceed, we need to compute ıneσµν

(as)Fµν/2~ and

we must remember that we have to consider the terms
that affect Φ and also take not that the terms with σ1

and σ2 do not contribute to the gyromagnetic ratio. First
– as one can verify for themselves the term (σ0jF0j +
σj0Fj0) is such that (σ0jF0j + σj0Fj0 = 0), and σijFij

is effectively equal to (σ12F12 + σ21F21) which in-turn
equals to (σ12 − σ21)F12, hence:

σijFij = 4ı2λa|λa|+12|λa|ǫS ·B/~, (28)

where ǫ is a directional term which is such that (ǫ = +1)
if (S · B > 0) and (ǫ = +1) if (S · B < 0). To justify
this, let us consider an Electron in a magnetic field. It is
known that in presence of external magnetic fields, the
spin of the Electrons would be aligned along the direc-
tion of the field, or at least a component of the external
magnetic field along the direction of the Electron’s spin –
this, would point in the same direction as the Electron’s
spin. If we flipped the Electron’s charge, we would expect
the spin of the new positively charged particle to point in
the exact opposite direction as before. In this way, a pos-
itive g-factor would mean alignment of the component of
the unit vector of the magnetic field along the direction
of the spinning particle and likewise, a negative g-factor
would mean alignment in the opposite direction of the
component of the unit vector of the magnetic field along
the direction of the spinning particle – hence (ǫ = ±1).
Now, in writing σijFij as given above, we have ne-

glected terms with σ1 and σ2 as these do not contribute
to the gyromagnetic ratio[29]. From (28), it follows that:

ıne

2~
σµν
(as)Fµν = −4neı2λa|λa|2|λa|ǫS ·B/~. (29)

where (S = 1
2s

3
~σ3ẑ) is the spin along the z-axis. In our

calculation, we have set (s1 = s2 = 1) because the spin is
along the z-axis: remember that we have set (sisi = si),
which in this case implies that (s1s2 = s3) . Further,
since the Proton is a spin 1/2 particle, (s3 = 1).

Now writing (Φ = e−im0c
2t/~Ψ) where Ψ oscillates

much more slowly with time than e−im0c
2t/~, then, to

first order approximation where the terms in Ψ̈ are con-
sidered to be small hence negligible, we will have:

[

1

c2
∂2

∂t2
+

m2
0c

2

~2

]

e−im0c
2t/~Ψ ≃ −2im0c

~
e−im0c

2t/~ ∂Ψ

∂t
.

(30)

Putting all the bits and pieces together, we will have:

[

− ~
2

2m0
∇

2 + nµBB · (L+ gaS)

]

Ψ = i~
∂Ψ

∂t
, (31)

where (µB = e~/2m0c) is the Bohr magneton (in
Gaussian CGS units) and [ga = 2|λa|+1ı2λa|λa|ǫ =
(−2)|λa|+1ǫ] so that:

ga − 2

2
= (−2)|λa|ǫ− 1, (32)

hence, we have:
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ga − 2

2
=











































0, for (a = 1) : If (S ·B > 0 : i.e., ǫ = +1).

−2, for (a = 1) : If (S ·B < 0 : i.e., ǫ = −1).

+1, for (a = 2, 3) : If (S ·B > 0 : i.e., ǫ = +1).

−3, for (a = 2, 3) : If (S ·B < 0 : i.e., ǫ = −1).

(33)

This result (35), is the sought for gyromagnetic ratio
for all the three types of particle configuration as rep-
resented by the a-index [a = (1, 2, 3)]. For the case
(a = 0), we obtain as expected, the Dirac gyromag-
netic ratio (g0 = ±2) for the Electron (g0 = −2) and the
Positron (g0 = +2). For the case a = (1, 2), we obtain
(g2,3 = ±4) with (g2,3 = +4) being the g-factor for the
Proton and (g2,3 = −4) expected to the the g-factor for
the anti-Proton. In the case of the Proton, a g-factor of
(g2,3 = +4) accounts for ∼ 55.7% of the Proton’s extra-
anomalous g-ratio (gp − 2 = 3.585...). As suggested in
the reading [17], we propose to account for this ∼ 44.3%
unaccounted extra-anomalous g-ratio of the Proton as
a second effect arising from the neglected second order
term in equation (26) i.e., the term n2e2O(A2

ex,i). We
present this proposal in §() below.

EXTRA-ANOMALOUS GYROMAGNETIC

RATIO

The fact that the gyromagnetic ratio of the Electron dif-
fers slightly from the predicted Dirac value of (gD = 2),
this implies that there is an extra unaccounted for in-
teraction of the spin with the ambient magnetic field or
an aspect of it. To take this into account, naturally, we
would modify equation (31) so that it reads:

[

− ~
2

2m0
∇

2 + nµBB · [L+ (ga + 2∆g)S]

]

Ψ = i~
∂Ψ

∂t
,

(34)
where ∆g is the extra-anomalous gyromagnetic ratio.
This modification will lead to (geffa = 2[(−2)|λa|ǫ − 1 +
∆g]), so that:

geffa − 2

2
= (−2)|λa|ǫ− 1 + ∆g, (35)

where geffa is the Effective g-ratio. In-order to calcu-
late ∆g, we will make now in-cooperate the second or-
der term the we neglected earlier in (26) i.e., the term
n2e2O(A2

ex,i). We must remember that at the instance of
equation (26), we left out this term on the pretext that it
was small and negligible. This second order term is such
that:

n2e2O(A2
ex,i) =

[

neO(A2
ex,i)

B · S

]

neB · S. (36)

Inserting this into our system equations at the instance
of equation (26) as has been done in the reading [17], one
will find out that:

∆g =
neO(A2

ex,i)

2B · S =

(
neR2

4~

)

B cosϑ, (37)

where R is the radius of the particle in question which
in this case is the Proton. If the there alignment of the
component of the unit vector of the magnetic field along
the direction of the spinning particle then (cosϑ > 0),
and likewise, if there is alignment in the opposite direc-
tion of the component of the unit vector of the magnetic
field along the direction of the spinning particle, then
(cosϑ < 0); from this, we write (cosϑ = ǫ| cosϑ|), there-
fore, from all this, it follows that:

geffa − 2

2
= (−2)|λa|ǫ− 1− ǫ

(
qR2

4~

)

|B cosϑ| . (38)

As pointed out in the reading [17], the constancy of ∆g as
revealed by experiments (for the Electron, Proton, Neu-
tron and other papers), this is indication that the term
“|B cosϑ| ” is also a constant. This term “|B cosϑ| ” is
the magnitude of the component of the B-field along the
spin axis of the Electron. Why this is so, we have no
answer to this question as the theory does not say why.

GENERAL DISCUSSION

In the present work, we have demonstrated that the
CST-Dirac equations [10] can in general account for
the g-factor of the Proton. At a prima face level, our
motivation for an alternative explanation of the Proton’s
gyromagnetic ratio may appear ill-founded because the
conventional explanation for these anomalies relies on
Quantum Field Theory (QFT) and is quite adept at
describing them. As already said in Paper (I), Quantum
Electrodynamics (QED) can predict the g-factor of
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the Electron to about a part-per-trillion. Quantum
Chromodynamics (QCD) does a lower-precision, but an
admirable job with the Proton and Neutron [18–20],
which are composite particles while the Electron is
assumed to a point particle. Given the aforesaid, our
contribution may appear unnecessary if not useless alto-
gether. For example, one may ask the following question:

By putting forward a new proposal, are we dis-

carding present QFT, QED and QCD efforts in

explaining these the g-values of the Proton, Neu-

tron and Electron?

To this important question, we have the following to say.
When the large magnetic moments of the Proton (and
the Neutron) where first discovered, many puzzling ques-
tions regarding the nature of the Proton (and the Neu-
tron) where raised [5] and these where not answered until
the advent of the quark model [21–23]. Resident quarks
found inside the Proton (and the Neutron) are what is
believed to be the reason for the large g-factor for the
Proton (and Neutron). In this quark model, the mag-
netic moment of the Proton (and Neutron) is (or can)
be modelled as a sum of the magnetic moments of the
constituent quarks [24]. From the present model, this is
not the reason. The reason is that the Proton (and any
other particle for that matter) has (is here predicted to
have) three configurations with two of these configura-
tions [a = (2, 3)] having these large g-factors. The other
configuration (a = 1) has a g-factor that should be close
to that of the Electron. So, a prediction of the present
model is that one of the three states (or configurations)
of the Proton must have a g-factor comparable to that of
the Electron.
In-closing, allow us to that, it is our modest view,

the present result is surely a profound result for it – in-

principle, now allows us to say that the Dirac equation
does – on a qualitative level, explain not only the Proton,
but the Neutron and any general spin-1/2 particle. The
very fact that one would not account qualitatively for the
Proton and Neutron’s gyromagnetic ratio from the bare
Dirac equation, this led physicists to think that in its
bare form, the Dirac equation is not an equation for the
Electron and because of this, some physicists have sought
for a Dirac equation for the Proton and the Neutron [25].
Certainly, there is need to ponder on this result further
than has been conducted herein.

CONCLUSION

Assuming the acceptability of what has been presented
herein, we hereby make the following conclusion:

(1).The Dirac equation can be considered to account for
the extra-anomalous gyromagnetic ratio of all spin-1/2

particles and this extra-anomalous gyromagnetic ratio
arise as second order effect so to the spin’s alignment
with the ambient magnetic field.

(2).The present finding gives us insight into the nature of
how the Electron (and other particles in general), in-
teracts with the ambient magnetic field. The constancy
of ∆g implies that the Electron (and other particles in
general)’s spin does not randomly align itself with the
ambient magnetic field but does this in a systematic and
well ordered manner.
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