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Abstract  
 

This paper shows in Simulation 2 that aggregates of elementary particles’ hidden variable unit 

vector spin axes e, when projected onto appropriate detector angle vectors, give values which 

are in exact accordance with values given by quantum mechanics calculations.  However, it is 

found that no method of calculation breaks the Bell Inequality  AB’ + BC’ ≥ AC’: not the method 

in Simulation 2 and not the quantum mechanics calculation using projection operators.  

 

Background: Spin in entangled pairs, hidden variables and magnets 
 

Correlation (a, b) = cos θ is a standard form for the correlation between two vectors differing 

in direction by angle θ, but nevertheless it is important to derive - cos θ for quantum 

correlations as quantum correlations (Ref. 1). 

The left-handed (LH) chiral electron has spin - 0.5 while the right-handed (RH) chiral electron 

has spin + 0.5.  A LH electron can emit a photon with spin -1 and change form to become a RH 

electron.  Spin is conserved by the interaction as the total spin before and after the interaction 

in -0.5.  Likewise, a RH electron can emit a photon with spin +1 and change form to become a 

LH electron.  And similarly for LH and RH positrons.  A chiral left-handedness indicates a 

difference in structure from the right-handed form.  This is a different effect from the 

apparent handedness due only to the observer, which is helicity.  A left-handed helicity for 

observer 1 may simultaneously take on a right-handed appearance for observer 2.  Chiral 

‘left’, however, is permanently chiral ‘left’. 

The spin of an electron is nominally about an axis.  The orientation of the axis is always 

unknown in practice although it can be assumed to be known in a simulation of an 

experiment.  For paired particle creation, say for an electron and positron, arising from an 

interaction where the incoming total spin was zero, then the outgoing particles have equal 

and opposite spins, summing to zero angular momentum.  The axes are also the same for 

both particles: that is, treating the axes as vectors without the arrowheads or ignoring the 

signs of the axis vectors. 
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If a small, free-standing magnet is brought close to a powerful magnet, then it may precess 

and radiate away energy until it lines up with the direction of the stronger magnet.  Electrons 

do not behave like this.  Instead, if they do undergo an interaction, they emit one photon, as 

described above, and completely reverse chiral handedness.  This can be repeated, for the 

same magnet orientation, but the electron is now stable and will not flip again.  The electron 

may flip if brought near a differently oriented magnet, but the outcome is that the electron 

never changes the angle of its axis during the course of the experiment.  The vector of the 

electron spin axis changes from e to – e and back to e in repeated interactions but instead of 

calling that a change in vector spin direction the electron is given an N or S pole label like the 

macroscopic magnet, and the label flips from N to S to N in successive interactions while the 

axis stays constant (ignoring the vector sign). 

It needs to be illustrated more clearly what it means for an individual electron to receive a 

label N or S and to do this requires some discussion of randomness.  There is no reason to 

assume that any one incoming electron has its spin axis pointing in any particular direction, 

although it is true [making the assumption that these hidden variables exist] that an incoming 

pair of particles will have the same spin axis and one will be an N and the other an S during 

their times of flight.  In quantum mechanics, on the other hand, the pair of particles share a 

common entangled state of 0.707 |S> + 0.707 |N> until one of them interacts, which is an 

approach which eschews individual particles’ hidden variables. 

If two electrons are prepared pointing say north in the 2D space of the laboratory floor, this 

does not mean that their spin axes are parallel and it also does not mean that their axes are 

pointing exactly north.   Their spin axes are unknown.  Say for electron 1 an N label is put at 

one end of its spin axis and an S label at the other end and ditto for electron 2.  To prepare 

the electrons, the electrons are interrogated each to see if it is the N label or the S label which 

is nearer the north wall of the laboratory.  If the N label is to be nearer the North wall, it may 

require a switch of the N and S labels to achieve this.  If the labels do need to be switched, 

then an ‘interaction’ is required to effect the switch.  This corresponds to Alice or Bob making 

a measurement of +1.  If no switch of labels is required, this is equivalent to Alice or Bob 

making no measurement.  However, in practice, Stern-Gerlach detectors can circumvent this 

lack of a measurement and instead turn that into an actual interaction, recorded as -1.  So 

there is an interaction recorded for every particle with no inefficiency by wastage of 

information. 

So now there are two electrons prepared with their labels appropriately adjusted with their 

N labels nearer to the North wall than their S labels.  Say it is now required to simulate 

preparing the two electrons to point towards the West wall of the laboratory.  Without 

changing their spin axes each particle is tested to flip, or not as necessary, their N and S labels 

so the two N labels are nearer the West wall than are the S labels.  In practice this requires 

also putting a magnet against the West wall aligned in an East-West direction.   As these two 

electrons are not entangled there is no expectation that both electrons will interact in the 
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same way.  So even though both electrons were originally prepared pointing northwards , 

there is no knowing which one, if any, was already also pointing west.  For two entangled 

electrons, if one electron needed a switch of labels to point West [or any chosen new 

direction], the other electron would not need a switch to point West.  This is because 

entangled spin axes are parallel and oppositely labelled.   

The two entangled particles each approach their respective detectors at one detector pole or 

the other: aimed with linear momenta at the N or the S poles.  The linear momenta of the 

two particles are independent near the detectors, that is, their trajectories are not always 

opposite to one another. And that is despite any correlation in trajectories that they might 

have had on their creation.  Changing the linear momenta of electrons has no effect on the 

absolute spin directions in 3D space as the particles approach near the magnets.  A change in 

spin momentum could only occur at an interaction and then only by changing spin from +0.5 

to -0.5 or vice versa in a single interaction.  So all pairs of particles always retain 

exactly opposite spins within the pairs.  Also, it doesn't matter which magnet pole a particle 

approaches: if a particular particle approaches a magnet's N pole with its own N pole facing, 

it will give a +1 reading.  If the same particle had approached the magnet's S pole, it must 

have done so with its own S pole facing [because an electron never changes its spin alignment 

except at an interaction] and it would still give a +1 reading.  Linear momenta are treated here 

as beyond the scope of this paper.  Although charged particles change linear momenta to 

enter the earth’s atmosphere giving rise to the northern and southern lights, the linear 

momenta are treated in this paper as irrelevant to the issue.  Further, ideally the electrons 

would be treated as spinors rather than as vectors. 

The question of what is the correlation between Alice’s and Bob’s measurements is addressed 

in the next section.  

 

Simulation 1:  Achieving a correlation of 0.707 for θ = 45o 
 

A computer simulation has been carried out using hidden variables to calculate the 

correlation between Alice and Bob’s A and B measurements. The programming used MS 2013 

Excel Visual Basic.  The program code is shown in Appendix A and a summary is given below. 

PRELIMINARY WORK:  set the dimensions of variables, their sizes and types, set counters to 
zero before use 
     GENERATE PARTICLE PAIRS IN A LOOP 
         PICK SPECIFIC VECTORS FOR DETECTORS a AND b AND PARTICLES e 
         PICK A POLARIZATION VECTOR for detector a  (Alice) 
         PICK A POLARIZATION VECTOR for detector b (Bob) 
         PICK A POLARIZATION VECTOR for particle pair e. 
        CALCULATIONS OF A and B BASED ON ONE PARTICLE PAIR 
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        INCREMENT THE A and B COUNTERS FOR THE iTH PAIR OF PARTICLES 

    END OF LOOP 
WRITE RESULTS TO SPREADSHEET : 2 x 2 table with means, SDs, correlation and N 

   
In this simulation, only one pair of angle settings of vectors a and b has been used:  

a = (0 ,0, 1) and b = (0, 0.707 ,0.707) and the angle between a and b is 45 degrees.  Vector e 

varies from pair to pair, chosen at random within a unit sphere, pointing out from the centre 

of the sphere and represents the particles. 

Outputs from running the program is shown in Appendix A and also below.  

When the raw integer measurements A and B are correlated, values of A and B represent the 

unit magnitudes of fuzzy vectors on a hemisphere, and the correlation is 0.5.   When the 

integer values of A and B are taken as taken as initial values which can be manipulated to 

obtain fractional projections a.e and b.e onto exact vectors a and b, then the correlation is 

0.707. 

 
Correlation between fuzzy vectors on a hemisphere, A and B: 

mean of A      -0.001264 
mean of B      -0.0024 
correl of A and B     0.499374804 
Total N of pairs       1000000  

 
Correlation between exact vectors, a and b: 

mean of a.e -5.54003E-05 

mean of b.p -0.000502231 

correl of a and b 0.707000432 

Total N of pairs 1000000  
 

The correlation of 0.5 is what one would expect from classical correlations while 0.707 is what 

one would expect from quantum mechanical correlations for entangled particles  with 

detectors angles different by 45o. (Ignore the sign of the correlation as the simulation used 

cloned particles rather than exactly opposite particles.)  

Is it legitimate, however, to use fractional values a.e and b.e?  In a real experiment, non-

integer values cannot be measured by Alice and Bob whereas they can be calculated in a 

simulation.  Since the non-integer values are giving the quantum correlation it is worth 

investigating why this is the case.  The difference between the two correlations is that the 

classical correlation has undergone attenuation or reduction in absolute magnitude.  To 

distinguish between the two correlations, 0.5 is a correlation between ah and bh, where h 

simply means hemisphere.  The correlation 0.707 is between av and bv where the v denotes  

exact vector directions.  For the 0.5 correlation, the A=1 measurements represent vectors , 

with unit magnitude, pointing from the centre of a sphere to anywhere within a particular 
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hemisphere.  The fractional projection magnitudes, for the correlation of 0.707, give the 

accurate sizes of projections onto exact av and bv vectors.  Using exact vectors allows greater 

absolute magnitudes of correlations.   

Using 0.707 as the disattenuated value and 0.5 as the raw value of the correlation between 

Alice’s and Bob’s measurements, the reliability [Ref.2] of measurement of A (assumed to be 

the same as for B) can be calculated to be 0.7.  So an integer measurement A on a hemisphere 

has a reliability of 0.7 when used as substitute for an unknown, but preferable, non-integer 

measurement A on an exact vector, but only in the case where the angle between the 

detectors is 45 degrees. 

This leads to the question of why anyone would think that quantum correlations using simple 

arithmetical manipulation of raw dichotomous, integer values of A and B can give 0.707 for 

the circumstances in Simulation 1.  Quantum correlations seem to be associated with 

projections onto exact vectors (av and bv) and NOT associated with raw integer unit measures 

connected with fuzzy vectors or vectors on a hemisphere, i.e. fuzzy vectors ah and bh. 

It should be noted here that whenever a measurement is made, the energy change for the 

electron spin is always the constant h bar /2.  There is no doubt that electron spin change is 

quantised and likewise there is no doubt that Alice and Bob have no information with which 

to fractionalise their integer dichotomous measurements in a real experiment.   

In the next section, an attempt is made to break Bell’s Inequalities using hidden variables in a 

computer simulation. 

 

Simulation 2: Breaking Bell’s Inequalities? 
 

The computer program in Appendix B is an adaptation of the program in Appendix A but 

amended to cater for the calculations required in a test of Bell’s Inequalities.  Two outputs  

are shown in Appendix B and below, one used aggregates of integer, dichotomous values of 

measurements A, B and C while the other output made use of aggregations of fractional 

projections derived from the a.e, b.e and c.e calculations, where e is the particle vector. 

Details of this particular inequality are given in Susskind’s online video lecture [Ref. 3].  An 

unofficial transcript of the lecture 5 notes is also available online [Ref. 4]. 

The results of Simulation 2 are shown below. 

Using raw aggregates of integer measurements in Simulation 2: 
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Count     Proportion  

sum of B+ where A is also + 125363  0.125363 

sum of C+ where A is also + 249377  0.249377 

0.1254 + 0.1254 fails to be less than 0.2494 and so does not break the Bell Inequality:  

AB’ + BC’ ≥ AC’. 

 

Using aggregates of fractional projections of integer measurements in Simulation 2: 

Count     Proportion 

sum of B+ where A is also + 36604.27625  0.036604276 

sum of C+ where A is also + 124758.1586  0.124758159 

0.0366 + 0.0366  is less than 0.1248 and so apparently breaks the Bell’s Inequality as it gives 

an exact match with Susskind’s quantum mechanical calculations with which he appears to 

show the breaking of a Bell’s Inequality.  There is a discrepancy, however, as Susskind 

calculated the value corresponding to AB’ for particle-antiparticle pairs, that is, A & (not B) 

whereas in Simulation 2 the calculation was also AB’ but for cloned particle pairs, so that is a 

mis-match between Simulation 2 and Susskind’s calculations.   

Next the details of Susskind’s example are given.  There are two researchers in the simulation: 

named First [say measuring particles] and Second [measuring the exactly opposite 

antiparticles], and there are three angles used for detector magnet settings: denoted A = 0o, 

B = 45o and C = 90o.   

If a measurement is 1, then that is denoted by the labels A, B and C.  If the measurement is 

- 1, then that is denoted by the labels A’, B’ and C’.  Note that B’ being -1 at 45o as measured 

by Second is equivalent to B being +1 at 45o as measured by First, using counterfactual 

measurements. 

The three sets of compound measurements to be calculated are: AB’, BC’ and AC’.  

AB’ denotes that ‘First’ measured 1 at angle 0o and ‘Second’ measured -1 at angle 45o on the 

particle and antiparticle pair. 

And if ‘Second’ measured -1 at angle 45o on the antiparticle, then ‘First’ would have measured 

1 at angle 45o on the particle. 

So this compound measurement is the result of measuring particles at 0o and then their clones  

at 45o (counterfactual measurements) and seeing how many particles have +1 measurements  

on both detector settings. 
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BC’ denotes that ‘First’ measured 1 at angle 45o and ‘Second’ measured -1 at angle 90o on a 

particle and antiparticle pair. This compound measurement is equivalent to the first 

compound measurement AB’ but with everything turned around by 45 degrees. The outcome 

for BC’ will therefore be identical to the outcome of AB’, so only one of them needs to be 

simulated. 

For the third compound measurement, AC’ denotes that ‘First’ measured 1 at angle 0o and 

‘Second’ measured -1 at angle 90o on a particle and antiparticle pair.  And if ‘Second’ 

measured -1 at angle 90o then ‘First’ would have measured +1 at angle 90o  counterfactually 

on cloned particles rather than on the paired partners.  So this compound measurement, AC’, 

is the result of measuring the same particles at 0o and then again at 90o (counterfactual 

measurements) and seeing how many particles have +1 measurements on both detector 

settings. 

A Venn Diagram has been made for the results of these measurements and the areas in the 

diagram are listed in Table 1. 

Table 1 Data based on a Venn diagram data for a simulation of breaking a Bell 

Inequality [Ref. 4] 

A Venn Diagram is constructed out of three overlapping circles A, B and C. 

Seven distinct non-overlapping areas can be labelled: 
abc 

ab (which excludes abc above) 
ac (which excludes abc above) 
bc (which excludes abc above) 

a (which excludes all the above) 
b (which excludes all the above) 
c (which excludes all the above) 

 

where: 
circle A contains a + ab + ac + abc 

circle B contains b + ab + bc + abc 
circle C contains c + ac + bc + abc 

 

AB’ corresponds to the area on the Venn Diagram given by (a + ab + ac + abc) – (ab + abc) 

= a + ac. This is the area within circle A which is not also contained in circle B. 

BC’ corresponds to the area on the Venn Diagram given by (b + ab + bc + abc) – (bc + abc) 

= b + ab.  This is the area within circle B which is not also contained in circle C.  

AC’ corresponds to the area on the Venn Diagram given by (a + ab + ac + abc) – (ac + abc) 
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= a + ab.  This is the area within circle A which is not also contained in circle C. 

So an inequality: a + ac+ b + ab ≥ a + ab  can be made as the RHS quantity is subsumed within 

the LHS. 

This gives AB’ + BC’ ≥ AC’, and as AB’ is equivalent to BC’ then the inequality to break becomes: 

2 AB’ ≥ AC’. 

Susskind used quantum mechanical calculations, using Projection Operators, to show that 

these three areas were: 

0.073 + 0.073 is less than 0.25 and the inequality is broken. 

 

In Simulation 2 shown in Appendix B the Inequality appears to be broken as   0.0366 + 0.0366  
is less than 0.1248.   Multiplying by a scale factor of 2 gives Susskind’s results exactly but only 
in terms of numerical value as Simulation 2 is calculating AB ‘ for cloned particles which is 
equivalent to calculating AB for particle-antiparticle pairs.  Susskind on the other hand 
claimed to have calculated AB’ on particle-antiparticle pairs 

The close correspondence of Simulation 2 results and Susskind’s calculations shows 

Simulation 2 using hidden variables is on the correct lines but first, an explanation of why 

Simulation 2 results differ from those of Susskind by a scale factor of 2.  Take one set of 

measurements on Alice’s detector for a bunch of randomly generated particles, where half of 

the particles register 1 and the other half register -1. In other words the proportion of +1 

measurements is 0.5.  For integer unit measurements on a hemisphere, the aggregate of all 

the +1 vectors is a simple count in the ah hemisphere, giving the proportion 0.5.  But when 

the measurement made is a sum of projections of unit vectors onto an exact vector axis av, 

then the average loading on the av axis will be only half of the count made for the integer 

case as the average particle vector in the ah hemisphere only projects half way along the av 

vector, for the particles with A = 1.  That accounts for the scale factor of 2.  Simulation 2 

proportions for breaking the inequality need to be scaled up by a factor of 2 to attain a unitary 

value for the total number of particles as a proportion. 

In the Simulation 2 computer output for raw integer sums, the result for AC is 0.25 but for 

sums of fractional projections, this output value is halved, to 0.125, which further 

demonstrates that a scaling factor of x2 is required to preserve a unitary total proportion. 

Simulation 2 does not, therefore, break Bell’s inequality and, further, Susskind’s QM results  

also do not appear to break the inequality.   First, the target proportion 0.073 found by 

Susskind using quantum mechanical calculations was intended to relate to a proportion for 

A = 1 and B = -1 for particle-antiparticle pairs whereas Simulation 2 found the same value 

0.073 for A = 1 and B = -1 for cloned particle pairs, which is the incorrect type of particle pair 

for the –cos θ quantum correlation (see Table 2(i)).   
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A comparison of the results for the two types of pairs is shown in Table 2.  However if the 

value of 0.073 is inserted in Table 2 (ii) in the position where it must go for particle-antiparticle 

pairs then 0.073 must fit into the cell corresponding to A=1 and B=1.  My re-positioning of 

Susskind’s result does not break the Bell Inequality as the inequality   

AB’ + BC’ ≥ AC’  requires the calculated value to be for cell (A, B) = (1, -1),  not cell (1, 1). 

Next, the correlations for Tables 2 are checked. 

The formula for the correlation of a 2 x 2 table is:   

 (𝑁 +  +)   + (𝑁 − −) − (𝑁 + −)  −  (𝑁 − +) 

(𝑁 + +)  +  (𝑁 − −) +  (𝑁 + −)  +  (𝑁 − +)
 

Which gives  

0.427   +0.427 − 0.073 − 0.073  

0.427  + 0.427  + 0.073 + 0.073
 = 0.707    for Table 2(i) using cloned pairs 

and  

0.073 +0.073−0.427−0.427  

0.073 +0.073+0.427+0.427  
 = - 0.707    for Table 2(ii) using particle-antiparticle pairs. 

This shows that Table 2 (ii) has been filled in correctly for Susskind’s example, and as the 

quantum correlation for particle-antiparticle pairs is -0.707 for θ = 45o,  and the value of  0.073 

corresponds to the proportion for which A=1 and B=1 and this is not the appropriate cell for 

the breaking of the Bell Inequality. 

 

Table 2 Quantum mechanics correlations, based on counts of fractional loadings 

on exact vectors a and b 

(i)  Cloned particles  (for both A and B)                       (ii)   Particles & antiparticles (for A and B) 

Simulation 2        Susskind’s calculations 

 A = 1 A = - 1     A = 1 A = - 1  

B = 1 0.427 0.073 0.5   B = 1 0.073? 0.427 0.5 

B = - 1 0.073 0.427 0.5   B = - 1 0.427 0.073 0.5 

 0.5 0.5 1.0    0.5 0.5 1.0 

Correlation between exact vectors                                              Correlation between exact vectors   
a and b = 0.707                                                                                    a and b =  - 0.707 
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As a back-of-an-envelope check, the quantum mechanics calculation used by Susskind for 

0.073 had as its final line the expression 0.25 ∗ (1 − 0.5 ∗ √2).  A similar expression can be 

derived using simple algebra and the constraints on a 2x2 symmetrical table, given the target 

correlation. 

By symmetry,  

N(+, +) = N(-, -),  

N(+, -) = N(-, +), and  

N(+, +) + N(+, -) = 0.5 

Correlation in Table 2(ii) = -0.707 = 

 
 (𝑁+ +)  +(𝑁−−) − (𝑁+−) − (𝑁−+) 

(𝑁+ +)  + (𝑁−−) + (𝑁+−) + (𝑁−+)
 = 

 (𝑁+ +)   − (𝑁+−) 

(𝑁+ +)  +  (𝑁+−) 
  = 

 (𝑁+ +) −{0.5− (𝑁++)}  

+0.5
  = - 0.707 = − 0.5 ∗ √2 

=> 2 * (N++) - 0.5 = - 0.5 * 0.5 * √2 

=> (N++) = 0.25 ∗ (1 − 0.5 ∗ √2)  

=> (N++) = 0.073          just as in the quantum mechanics calculation but for the (+ +) cell not 

the (+ -) cell in Table 2(ii).  This check of the result is a simple calculation based on the 

properties of a symmetric 2x2 table of proportions and does not rely in any way on hidden 

variables.  This means that for a correlation of -0.707, any calculation of 0.073 must be for the 

(+ +) cell and it does not appear possible, therefore, that the Bell Inequality has been broken 

by anything in this case: not by Simulation 2 and not by quantum mechanics. 

The proportions in Table 2 are based on fractional loadings of hidden, exact vectors of 

particles onto the exact vectors a and b of the detectors.  Correlations in real experiments are 

based on the fuzzy vectors on a hemisphere, A and B, as the fractional loadings are unknown.  

The fuzzy correlations and proportions based on A and B are given in Table 3 and it is shown 

that the fuzzy correlations coefficients are attenuated to 0.5 in absolute magnitude. 

Table 3 Attenuated correlations, based on integer counts of As and Bs 

(i)  Cloned particles  (for both A and B)                       (ii)   Particles & antiparticles (for A and B) 

 A = 1 A = - 1     A = 1 A = - 1  

B = 1 0.375 0.125 0.5   B = 1 0.125 0.375 0.5 

B = - 1 0.125 0.375 0.5   B = - 1 0.375 0.125 0.5 

 0.5 0.5 1.0    0.5 0.5 1.0 

Correlation between fuzzy vectors                                              Correlation between fuzzy vectors   
A and B = 0.5                                                                                    A and B =  - 0.5 
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Summary 
 

Two simulations have been carried out in this paper.  Simulation 1 gives the quantum 

mechanical correlation of 0.707 between a.e and b.e  when Alice’s and Bob’s detectors are 

aligned at an angle of 45o to one another.  To do this, the exact unit vectors (e) of particle 

underlying the unit A and B measurements were generated.  That allowed fractional 

projections of the unit vectors onto the exact detector vectors (a and b) to be calculated using 

their dot product. This result corresponded with the quantum mechanical value of the 

correlation, and also corresponds with the normal statistical definition of the correlatio n 

between two exact vectors to be cos θ.  Cos 45o is approximately 0.707. 

Simulation 2 used a similar method to Simulation 1 in that exact unit particle vectors were 

generated and fractional projections onto exact detector vectors were calculated.  In this  

case, correlations were not calculated but instead fractional projections were accumulated to 

correspond to areas in a Venn Diagram which could be mapped into a Bell ’s Inequality 

calculation.  The accumulated areas gave the exact values which were generated by quantum 

mechanical calculations [Refs. 3 and 4] but not for the same cells of Table 2(ii).  It appears that 

the Bell Inequality (AB’ + BC’ ≥ AC’) in this case was not broken in Simulation 2, and not by 

Susskind’s calculations, and is not breakable by quantum mechanics when a= 0o, b=45o, c=90o 

and  θ  = 45o. 

Simple back-of–an-envelope calculations in this paper, performed as a check and which have 

no connection whatsoever with hidden variables, bypass Simulation 2 calculations and 

Susskind’s calculations and clearly show that for a symmetric, 2x2 table of proportions to have 

a correlation of -0.707, the value in the (+ +) cell MUST be 0.073.  This is where the value of 

0.073 is placed according to Simulation 2, but this is not in a cell which breaks Bell’s inequality.  

It is mystifying why the value of 0.073 could be thought to break Bell’s Inequality (AB’ + BC’ ≥ 

AC’) when it cannot possibly be placed in the appropriate cell to do so, that is, cell (+ -). 
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APPENDIX  A  Excel Visual Basic program to calculate the correlation 

between  Alice’s and Bob’s measurements; and an 

example of the output 
Sub AJFModel1() 
 
'------------------------------------------------------------------------------------------------------------------------------------ 
' Excel visual basic program to try to produce results for Bell curves: for theta = 45 deg  
'------------------------------------------------------------------------------------------------------------------------------------ 
' Produces correlation 0.707 which exceeds sawtooth value of 0.5.  
'--------------------------------------------------------------------------------------------------- 
‘Integer values of A and B taken as absolute magnitudes of fuzzy vectors on a hemisphere  
‘centred on vectors a and b … gives sawtooth Bell curve  
‘------------------------------------------------------------------------------------------- 
‘Integer values of A and B fractionally projected onto exact vectors a and b  …  gives disattenuated quantum correlation 
‘------------------------------------------------------------------------------------------- 
'        Remove the following two lines from the body of the program to give the quantum value 
'        a = Sgn(a)     'REMOVE THIS LINE TO GET qm CORRELATION  1ST OF 2 
'        b = Sgn(b)    'REMOVE THIS LINE TO GET qm CORRELATION  2ND OF 2  
‘------------------------------------------------------------------------------------------- 
 
 
'PRELIMINARY WORK: 
 
' set the dimensions of variables, their sizes and types 
  Dim ithPair As Long   ' ithPair is a long integer used as the index for the ith pair of particles 
  Dim TotalNoOfPairs As Long   ' a long integer used to store the total number of pairs to be generated in the run of the progr am 
  Dim x, y, z, xa, ya, za, xb, yb, zb, xe, ye, ze, length As Double '  extra precise real numbers 
  Dim a, b, sa, sb, ssa, ssb, sab, sn, meanA, meanB, sdA, sdB, corrAB, total As Double  ' extra precise real numbers 
 
' "Randomize" initializes the random-number generator, to avoid using the same set of random numbers in every run 
  Randomize 
 
'define constants to be used in the program 
  TotalNoOfPairs = 1000000 ' this sets the total number of pairs of particles which are to be generated 

  DELTA0 = 0.000000000000001 ' used to help to avoid dividing by zero 
  DELTA1 = 0.999999999999999 ' used to help to avoid dividing by zero 
  Pi = 3.1415926535         ' pi radians is equivalent to an 180 degree angle 
  
' set accumulator counters for means, sds, N and correlation to zero before use  
   sa = 0 
   sb = 0 
   ssa = 0 
   ssb = 0 
   sab = 0 
   sn = 0 
   
 
'END OF PRELIMINARY WORK 
  '----------------- 
 
 
'MAIN PART OF PROGRAM 
 
' generate particle pairs in a For/Next loop 
  For ithPair = 1 To TotalNoOfPairs 
 
  ' PICK SPECIFIC VECTORS FOR DETECTORS A AND B AND PARTICLES, E 
 
    ' PICK A POLARIZATION VECTOR for detector a  (Alice) 
    ' Alice's unit vector has components xa, ya and za  
     
                xa = 0 
                ya = 0 
                za = 1 
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    ' PICK A POLARIZATION  VECTOR for detector b (Bob) 
    ' Bob's unit vector has components xb, yb and zb 
 
                                    
                xb = 0 
                yb = Sqr(2) / 2 
                zb = Sqr(2) / 2 
 
 
    ' PICK A POLARIZATION  VECTOR for particle pair e. 
    ' Note that the two particles have the same vector, e, so that we are aiming for result +cos (theta) not -cos(theta) **************** 
    
    ' The particles' vector has components xe, ye and ze. 
 
       'pick uniform random numbers x between -1 and +1 
3 
               x = Rnd * 2 - 1 
               y = Rnd * 2 - 1 
               z = Rnd * 2 - 1 
                        
           length = x * x + y * y + z * z 
              
             If length < DELTA0 Then GoTo 3 
             If length > DELTA1 Then GoTo 3 

              
         
                xe = x 
                ye = y 
                ze = z 
                 
                  
        length = Sqr(length)       'the particle vector is not unity, but lies within a unit sphere  
       
  'CALCULATIONS BASED ON ONE PARTICLE PAIR 
   
    'calculation of angle between stations a and b 
   
      x = xa * xb + ya * yb + za * zb 
       If Abs(x) > DELTA1 Then GoTo 3 
      theta = Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)   '  excel's formula to give the arccos function 
        'need now to turn theta (decimal in radians) into IntegerTheta (an integer angle in degrees) 
       
         
    'calculation of A 
      ' a dot e =  xa * xe + ya * ye + za * ze 
      ' A = a dot e  where a and e need to be unit vectors 
      'here, a is a unit vector, but e has size = length, so 
     a = (xa * xe + ya * ye + za * ze) / length  '  length is magnitude of particle vector 
     a = Sgn(a)      'REMOVE THIS LINE TO GET qm CORRELATION  1ST OF 2 
    'calculation of B 
     b = (xb * xe + yb * ye + zb * ze) / length 
     b = Sgn(b)    'REMOVE THIS LINE TO GET qm CORRELATION  2ND OF 2 
   
  'INCREMENT the accumulators 
    sa = sa + a 
    sb = sb + b 
    ssa = ssa + a * a 
    ssb = ssb + b * b 
    sab = sab + a * b 
    sn = sn + 1 
     
     
     
     
10 Next ithPair  ' jump to top of FOR/NEXT loop for generation of the next pair of particles 
 
   theta = theta * 180 / Pi 
 
'END OF MAIN PART OF PROGRAM 
'-------------- 
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' WRITE RESULTS TO SPREADSHEET : means, SDs, correlation and number of pairs of particles 
 
 
'calculate means and correls etc 
 
     meanA = sa / sn 
     meanB = sb / sn 
     sdA = ssa / sn - meanA * meanA 
     sdA = Sqr(sdA) 
     sdB = ssb / sn - meanB * meanB 
     sdB = Sqr(sdB) 
     corrAB = sab / sn - meanA * meanB 
     corrAB = corrAB / (sdA * sdB) 
     total = sn 
 
 
 
' set which row and column will be used as starting point to write results to spreadsheet  
    Range("a1").Select 
 
    ActiveCell.Offset(0, 1).Formula = "theta = " 
    ActiveCell.Offset(11, 2).Formula = "mean of A" 
    ActiveCell.Offset(12, 2).Formula = "mean of B" 
    ActiveCell.Offset(13, 2).Formula = "SD of A" 

    ActiveCell.Offset(14, 2).Formula = "SD of B" 
    ActiveCell.Offset(15, 2).Formula = "correl of A and B" 
    ActiveCell.Offset(16, 2).Formula = "Total N of pairs" 
     
    ActiveCell.Offset(0, 2).Formula = theta 
   ' ActiveCell.Offset(9, 5).Formula = total   'total number of pairs of particles  
 
     
     
    ActiveCell.Offset(11, 3).Formula = meanA 
    ActiveCell.Offset(12, 3).Formula = meanB 
    ActiveCell.Offset(13, 3).Formula = sdA 
    ActiveCell.Offset(14, 3).Formula = sdB 
    ActiveCell.Offset(15, 3).Formula = corrAB 
    ActiveCell.Offset(16, 3).Formula = total 
     
     
 
 
' NOW USER CAN GO TO RESULTS SPREADSHEET TO INSPECT 2X2 TABLE AND CORRELATION 
'-------------- 
 
End 
End Sub 
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Example of output from the Excel Visual Basic program in Appendix A 
 
 

theta  = 45 
 

Integer values of A and B taken as absolute magnitudes of fuzzy vectors on a hemisphere 
centred on vectors a and b 

i.e. correlation between fuzzy vectors on a hemisphere ah and bh 
 
mean of A            0.00024 
mean of B                       -0.00043 
SD of A                     0.999999971 
SD of B                              0.999999908 
correl of A and B 0.499454164 
Total N of pairs                1000000        

 
 

 
 

Integer values of A and B fractionally projected onto exact vectors a and b 
i.e. correlation between exact vectors av and bv 

 
mean of A   0.000911218 
mean of B   0.001414591 
SD of A    0.577522836 
SD of B    0.57779221 
correl of fractional  
projections of  A and B 0.707258632 

Total N of pairs  1000000  
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APPENDIX  B  Excel Visual Basic program to reproduce Susskind’s 

version of a Bell Inequality; and an example of the 

output 
Sub AJFModel2() 
 
'------------------------------------------------------------------------------------------------------------------------------------ 
' Excel visual basic program to break Bells Inequality 
'------------------------------------------------------------------------------------------------------------------------------------ 
'    a = Sgn(a)                     ' REMOVE THIS LINE TO OBTAIN BREAKAGE OF BELL'S INEQUALITY  .. LINE 1 OF 3  
'    b = Sgn(b)                     ' REMOVE THIS LINE TO OBTAIN BREAKAGE OF BELL'S INEQUALITY ..  LINE 2 OF 3 
'    c = Sgn(b)                    ' REMOVE THIS LINE TO OBTAIN BREAKAGE OF BELL'S INEQUALITY   ..  LINE 3 OF 3  
'--------------------------------------------------------------------------------------------------------------------------------- 
 
 
'PRELIMINARY WORK: 
 
' set the dimensions of variables, their sizes and types 
  Dim ithPair As Long   ' ithPair is a long integer used as the index for the ith pair of particles 
  Dim TotalNoOfPairs As Long   ' a long integer used to store the total number of pairs to be generated in the run of the program 
  Dim x, y, z, xa, ya, za, xb, yb, zb, xe, ye, ze, length As Double '  extra precise real numbers 
  Dim xc, yc, zc As Double '  extra precise real numbers 
  Dim a, b, c, sa, sb, sc, sn, total As Double ' extra precise real numbers 
 
' "Randomize" initializes the random-number generator, to avoid using the same set of random numbers in every run 
  Randomize 
 
'define constants to be used in the program 
  TotalNoOfPairs = 1000000 ' this sets the total number of pairs of particles which are to be generated 
  DELTA0 = 0.000000000000001 ' used to help to avoid dividing by zero 
  DELTA1 = 0.999999999999999 ' used to help to avoid dividing by zero 
  Pi = 3.1415926535         ' pi radians is equivalent to an 180 degree angle 
  
' set accumulator counters for means, sds, N and correlation to zero before use  
   sa = 0 
   sb = 0 

   sc = 0 
   sn = 0 
   
 
'END OF PRELIMINARY WORK 
       
 
'----------------- 
 
 
'MAIN PART OF PROGRAM 
 
' generate particle pairs in a For/Next loop 
  For ithPair = 1 To TotalNoOfPairs 
 
  ' PICK SPECIFIC VECTORS FOR DETECTORS A AND B AND PARTICLES, E 
 
    ' PICK A POLARIZATION VECTOR for detector a  (Alice) 
    ' Alice's unit vector has components xa, ya and za  
     
                xa = 0 
                ya = 0 
                za = 1 
                 
       
    ' PICK A POLARIZATION  VECTOR for detector b (Bob) 
    ' Bob's unit vector has components xb, yb and zb 
 
                                    
                xb = 0 
                yb = -Sqr(2) / 2 
                zb = -Sqr(2) / 2 
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 ' PICK A POLARIZATION  VECTOR for detector c (Charlie) 
    ' Charlie's unit vector has components xc, yc and zc 
 
                                    
                xc = 0 
                yc = 1 
                zc = 0 
 
 
    ' PICK A POLARIZATION  VECTOR for particle pair e. 
    ' Note that the two particles have the same vector, e, so that we are aiming for result +cos (theta) not -cos(theta) **************** 
    
    ' The particles' vector has components xe, ye and ze. 
 
       'pick uniform random numbers x between -1 and +1 
3 
               x = Rnd * 2 - 1 
               y = Rnd * 2 - 1 
               z = Rnd * 2 - 1 
                        
           length = x * x + y * y + z * z 
              
             If length < DELTA0 Then GoTo 3 

             If length > DELTA1 Then GoTo 3 
              
         
                xe = x 
                ye = y 
                ze = z 
                 
                  
        length = Sqr(length)       'the particle vector is not unity, but lies within a unit sphere 
       
  'CALCULATIONS BASED ON ONE PARTICLE PAIR 
   
    'calculation of angle between stations a and b 
   
      x = xa * xb + ya * yb + za * zb 
       If Abs(x) > DELTA1 Then GoTo 3 
      theta = Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)   '  excel's formula to give the arccos function 
        'need now to turn theta (decimal in radians) into IntegerTheta (an integer angle in degrees) 
       
         
    'calculation of A 
      ' a dot e =  xa * xe + ya * ye + za * ze 
      ' A = a dot e  where a and e need to be unit vectors 
      'here, a is a unit vector, but e has size = length, so 
     a = (xa * xe + ya * ye + za * ze) / length  '  length is magnitude of particle vector 
     'a = Sgn(a)   'REMOVE THIS LINE TO GET QM CORRELATONS   1ST OF 3 
    
    If a < 0 Then GoTo 10 
     
    'calculation of B 
     b = (xb * xe + yb * ye + zb * ze) / length 
     'b = Sgn(b)    'REMOVE THIS LINE TO GET QM CORRELATONS   2ND OF 3 
   
  'INCREMENT the accumulators 
    sa = sa + a 
    If b < 0 Then GoTo 110 
    sb = sb + b 
     
110   'calculation of C 
     c = (xc * xe + yc * ye + zc * ze) / length 
     'c = Sgn(c)   'REMOVE THIS LINE TO GET QM CORRELATONS   3RD OF 3 
     
    If c < 0 Then GoTo 10 
    sc = sc + c 
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10 Next ithPair  ' jump to top of FOR/NEXT loop for generation of the next pair of particles 
 
   theta = theta * 180 / Pi 
 
'END OF MAIN PART OF PROGRAM 
 
'-------------- 
 
' WRITE RESULTS TO SPREADSHEET : 
 
 
 
 
' set which row and column will be used as starting point to write results to spreadsheet 
    Range("a1").Select 
 
    
    ActiveCell.Offset(11, 2).Formula = "sum of A+" 
    ActiveCell.Offset(12, 2).Formula = "sum of B+ where A is also +" 
    ActiveCell.Offset(13, 2).Formula = "sum of C+ where A is also +" 
  
    ActiveCell.Offset(16, 2).Formula = "Total N of pairs" 
     
         

    ActiveCell.Offset(11, 3).Formula = sa 
    ActiveCell.Offset(12, 3).Formula = sb 
    ActiveCell.Offset(13, 3).Formula = sc 
 
    ActiveCell.Offset(16, 3).Formula = TotalNoOfPairs 
    ActiveCell.Offset(11, 5).Formula = sa / TotalNoOfPairs 
    ActiveCell.Offset(12, 5).Formula = sb / TotalNoOfPairs 
    ActiveCell.Offset(13, 5).Formula = sc / TotalNoOfPairs 
    ActiveCell.Offset(9, 3).Formula = "sum" 
    ActiveCell.Offset(9, 5).Formula = "Proportion" 
 
' NOW USER CAN GO TO RESULTS SPREADSHEET TO INSPECT 2X2 TABLE AND CORRELATION 
 
'-------------- 
 
End 
End Sub 
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Example of output from the Excel Visual Basic program in Appendix B 
 
 

 
 

Integer values of A, B and C taken as integer magnitudes of fuzzy vectors on a hemisphere 
centred on vectors a, b and c 

i.e. sums of fuzzy vectors on a hemisphere 
 

sum of A+ 500143  0.500143 

sum of B+ where A is also + 125318  0.125318 

sum of C+ where A is also + 249611  0.249611 

 

 
 

 
Integer values of A, B and C fractionally projected onto exact vectors a, b and c 

i.e. sums of exact vectors with fractional magnitudes 
 

sum of A+ 250942.5605  0.25094256 

sum of B+ where A is also + 36604.27625  0.036604276 

sum of C+ where A is also + 124758.1586  0.124758159 

 
 


