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Abstract

This algorithm is designed to perform Discrete Fourier Transforms (DFT) to convert tempo-

ral data into spectral data. What is unique about this DFT algorithm is that it can produce

spectral data at any user-defined resolution; existing DFT methods such as FFT are limited

in resolution proportional to the temporal resolution. This algorithm obtains the Fourier

Transforms by studying the Coefficient of Determination of a series of artificial sinusoidal

functions with the temporal data, and normalizing the variance data into a high-resolution

spectral representation of the time-domain data with a finite sampling rate.

Introduction

The Fourier Transform [1–6] is one of the most widely used mathematical operators in

all of engineering and science [7–9]. The Fourier Transform can take a temporal function

and convert it into a series of sinusoidal functions. While the original Fourier Transform

is an analytical mathematical operator, Discrete Fourier Transform (DFT) methods are

overwhelmingly used to take incoherent temporal measurements and convert them into

understandable spectral plots. One of the limitations of the existing DFT methods, including

the popular Fast Fourier Transform (FFT), is that the spectral resolution is proportional

to the temporal resolution of the data to be transformed. If the temporal information of

the resolution is limited, it will be impossible to accurately determine the frequencies of the

results with great confidence.

The author proposes a numerical algorithm to perform a highly-resolved Fourier Trans-

form of a temporal function of limited resolution. Rather than the spectral domain being

proportional to the time step, the user defines exactly which frequencies are necessary to

investigate. The spectral domain can be as large or as resolved as is necessary, regardless
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of the temporal resolution; the resolution possible is limited only by the abilities of the

computer performing the transform.

Algorithm

The transform starts by first determining the peak total range of the data in the temporal

domain, this range will become the base amplitude of the spectral series. The computer then

generates a series of sine and cosine functions at each frequency within the spectral domain,

and compares each of these sinusoidal functions to the temporal data to be transformed. In

the comparison, a correlation coefficient is found and saved. To accommodate fluctuations

in phase, each frequency generates both a sine and cosine function; this ultimately results in

real and imaginary spectral components. Finally, the magnitudes of the correlation factor

data is normalized, and the results is an accurate spectral representation of the temporal

function.

The Fourier Transform is one of the most utilized mathematical transforms in science

and engineering. By definition, a Fourier Transform will take a given function and represent

it by a series of sinusoidal functions of varying frequencies and amplitudes. Analytically,

the Fourier Transform is represented as [1, 2]

F (ω) =

∫ ∞
−∞

f(t)·e−2π·i·t·ωdt, (1)

where i is the imaginary term (i =
√
−1), f(t) is any temporal function of t to be trans-

formed, and ω (rad/s) represents the frequency of each sinusoidal function. The inverse of

this function is

f(t) =

∫ ∞
−∞

F (ω)·e2π·i·t·ωdω. (2)

Conceptually, the spectral function F (ω) represents the amplitudes of a series of sinusoidal

functions of frequency ω (rad/s)

f(t) = Σ∞n=0F (ωn)·sin(ωn·t). (3)

Often in practical application, one does not have an exact analytical function, but a

series of discrete data points. If it is necessary to convert this discrete data into the spectral

domain, the traditional approach has been to use the Discrete Fourier Transform, often

known as Fast Fourier Transform (FFT). The FFT algorithm is, by definition [10, 11]

Fk = ΣN−1n=0 xn·e−2π·i·k·n/N . (4)
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where Fk is a discrete spectral data point, and xn is a discrete data point in the temporal

domain. With DFT, the spectral resolution is proportional to the temporal resolution, and

it is often the case that the limited temporal data will not be sufficient to obtain the spectral

resolution desired.

This algorithm is an approach to obtain greater spectral resolution; the full spectral

domain, or any frequency range or resolution desired, is determined by the user. Greater

resolution or a larger domain will inherently take longer to solve, depending on the computer

resources available. One advantage of this approach is that the spectral domain can also

have varying resolutions, for enhanced resolution at points of interest without dramatically

increasing the computation cost of each Fourier Transform.

At each discrete point in the spectral domain, the algorithm generates two sinusoidal

functions

Fn(t) = A·sin(2πωnt), (5)

F̂n(t) = A·cos(2πωnt),

where Fn(t) is to represent the real spectral components, F̂n(t) is to represent the imaginary

spectral components, ωn is the discrete frequency of interest, t is the independent variable

of the data of interest, and A is the amplitude of the function,

A = max{f(t)} −min{f(t)}, (6)

defined and the total range within the temporal data.

The next step is to take each of these functions, and find the Coefficient of Determination

(CoD) between the function and the temporal data, all with the same temporal domain and

resolution [8, 12–15]. The CoD is a numerical representation of how much variance can

be expected between two functions. To find the CoD between two equal-length discrete

functions Fn(t) and fn(t), three coefficients are first calculated

SSt = ΣNn=1(Fn(t)− F̄n)·(fn(t)− f̄n),

SS1 = ΣNn=1(Fn(t)− F̄n)2,

SS2 = ΣNn=1(fn(t)− f̄n)2,

where N is the discrete length of the two functions, and F̄n and f̄n represent the arithmatic
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mean value of functions Fn and fn. The CoD is then determined as

CoD =
SSt√
SS1·SS2

, (7)

and the closer the two functions match, the closer the value of the CoD reaches 1. If there is

no match at all, the CoD will be equal to 0, and if the two functions are perfectly opposite

of each other (Fn = −fn), the CoD goes up to -1. In practice, the CoD is often represented

as the R2 value,

R2 =
SS2

t

SS1·SS2
. (8)

This process is repeated for every sine and cosine function generated with each frequency

within the spectral domain. The coefficients of determinations can be used to represent

the spectral values, both real and imaginary, for the given discrete frequency point. These

functions of R2 values for the real and imaginary components are then normalized to the

maximum real and imaginary values, and multiplied by the amplitude A determined in

equation 6. The final outcome is a phase-resolved spectral transformation of the input

function, but with a spectral domain as large or resolved as desired.

Finally, this spectral transformation can easily be converted back to the temporal do-

main. By definition, the temporal domain is merely the sum of the series of sinusoidal waves,

and thus the inverse Fourier transform can simply be defined as

f(tn) = ΣNm=1{real(Fm)·cos(ωm·tn)}+ {imag(Fm)·sin(ωm·tn)}. (9)

Parametric Study

A parametric study of this transform was conducted, to demonstrate that it can be

used for high resolution measurements of the spectral frequency with a limited temporal

resolution. To demonstrate this, 15 random frequencies were selected, ranging from 2 to

17 cycles over the duration of the measured window. Both the independent and dependent

temporal variables are arbitrary values to demonstrate the transform function; the inde-

pendent scale ranges from 0 to 1 and has 180 data points. The arbitrary dependent data

had random averages between -1000 and 1000, with an amplitude of 200 and random noise

to represent the typical randomness found in typical test data. Each of these 15 random

frequencies was phase shifted by three random phases. All forty-five arbitrary functions

were transformed into the spectral domain with this transform, with a frequency domain
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Figure 1: Spectral results of the randomly generated functions, for frequencies of (a) 2.0256
(Hz/Rev) and (b) 13.0467 (Hz/Rev), but for different phases, magnitudes, and random
noises.

ranging from 0 to 20 cycles per unit time duration, and a frequency resolution of 1 mHz;

two examples of these spectral results are presented in Figure 1. As a further test of the

robustness of the transform, the spectral data was then converted back to the temporal

domain, and the new temporal function was compared to the original function with the

coefficient of determination method to ascertain errors from the transform.

This Fourier transform was remarkably effective at finding the peak primary frequency,

often with accuracy’s down to tens of mHz. The functions of the peak frequencies (Figure

2), both which was used for the initial function and the peak of the Fourier transform,

matches with an R2 value of 0.999991; effectively identical. The functions of the random

phase angle at the peak frequencies (Figure 3), both which was used for the initial function

and the phase of the Fourier transform at the peak frequency, matches with an R2 value of

0.9982; demonstrating that this transform can be used to capture both spectral magnitude

and phase with great accuracy.

Finally, the inverse of this Fourier transform was conducted for each spectral output, and

the errors between the original functions and the transformed-inverse-transformed function

are minimal. As expected, not all of the fine random noise is captured; this would require

a near infinite spectral domain, which would further increase computational costs, but the

overarching shapes, magnitudes, and phases of the functions are consistently captured. Tak-

ing the coefficient of determination squared of each function pair, the value of R2 is never

less than 0.92. Two examples of the original function (lines) and the transformed-inverse-

transformed function (stars) are represented in Figure 4. The tabulated results of all fifteen

studies, for each of the three phase magnitude shifts, are demonstrated in Tables 1 - 3.
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Figure 2: Frequency Prediction Results, R2 = 0.999991

Figure 3: Angle Prediction Results, R2 = 0.9982
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Figure 4: Time results of the randomly generated functions, for frequencies of (a) 2.0256
(Hz/Rev) and (b) 13.0467 (Hz/Rev), but for different phases, magnitudes, and random
noises.

Conclusion

This effort has demonstrated a practical, working, novel method of numerically conduct-

ing a Fourier Transform when there is limited temporal resolution. All that is necessary for

this transform to be effective is a temporal domain that can capture, to some extent, the

individual cycles. While the transform inherently is more computationally expensive than

traditional DFT methods, any desired spectral resolution and spectral domain can be used

to characterize the input data; the transform can even convert the function to a spectral

domain of varying resolution, so that peaks can be accurately identified without too much

computational expense. The algorithm was tested at fifteen different random frequencies,

all with three different random phases, all with random noises and errors, and consistently

the transform was able to characterize the peak frequency and phase angle remarkably, with

a higher degree of accuracy than one can expect with traditional DFT methods.
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MkRndDat.m

clear all

close all

t=2:2:360;

raw=zeros(180,55);

raw(:,1)=t;

RnFct=(rand(1,18)).*sin(2*pi*(1:18)/9)*(1e3);

for ii=1:18

oo=((ii-1)*3)+(1:3)+1;

Mag=RnFct(ii);

for jj=1:3

A=sin(2*pi*t/40);

A=A+(sin(2*pi*((2*rand(1,180))-1))).*((2*rand(1,180))-1)/10;

A=A.*(1+(((2*rand(1,180))-1)*0.5));

A=A*(2e2);

A=A+(Mag*((-1)^(jj-1)));

raw(:,oo(jj))=A’;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

save SGdat raw
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Crunch.m

clear all

close all

tic

load SGdat

rr=54;

Sfct=0:0.01:20;

ct=length(Sfct);

t=raw(:,1)/360; ctT=length(t);

i=sqrt(-1);

R2=zeros(rr,1);

SpecFctParam=zeros(ct,rr);

FtestParam=zeros(ctT,rr);

for oo=1:rr

FF0=raw(:,oo+1);

FFavg=mean(FF0);

FFstd=max(FF0)-min(FF0);

SpecFct=zeros(ct,1);

for ii=2:ct

display([num2str(ii) ’/’ num2str(ct) ’ ’ 9 num2str(oo) ’/’ num2str(rr)]);

sinfct=sin(2*pi*t*(Sfct(ii)));

cosfct=cos(2*pi*t*(Sfct(ii)));

corrR=R2fct(cosfct,FF0);

corrI=R2fct(sinfct,FF0);

SpecFct(ii)=corrR+(i*corrI);

end

SpecFct=FFstd*SpecFct/(sum(abs(SpecFct)));

SpecFct(1)=FFavg;

SpecFctParam(:,oo)=SpecFct;

Ftest=zeros(ctT,1);

for ii=1:ct

Ftest=((real(SpecFct(ii)))*cos(2*pi*t*Sfct(ii)))+Ftest;

Ftest=((imag(SpecFct(ii)))*sin(2*pi*t*Sfct(ii)))+Ftest;

end

FtestParam(:,oo)=Ftest;

R2(oo)=(R2fct(Ftest,FF0))^2;

end

runtime=toc;

save Results

12



R2fct.m

function [corr]=R2fct(Exp,CFD)

ctx=length(Exp);

% Average Residual

R_avg=0;

for ii=1:ctx

R_avg=(Exp(ii)-CFD(ii));

end

R_avg=R_avg/ctx;

R_std=0;

for ii=1:ctx

R_std=R_std+(((Exp(ii)-CFD(ii))-(mean(R_avg)))^2);

end

R_std=sqrt(R_std/(ctx-1));

%%%%%%%%%%%%%%%%%%%%

% Correlation

foo=zeros(ctx,3);

for ii=1:ctx

foo(ii,1)=(Exp(ii)-(mean(Exp)))*(CFD(ii)-(mean(CFD)));

foo(ii,2)=(Exp(ii)-(mean(Exp)))^2;

foo(ii,3)=(CFD(ii)-(mean(CFD)))^2;

end

foo=sum(foo);

corr=foo(1)/(sqrt((foo(2))*(foo(3)))); % Closer to 1 is best

R2=corr^2;

end
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